JPS61206219A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61206219A
JPS61206219A JP60046521A JP4652185A JPS61206219A JP S61206219 A JPS61206219 A JP S61206219A JP 60046521 A JP60046521 A JP 60046521A JP 4652185 A JP4652185 A JP 4652185A JP S61206219 A JPS61206219 A JP S61206219A
Authority
JP
Japan
Prior art keywords
film
diffusion
silicide film
type
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60046521A
Other languages
Japanese (ja)
Other versions
JPH0697658B2 (en
Inventor
Shizunori Ooyu
大湯 静憲
Nobuyoshi Kashu
夏秋 信義
Yasuo Wada
恭雄 和田
Tadashi Suzuki
匡 鈴木
Masao Tamura
田村 誠男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60046521A priority Critical patent/JPH0697658B2/en
Publication of JPS61206219A publication Critical patent/JPS61206219A/en
Publication of JPH0697658B2 publication Critical patent/JPH0697658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To form a shallow N-type doped layer and a P-type layer having the practically same junction depth by a method wherein impurities are introduced into a silicide film only by performing an ion implantation. CONSTITUTION:A tungsten silicide film 18 is selectively formed on the surface only of a silicon substrate 12, and boron 20 is implanted into the silicide film 18 located on an N-type substrate using a photoresist film 19 as a mask. A photoresist film 12 is formed only on the part other than a P-well diffusion film 14, and arsenic 22 is implanted. Subsequently, after the photoresist film 21 is removed, a PSG film 23 is formed, the boron and arsenic implanted into the silicide film 18 are diffused on the silicon substrate, and a P-type diffusion film 24 and an N-type diffusion film 25 are formed. The respective diffusion films under the tungsten silicide film 18 have a high surface density, and also their junction depth is almost equal.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体装置の製造方法に関し、詳しくはシリ
サイド膜下の高濃度のn型およびP型ドープ層を、実質
的に等しい接合深さとするのに好適な半導体装置の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and more particularly, the present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device, in which heavily doped n-type and p-type layers under a silicide film are made to have substantially equal junction depths. The present invention relates to a method of manufacturing a semiconductor device suitable for.

〔発明の背景〕[Background of the invention]

従来、シリサイド膜下に拡散層を形成する方法としては
、特開昭59−88868号に記載のように。
A conventional method for forming a diffusion layer under a silicide film is as described in Japanese Patent Application Laid-Open No. 88868/1983.

高融点金属シリサイド膜を通して不純物拡散を行ないシ
リサイド膜下のシリコン基板に拡散層を形成する方法や
、特開昭59−99774号に記載のように、高融点金
属膜/シリコン基板界面に不純物をイオン打込みした後
、熱処理により高融点金属シリサイド膜形成とシリコン
基板への拡散層形成とを同時に形成する方法などが提案
されている。
There is a method of diffusing impurities through a high melting point metal silicide film to form a diffusion layer on the silicon substrate under the silicide film, or a method of ionizing impurities at the high melting point metal film/silicon substrate interface as described in JP-A-59-99774. A method has been proposed in which a high melting point metal silicide film and a diffusion layer are formed on the silicon substrate at the same time by heat treatment after implantation.

しかし、これらの方法では、シリサイド膜下のドープ層
を浅くすること、およびn型拡散層とp型ドープ層の接
合深さを同じにすることに対しての配慮がなされていな
かった。これらの方法によれば、同一基板に同じ接合深
さのn型ドープ層とp型ドープ層を形成する場合、シリ
コン基板中の拡散係数が小さい不純物(例えばn型不純
物としてヒ素)を用いて所定の深さの第1のドープ層を
形成したのち、上記拡散係数の大きな不純物(例えば、
p型不純物としてホウ素)により第2のド−プ層を形成
することにより行なう必要がある。
However, in these methods, consideration has not been given to making the doped layer under the silicide film shallow and to making the junction depth of the n-type diffusion layer and the p-type doped layer the same. According to these methods, when forming an n-type doped layer and a p-type doped layer with the same junction depth on the same substrate, an impurity with a small diffusion coefficient in the silicon substrate (for example, arsenic as an n-type impurity) is used to form a predetermined doped layer. After forming the first doped layer with a depth of
This must be done by forming a second doped layer with boron as a p-type impurity.

