JPS6068611A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6068611A JPS6068611A JP17735283A JP17735283A JPS6068611A JP S6068611 A JPS6068611 A JP S6068611A JP 17735283 A JP17735283 A JP 17735283A JP 17735283 A JP17735283 A JP 17735283A JP S6068611 A JPS6068611 A JP S6068611A
- Authority
- JP
- Japan
- Prior art keywords
- polysilicon
- emitter
- diffusion
- interface
- ions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000000034 method Methods 0.000 claims abstract description 13
- 150000002500 ions Chemical class 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 239000010409 thin film Substances 0.000 claims 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 22
- 229920005591 polysilicon Polymers 0.000 abstract description 21
- 238000009792 diffusion process Methods 0.000 abstract description 18
- 239000012535 impurity Substances 0.000 abstract description 13
- 229910052710 silicon Inorganic materials 0.000 abstract description 13
- 239000010703 silicon Substances 0.000 abstract description 13
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 10
- 238000005468 ion implantation Methods 0.000 abstract description 8
- 238000010438 heat treatment Methods 0.000 abstract description 5
- 230000003321 amplification Effects 0.000 abstract description 4
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 4
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000087 stabilizing effect Effects 0.000 description 4
- -1 arsenic ions Chemical class 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000002547 anomalous effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
Landscapes
- Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Bipolar Transistors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は半導体装置の製造方法、特に半導体装置の不純
物拡散の安定化の方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for stabilizing impurity diffusion in a semiconductor device.
従来例の構成とその問題点
従来半導体装置の製造において、ポリシリコンを介して
単結晶シリコン基板中へ不純物を拡散するという方法が
ある。その従来技術の一例を第1図により説明する。Conventional Structure and Problems There is a conventional method in manufacturing semiconductor devices in which impurities are diffused into a single crystal silicon substrate through polysilicon. An example of the prior art will be explained with reference to FIG.
シリコン基板1上のエミッタ形成部分にシリコン酸化膜
2の窓開けを行ない、ポリシリコン3の堆積を行なう(
第1図a)。この上からエミ、り不純物となるヒ素イオ
ンの拡散及びボロイオンの拡散をおこな、てエミッタ領
域4ベース領域5の形成を行なう(第1図b)。A window is opened in the silicon oxide film 2 at the emitter formation portion on the silicon substrate 1, and polysilicon 3 is deposited (
Figure 1 a). From above, arsenic ions and boron ions serving as emitter impurities are diffused to form an emitter region 4 and a base region 5 (FIG. 1b).
しかし、上記方法においては、ポリシリコンとシリコン
の境界に自然酸化膜が存在していることで、特にヒ素の
拡散の障壁となり異常が生じ、形成したトランジスタの
電流増幅率を再現性良く制御することが困難である。そ
の為高精度の集積回路を形成する上で問題となっている
。この界面での異常拡散現象をイオンマイクロアナライ
ザーによる原子の深さ分布測定を行なった結果を用いて
説明する。However, in the above method, the presence of a natural oxide film at the boundary between polysilicon and silicon causes abnormalities, especially as it acts as a barrier to arsenic diffusion, making it difficult to control the current amplification factor of the formed transistor with good reproducibility. is difficult. This poses a problem in forming highly accurate integrated circuits. The anomalous diffusion phenomenon at this interface will be explained using the results of measuring the depth distribution of atoms using an ion microanalyzer.
第2図は、(111)方位0) S i上にQ 、 2
pmのポリシリコンを堆積しだ後Asイオンを6゜K
eV、1o cIn イオノ注入し、1000℃、20
分のN2中熱処理を加えたAsの濃度分布6の結果であ
る。横軸が表面からの深さであり界面のボリシリコンを
側にヒ素のパイルアンプが生じ、単結晶シリコン中への
ヒ素の拡散量が低下する結果となる。また単結晶中へ拡
散しておいたヒ素原子をポリシリコン側へ拡散させる場
合においてもこの界面をのりこえて拡散する量は急激に
低下してしまう。Figure 2 shows Q, 2 on (111) direction 0) S i
After depositing pm polysilicon, As ions were heated to 6°K.