従って、第1のドープ層形成のための第1の不純物導入
工程と第1のドーブ工程、さらに、第2のドープ層形成
のための第2の不純物導入工程と第2の拡散工程という
ように、2段階の不純物導入工程と拡散工程が必要とな
る。また、同じ接合深さを得るためには、第1および第
2の不純物導入工程の条件と、第1および第2の拡散工
程の条件との組み合せが多岐にわたり、条件設定が非常
に困難となる。
Therefore, a first impurity introduction step and a first doping step for forming a first doped layer, a second impurity introduction step and a second diffusion step for forming a second doped layer, and so on. , a two-step impurity introduction process and a diffusion process are required. Furthermore, in order to obtain the same junction depth, there are many combinations of conditions for the first and second impurity introduction steps and conditions for the first and second diffusion steps, making it extremely difficult to set the conditions. .

また、約0.2  μmと浅い接合深さとするには、従
来の電気炉を用いた30分程度のアニールでは、上記ヒ
素およびホウ素による拡散層形成温度を高くできない0
例えば、30分程度のアニールでは。
In addition, in order to achieve a shallow junction depth of about 0.2 μm, annealing for about 30 minutes using a conventional electric furnace cannot raise the temperature at which the diffusion layer formed by arsenic and boron is formed.
For example, annealing for about 30 minutes.

上記温度は1000℃以下に制限される。また、上記ヒ
素およびホウ素のシリコン中での拡散係数の差から、同
じ接合深さを得るための上記温度は、50℃程度異なる
0例えば、第1の拡散層を所定の温度でヒ素拡散するこ
とにより形成したのち、第2の蒸散層を上記ヒ素拡散温
度より約50℃低い温度でホウ素拡散を行なうことによ
り、0.2μm程度の同じ接合深さの拡散層を得ること
ができる。
The above temperature is limited to 1000°C or less. Furthermore, due to the difference in the diffusion coefficients of arsenic and boron in silicon, the temperatures to obtain the same junction depth differ by about 50°C. For example, arsenic may be diffused in the first diffusion layer at a predetermined temperature. After forming the second evaporation layer by performing boron diffusion at a temperature approximately 50° C. lower than the arsenic diffusion temperature, a diffusion layer having the same junction depth of approximately 0.2 μm can be obtained.

電気的に活性な不純物濃度は、処理温度に強く依存し、
例えば、処理温度が高い程高濃度となり、処理温度が低
くなると低下してしまう。このようなことから、第2の
拡散温度が第1の拡散温度より低いため、比較的高温で
のヒ素拡散により形成された第1の拡散層の活性ヒ素濃
度は、第2の拡散工程時に低下してしまい、さらに、活
性ホウ素濃度も低く抑えられてしまう。
The concentration of electrically active impurities strongly depends on the processing temperature;
For example, the higher the processing temperature, the higher the concentration, and the lower the processing temperature, the lower the concentration. For this reason, since the second diffusion temperature is lower than the first diffusion temperature, the active arsenic concentration in the first diffusion layer formed by arsenic diffusion at a relatively high temperature decreases during the second diffusion step. Moreover, the active boron concentration is also kept low.

このように従来の方法によれば、0.2 μm程度の浅
い接合を、高活性不純物濃度を形成することが困難であ
り、その濃度は、第2の拡散層形成の処理温度で決まる
それぞれの不純物の固溶度に制限を受けてしまう、その
結果、それぞれの拡散層の抵抗は、十分に低くできない
As described above, according to the conventional method, it is difficult to form a shallow junction of about 0.2 μm with a high active impurity concentration, and the concentration is determined by the processing temperature for forming the second diffusion layer. The solid solubility of impurities is limited, and as a result, the resistance of each diffusion layer cannot be made sufficiently low.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記従来の方法が有する工程数の多さ
や条件設定の困難さ等の問題点を解決し1、工程および
その条件設定が容易で、かつ、上記シリサイド膜下に高
濃度(または低抵抗)の実質的に同じ接合深さを有する
浅いn型ドープ層とp型層を形成することのできる半導
体装置の製造方法を提供することにある。
An object of the present invention is to solve the problems of the conventional method, such as the large number of steps and the difficulty in setting conditions. An object of the present invention is to provide a method for manufacturing a semiconductor device that can form a shallow n-type doped layer and a p-type layer having substantially the same junction depth (or low resistance).

〔発明の概要〕[Summary of the invention]

本発明は、上記目的が下記十分条件を満足することによ
って達成できるという新規な知見にもとづいている。す
なわち、第1の条件は、第1図、(a)および(b)に
示すように、シリサイド膜4中にのみイオン打込みによ
る不純物導入を行なうことである。その理由は、打込み
不純物6,8が上記シリサイド膜4下のシリコン基板1
に達した場合の、打込み不純物によるシリコン基板への
欠陥の生成、チャネリング現象による打込み不純物分布
の深さの増大、および、制御性の低下を防止することに
ある。即ち、シリコン基板中に直接イオン打込みされる
と、接合深さが十分浅い、良質の接合を形成する事は著
るしく困難になる。
The present invention is based on the novel finding that the above object can be achieved by satisfying the following sufficient conditions. That is, the first condition is that impurities are introduced only into the silicide film 4 by ion implantation, as shown in FIGS. 1(a) and 1(b). The reason is that the implanted impurities 6 and 8 are in the silicon substrate 1 under the silicide film 4.
The purpose is to prevent the formation of defects in the silicon substrate due to the implanted impurities, the increase in the depth of the implanted impurity distribution due to the channeling phenomenon, and the deterioration of controllability when the implanted impurities reach this level. That is, when ions are directly implanted into a silicon substrate, it becomes extremely difficult to form a high-quality junction with a sufficiently shallow junction depth.

第2の条件は、上記シリサイド膜中に固溶度以上の量の
不純物を導入することである。その理由は、以下のよう
になる。接触抵抗の低いシリサイド電極を形成するため
には、第2図に示したように、シリサイド膜直下の電気
的に活性な不純物濃度をできるだけ高くすることが望ま
しく、これを実現するには固溶度以上の量の不純物が必
要であるからである。すなわち、高濃度のn型またはp
型拡散層を形成するためには、熱処理時のシリコン基板
への不純物拡散をシリコン基板の固溶度で制限される状
態にする必要がある。つまり、シリサイド膜中の固溶度
以上の過剰の不純物が大量にシリコン基板側に拡散する
ように、シリサイド膜中への不純物導入量をシリサイド
中の不純物の固溶度以上にしなければならない、この不
純物導入量が上記要求を満足をしない場合、上記シリサ
イド膜直下の活性不純物濃度が、シリサイド膜とシリコ
ン基板との間での不純物の偏析係数により決定されるた
め、高い活性不純物濃度は期待できな−1゜ さらに、第3の条件は、第1図(c)に示すように、シ
リサイド膜4中への不純物導入後、シリサイド膜4表面
を不純物の拡散が遅い被膜9で覆うことである。その理
由は、不純物拡散が非常に速いシリサイド膜の表面から
、不純物6,8が蒸発することを防止し、前記第2の条
件の不純物導入量の制限が無効になることを回避するこ
とにある0例えば、第3図のように、上記被膜の無い場
合、上記被膜のある場合に比べて活性不純物濃度が極端
に低下するため、拡散処理は、シリサイド膜表面に上記
被膜を形成して行なう必要がある。
The second condition is that an amount of impurity greater than the solid solubility is introduced into the silicide film. The reason is as follows. In order to form a silicide electrode with low contact resistance, it is desirable to increase the concentration of electrically active impurities directly under the silicide film as high as possible, as shown in Figure 2. This is because the above amount of impurities is required. That is, a high concentration of n-type or p-type
In order to form a type diffusion layer, it is necessary to make the diffusion of impurities into the silicon substrate during heat treatment limited by the solid solubility of the silicon substrate. In other words, the amount of impurities introduced into the silicide film must be greater than the solid solubility of the impurities in the silicide so that the excess impurities that exceed the solid solubility in the silicide film diffuse into the silicon substrate side in large quantities. If the amount of impurity introduced does not satisfy the above requirements, a high active impurity concentration cannot be expected because the active impurity concentration directly under the silicide film is determined by the impurity segregation coefficient between the silicide film and the silicon substrate. -1° Furthermore, the third condition is that, after introducing impurities into the silicide film 4, the surface of the silicide film 4 is covered with a film 9 in which impurities diffuse slowly. The reason for this is to prevent impurities 6 and 8 from evaporating from the surface of the silicide film, where impurity diffusion is extremely rapid, and to avoid invalidating the restriction on the amount of impurities introduced in the second condition. 0 For example, as shown in Figure 3, when the above film is not present, the active impurity concentration is extremely lower than when the above film is present, so the diffusion treatment must be performed by forming the above film on the silicide film surface. There is.