eV, 1o cIn ion implantation, 1000℃, 20
This is the result of As concentration distribution 6 after heat treatment in N2 for 30 minutes. The horizontal axis is the depth from the surface, and a pile amplifier of arsenic occurs on the polysilicon side at the interface, resulting in a decrease in the amount of arsenic diffused into the single crystal silicon. Further, even when arsenic atoms that have been diffused into the single crystal are diffused toward the polysilicon side, the amount of arsenic atoms that diffuse across this interface rapidly decreases.
発明の目的
本発明はこのような従来の問題に鑑み、ポリシリコンと
シリコンの界面の安定性を高め、これを利用して作成し
た半導体装置の特性を安定する方法を提供するものでち
る。特にバイポーラトランジスタのエミッタ形成におけ
るヒ素拡散の安定化及ヒポリシリコン抵抗のコンタクト
部の拡散安定化に効果が大きい。OBJECTS OF THE INVENTION In view of these conventional problems, the present invention provides a method for increasing the stability of the interface between polysilicon and silicon and for stabilizing the characteristics of a semiconductor device manufactured using this. It is particularly effective in stabilizing arsenic diffusion in the formation of emitters of bipolar transistors and in stabilizing diffusion in contact portions of hypopolysilicon resistors.
発明の構成
本発明は、半導体基板上に不純物拡散領域に基板表面を
露出させ、半導体被膜(ポリシリコンあるいは非晶質シ
リコン)を堆積後、拡散不純物の導入と電気的に不活性
な不純物によるイオン注入を行なって半導体膜と半導体
基板の境界にまで不純物を到達させる。その後熱処理に
より電気的に活性な不純物拡散を生じさせ半導体装置の
拡散領域を形成する。ここでイオン注入の不純物の量に
よって拡散量を安定に制御することが可能となる。Structure of the Invention The present invention exposes the substrate surface to an impurity diffusion region on a semiconductor substrate, deposits a semiconductor film (polysilicon or amorphous silicon), and then introduces diffusion impurities and ions by electrically inactive impurities. The impurity is implanted to reach the boundary between the semiconductor film and the semiconductor substrate. Thereafter, heat treatment causes electrically active impurity diffusion to form a diffusion region of a semiconductor device. Here, it becomes possible to stably control the amount of diffusion by changing the amount of impurity in the ion implantation.
実施例の説明
以下バイポーラ集積回路の製造に関する実施例を用いて
本発明の実施例を詳細に説明する。DESCRIPTION OF EMBODIMENTS Embodiments of the present invention will now be described in detail using embodiments relating to the manufacture of bipolar integrated circuits.
第3図aでP型(111)Si基板11にn+埋め込み
層12を形成し、P+のチンネルストリバー領域16も
形成する。そのpn形のエピタキシャル領域13を形成
後素子間分離14を行ない、ベースのP型拡散領域16
を形成し、ベース16のコンタクト部、エミッタ形成部
、コレクタコンタクト部にポリシリコン17.18.1
9を厚さ0.3μmで選択的に残す。さらに、ここに、
エミッタ、コレクタ領域以外をレジスト膜2oをホトソ
リ法によってカバーした後、As イオンを60KeV
の加速エネルギーで10 Cノ〃 イオン注入法で導
入してエミッタ、コレクタコンタクト部のポリシリコン
18,19へ導入を行なった。その後、S1イオン21
を100 KeV でlX10”Cノn−2注入を行な
いポリシリコン18とシリコン界面22にダメージを与
える。この場合はポリシリコン19の界面にもダメージ
が付与される。In FIG. 3a, an n+ buried layer 12 is formed on a P type (111) Si substrate 11, and a P+ tunnel stripper region 16 is also formed. After forming the pn-type epitaxial region 13, element isolation 14 is performed, and the base p-type diffusion region 16 is
, and polysilicon 17.18.1 is formed on the contact part of the base 16, the emitter formation part, and the collector contact part.