最後に、第4の条件は、シリサイド膜からシリコン基板
への不純物拡散を、高温・短時間で行なうことである。
Finally, the fourth condition is that impurity diffusion from the silicide film to the silicon substrate be performed at high temperature and in a short time.

その理由は、拡散温度を1000〜1200℃の高温と
し、また、拡散時間を5〜60秒程度の短時間とするこ
とで、第1図(d)に示したように、去れぞれの拡散層
10.11の活性不純物濃度を1〜3×’o”j3−”
まで高濃度にでき、また、それぞれの拡散層10.11
の接合深さを0.2 μm程度以下の範囲で任意に選ぶ
ことができるためである。すな・わち、活性不純物濃度
を上記程度にすることにより、シリサイド電極の接触抵
抗を低くすることができるため、第2図に示しタヨウに
、ソース・ドレイン領域の抵抗を安定かつ低く保つこと
ができる。また、第4図に示すように、約1μm程度の
ゲート長りを有するMOSトランジスタにおいて、ゲー
トの加工が10%の精度で行なわれる場合(ゲート長り
に対して、ゲートの加工ばらつきJLがAL=0.1 
 Lである場合)、ゲート長のばらつきに起因するしき
い値電圧変動を0.2 v以下に抑えるためには、接合
深さを0.2  μm程度以下にする必要があり、本発
明の上記条件によればこの要求が容易に達成できる。
The reason for this is that by setting the diffusion temperature to a high temperature of 1,000 to 1,200°C and the diffusion time to a short period of about 5 to 60 seconds, each of the diffusion The active impurity concentration of layer 10.11 is 1 to 3×'o"j3-"
In addition, each diffusion layer 10.11
This is because the junction depth can be arbitrarily selected within a range of about 0.2 μm or less. In other words, by setting the active impurity concentration to the above level, the contact resistance of the silicide electrode can be lowered, so as shown in Figure 2, the resistance of the source and drain regions can be kept stable and low. I can do it. Furthermore, as shown in Fig. 4, in a MOS transistor having a gate length of about 1 μm, when the gate is processed with an accuracy of 10% (with respect to the gate length, the gate processing variation JL is =0.1
In order to suppress the threshold voltage fluctuation due to variation in gate length to 0.2 V or less, it is necessary to reduce the junction depth to about 0.2 μm or less. Depending on the conditions, this requirement can be easily achieved.

また、n型不純物としては、ヒ素の代わりに、本発明に
対してリンを用いることも可能である。
Further, as the n-type impurity, phosphorus can also be used in the present invention instead of arsenic.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例として、CMO3の接合形成を
、第5図乃至第7図により説明する。
Hereinafter, as an embodiment of the present invention, bond formation of CMO3 will be explained with reference to FIGS. 5 to 7.

基板濃度がI X 10”cs−”のn型シリコン基板
12に、通常のLOCO3法によりフィールド酸化膜1
3を形成し、濃度がI X 10”(1m−”のpウェ
ル拡散層14を形成、さらに、ゲート酸化膜15を20
nm形成し、次に、ゲート電極材としてタングステン膜
を形成したのち通常のホトエツチング工程によりゲート
電極16を形成した(a)。
A field oxide film 1 is formed on an n-type silicon substrate 12 with a substrate concentration of I x 10"cs-" by the usual LOCO3 method.
3, a p-well diffusion layer 14 with a concentration of I x 10"(1m-") is formed, and a gate oxide film 15 is
After forming a tungsten film as a gate electrode material, a gate electrode 16 was formed by a normal photoetching process (a).

次に、ゲート電極16をシリコン酸化膜17で覆い(b
)、タングステンシリサイド膜18をシリコン基板表面
上のみ、0.1  nm選択的に形成した(Q)。
Next, the gate electrode 16 is covered with a silicon oxide film 17 (b
), a 0.1 nm thick tungsten silicide film 18 was selectively formed only on the silicon substrate surface (Q).

次に、通常のホトエツチング工程を用い、pウェル拡散
層14上の部分にのみ1μm厚のホトレジスト膜19を
形成し、このホトレジスト膜19をマスクとして、n型
基板上のシリサイド膜18に、打込みエネルギー= 2
5 k e V、打込み量=I X 10’“/dとい
う条件でホウ素20打込みを行なった(d)。
Next, using a normal photoetching process, a 1 μm thick photoresist film 19 is formed only on the p-well diffusion layer 14, and using this photoresist film 19 as a mask, implant energy is applied to the silicide film 18 on the n-type substrate. = 2
20 boron implants were performed under the conditions of 5 k e V and implant amount = I x 10'/d (d).

次に、ホトレジスト膜19を除去したのち、さらに、p
ウェル拡散層14上以外の部にのみ1μm厚のホトレジ
スト膜21を形成し、打込みエネルギー= 140 k
 e V、打込み量= I X 10”/cdという条
件でヒ素23打込みを行なった(e)。
Next, after removing the photoresist film 19, p
A photoresist film 21 with a thickness of 1 μm was formed only on the part other than on the well diffusion layer 14, and the implantation energy was 140 k.
Arsenic 23 implantation was performed under the conditions of e V and implantation amount = I x 10''/cd (e).

その後、ホトレジスト膜21を除去したのち、0.5 
μm厚のPSG (リンガラス)膜23を形成し、熱処
理温度=1150℃、熱処理時間=20秒の熱処理によ
り、シリサイド膜18中に打込まれたホウ素およびヒ素
を、シリコン基板に拡散し、n型拡散層24およびn型
拡散層25を形成した(f)、このときの、n型拡散層
24およびn型拡散層25のキャリヤの深さ方向分布を
第3図に示す、タングステンシリサイド膜18下のそれ
ぞれの拡散層は、表面濃度がI X 10”am−3と
高く。
After that, after removing the photoresist film 21, 0.5
A μm-thick PSG (phosphorus glass) film 23 is formed, and by heat treatment at a heat treatment temperature of 1150° C. and a heat treatment time of 20 seconds, boron and arsenic implanted into the silicide film 18 are diffused into the silicon substrate. After forming the type diffusion layer 24 and the n-type diffusion layer 25 (f), the depth distribution of carriers in the n-type diffusion layer 24 and the n-type diffusion layer 25 is shown in FIG. 3. Each of the lower diffusion layers has a high surface concentration of I x 10"am-3.

また、接合深さは約0.2  μmと殆んど等しい。Further, the junction depth is approximately equal to about 0.2 μm.

このときのp型およびn型拡散層の層抵抗は、それぞれ
8oΩ/口および40Ω/口と低い。
The layer resistances of the p-type and n-type diffusion layers at this time are as low as 80Ω/hole and 40Ω/hole, respectively.

本実施例によれば、同じ接合深さの異なる導伝型の拡散
層を一回の拡散工程だ作ることができる。
According to this embodiment, diffusion layers of different conductivity types having the same junction depth can be formed in a single diffusion process.

それぞれの拡散層の接合深さを同じにすることは。Making the junction depth of each diffusion layer the same?

CMOSトランジスタの製造に対して、実効ゲート長を
等しくできるという利点がある。また、拡散条件により
容易に任意の接合深さの拡散層を形成することかでき、
例えば、第4図に示すように、熱処理温度を決めること
により接合深さが容易に決定できる。さらに、それぞれ
の拡散層の電気的に活性不純物濃度が高いため、シリサ
イド膜と拡散層との間の接触抵抗を小さくすることがで
きる。
For manufacturing CMOS transistors, there is an advantage that the effective gate lengths can be made equal. In addition, it is possible to easily form a diffusion layer with an arbitrary junction depth depending on the diffusion conditions.
For example, as shown in FIG. 4, the bonding depth can be easily determined by determining the heat treatment temperature. Furthermore, since each diffusion layer has a high electrically active impurity concentration, the contact resistance between the silicide film and the diffusion layer can be reduced.