9 is selectively left at a thickness of 0.3 μm. Furthermore, here,
After covering the resist film 2o except for the emitter and collector regions by photo-soliding, As ions were heated at 60KeV.
10 C was introduced by ion implantation with an acceleration energy of 10 C into the polysilicon 18 and 19 of the emitter and collector contact portions. After that, S1 ion 21
lx10"C non-n-2 implantation is performed at 100 KeV to damage the polysilicon 18 and the silicon interface 22. In this case, the polysilicon 19 interface is also damaged.
次に第2図すに示すごとく、イオン注入後、950℃、
20分の熱処理でエミッタの拡散を行なってエミッタ領
域24、コレクタコンタクト領域25を形成する。26
はベーヌ、エミッタ、コレクタ電極である。Next, as shown in Figure 2, after ion implantation, the
The emitter is diffused by heat treatment for 20 minutes to form an emitter region 24 and a collector contact region 25. 26
are the vane, emitter, and collector electrodes.
なおイオン注入は、上に示したSt以外のカーボン、フ
ッ素、アルゴン等の不活性イオンを用いることによって
もその効果は大きい。さらにAsイオン注入と、これら
の不活性イオンのイオン注入の導入順序はどちらでも良
い。Note that the ion implantation can also be more effective by using inert ions such as carbon, fluorine, argon, etc. other than the above-mentioned St. Furthermore, the order of the As ion implantation and the ion implantation of these inactive ions may be either.
以上の方法で作成したl・ランジスタの電流増幅率をシ
リコン注入量に応じてグラフにして第4図に示す。横軸
はシリコンイオンの注入量、縦軸はトランジスタの電流
増幅率を示す。不活性イオンの注入が全くない場合には
、再現性が乏しく、30〜70の値にバラツキが大きい
。約10 ”CIl+−2を超えると安定した値となり
、ポリシリコンとシリコン界面が安定した状態になる。FIG. 4 shows a graph of the current amplification factor of the L transistor fabricated by the above method as a function of the amount of silicon implanted. The horizontal axis shows the amount of silicon ion implanted, and the vertical axis shows the current amplification factor of the transistor. When no inert ions are implanted, the reproducibility is poor and the values vary widely from 30 to 70. When it exceeds about 10'' CIl+-2, it becomes a stable value and the polysilicon-silicon interface becomes stable.
これを第2図に対応したAsの深さ方向の濃度分布を第
5図に示す。この場合Siの注入を100K e V
で10C7X イオノ注入した。ポリシリコンとシリコ
ン界面における異常な析出は生じなくなる。FIG. 5 shows the concentration distribution of As in the depth direction corresponding to FIG. 2. In this case, the Si implantation was performed at 100 K e V.
Injected with 10C7X iono. Abnormal precipitation at the interface between polysilicon and silicon no longer occurs.
発明の効果
以上の本発明の方法により、ポリンIJ Oンシリコン
界面での不純物拡散の状態を安定させることができ、高
精度な集積回路素子を形成することができた。Effects of the Invention By the method of the present invention, the state of impurity diffusion at the poly-IJO-silicon interface could be stabilized, and a highly accurate integrated circuit element could be formed.
第1図(a) 、 <b)は従来におけるポリシリコン
とシリコンへの拡散工程の断面図、第2図は従来のポリ
シリコンシリコン中のAs原子の深さ濃度分布を示す図
、第3図(a) 、 (b)は本発明の一実施例のトラ
ンジスタのエミッタ形成工程断面図、第4図はSiイオ
ン注入量と作成したバイポーラの電流増幅率の関係を示
す図、第5図は本発明のポリンリコンシリコン中のAs
原子の深さ濃度分布を示す図である。
18・・・ポリSi エミッタ、21 ・−・・S1イ
オンビーム、22・・・ エミッタ拡散層。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第3
図
第4図
5t4Xソうt入量
第5図
保N(pm)Figures 1 (a) and <b) are cross-sectional views of the conventional diffusion process into polysilicon and silicon, Figure 2 is a diagram showing the depth concentration distribution of As atoms in conventional polysilicon, and Figure 3 is a diagram showing the depth concentration distribution of As atoms in conventional polysilicon. (a) and (b) are cross-sectional views of the emitter formation process of a transistor according to an embodiment of the present invention, FIG. As in polyrecon silicon of the invention
FIG. 3 is a diagram showing the depth concentration distribution of atoms. 18... Poly-Si emitter, 21... S1 ion beam, 22... Emitter diffusion layer. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 3
Figure 4 Figure 5 t4X t Input Figure 5 Maintenance N (pm)
Claims (1)
的に不活性なイオンを上記半導体薄膜と半導体基板の界
面に達するまでイオン注入を行なう工程、電気的に活性
な原子を上記界面を通じて拡散する工程を含むことを特
徴とする半導体装置の製造方法。A process of forming a semiconductor thin film on a semiconductor substrate, a process of implanting electrically inactive ions until they reach the interface between the semiconductor thin film and the semiconductor substrate, and a process of diffusing electrically active atoms through the interface. A method for manufacturing a semiconductor device, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17735283A JPS6068611A (en) | 1983-09-26 | 1983-09-26 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17735283A JPS6068611A (en) | 1983-09-26 | 1983-09-26 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6068611A true JPS6068611A (en) | 1985-04-19 |
Family
ID=16029464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17735283A Pending JPS6068611A (en) | 1983-09-26 | 1983-09-26 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6068611A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5165561A (en) * | 1974-10-18 | 1976-06-07 | Siemens Ag | |
JPS54128668A (en) * | 1978-03-30 | 1979-10-05 | Toshiba Corp | Manufacture for electronic component device |
-
1983
- 1983-09-26 JP JP17735283A patent/JPS6068611A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5165561A (en) * | 1974-10-18 | 1976-06-07 | Siemens Ag | |
JPS54128668A (en) * | 1978-03-30 | 1979-10-05 | Toshiba Corp | Manufacture for electronic component device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6246989B2 (en) | ||
JPH0640582B2 (en) | Method for manufacturing insulating gate field effect transistor | |
EP0033495B1 (en) | Process for fabricating a high speed bipolar transistor | |
JPS6063961A (en) | Manufacture of semiconductor device | |
US5128272A (en) | Self-aligned planar monolithic integrated circuit vertical transistor process | |
JPH073813B2 (en) | Field effect transistor and bipolar transistor structure manufacturing method, integrated circuit manufacturing method, semiconductor device manufacturing method, and semiconductor structure manufacturing method | |
JPH0734477B2 (en) | Method for manufacturing semiconductor device | |
JPH061786B2 (en) | Method of manufacturing thin film transistor | |
JPS6068611A (en) | Manufacture of semiconductor device | |
JPH02270335A (en) | Semiconductor device and manufacture thereof | |
JPH0831598B2 (en) | Method for manufacturing semiconductor device | |
US7164186B2 (en) | Structure of semiconductor device with sinker contact region | |
JPH0770543B2 (en) | Transistor manufacturing method | |
JPS646537B2 (en) | ||
JP2569809B2 (en) | Method for manufacturing semiconductor device | |
JP2874885B2 (en) | Semiconductor device and manufacturing method thereof | |
JPS60127755A (en) | Manufacture of semiconductor device | |
JP2576664B2 (en) | Method for manufacturing NPN transistor | |
JP2001332697A (en) | Semiconductor device comprising semiconductor resistor element and manufacturing method thereof | |
JPS63287061A (en) | Method of forming bipolar transistor with close device regions | |
JP2828264B2 (en) | Method for manufacturing semiconductor device | |
JPH0629543A (en) | Manufacture of semiconductor device | |
JPH0734469B2 (en) | Method for manufacturing field effect transistor | |
JPS61206219A (en) | Manufacture of semiconductor device | |
JPS62211949A (en) | Manufacture of semiconductor device |