その他、本実施例で述べた熱処理条件は、PSG膜のデ
ンシファイを行なうに十分な条件であり、上記被膜(P
SG膜)をパッシベーション膜として用することができ
る。
In addition, the heat treatment conditions described in this example are sufficient conditions to densify the PSG film, and the
SG film) can be used as a passivation film.

また、本実施例によれば、シリサイド膜下の拡散層の電
気的に活性な不純物濃度をI XIO”as−’以上に
できるため、ソースおよびドレイン領域の抵抗が低く、
かつ、上記抵抗が上記不純物濃度のバラツキに依存しな
いで安定な値となる。さらに。
Furthermore, according to this embodiment, since the electrically active impurity concentration of the diffusion layer under the silicide film can be made higher than IXIO"as-', the resistance of the source and drain regions is low.
Moreover, the resistance has a stable value independent of variations in the impurity concentration. moreover.

接合深さを20nm以内と浅く制御でき(第4図参照)
、かつ、nおよびp拡散層を同じ接合深さにすることが
できるために、各素子の特性を非常にバラツキの少ない
安定なものにすることができる。
Junction depth can be controlled to be shallow within 20 nm (see Figure 4)
In addition, since the n and p diffusion layers can have the same junction depth, the characteristics of each element can be made stable with very little variation.

〔発明の効果〕 本発明によれば、異なる導伝型の拡散層を有する半導体
装置を製造する際、P型およびn型のいずれの拡散層の
形成に対しても、1回の拡散工程で同じ接合深さの拡散
層が形成できるため、工程数が減り、また、拡散のため
の熱処理条件の設定も容易となる。さらに、本発明の熱
処理条件下では、拡散層の電気的に活性な不純物濃度を
従来に比べて2〜5倍程度まで高くすることができるの
で、それぞれのシリサイド膜拡散層の総抵抗を従来法に
比べて1/2から1/3程度まで低くすることができる
[Effects of the Invention] According to the present invention, when manufacturing a semiconductor device having diffusion layers of different conductivity types, a single diffusion step can be used to form both P-type and n-type diffusion layers. Since diffusion layers with the same junction depth can be formed, the number of steps is reduced and it is also easier to set the heat treatment conditions for diffusion. Furthermore, under the heat treatment conditions of the present invention, the concentration of electrically active impurities in the diffusion layer can be increased to about 2 to 5 times higher than that of the conventional method, so the total resistance of each silicide film diffusion layer can be lowered compared to the conventional method. It can be lowered to about 1/2 to 1/3 compared to .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の概要を示す工程図、第2図はWSi、
シリサイド/ S i基板界面の活性不純物濃度とソー
ス・ドレイン領域の総低抗の関係を示した図、第3図は
活性不純物濃度の深さ方向分布図、第4図は接合深さと
しきい値電圧変動の関係を示した図、第5図は本発明を
用いてC0M5トランジスタを作製した工程図、第6図
は電気的に活性な不純物濃度の深さ方向分布図、第7図
熱処理温度と拡散層の接合深さとの関係図である。 1.12・・・n型シリコン基板、2.14・・・pウ
ェル拡散層、3,13,15,17・・・シリコン酸化
膜、4.18・・・タングステンシリサイド膜、5゜7
.19.21・・・レジスト膜、6.20・・・ホウ素
イオン、8,22・・・ヒ素イオン、9・・・被膜、1
0゜24・・・p型拡散層、11,25・・・n型拡散
層、16・・・ゲート電極、23・・・PSG膜、26
・・・P型拡散層のキャリア分布、27・・・n型拡散
層のキャリア分布。
Fig. 1 is a process diagram showing the outline of the present invention, Fig. 2 is a WSi,
A diagram showing the relationship between the active impurity concentration at the silicide/Si substrate interface and the total resistance of the source/drain region. Figure 3 is a depth distribution diagram of the active impurity concentration, and Figure 4 is the relationship between the junction depth and threshold voltage. Figure 5 is a diagram showing the relationship between fluctuations, Figure 5 is a process diagram for manufacturing a C0M5 transistor using the present invention, Figure 6 is a depth distribution diagram of electrically active impurity concentration, Figure 7 is heat treatment temperature and diffusion. It is a relationship diagram with the junction depth of a layer. 1.12... N-type silicon substrate, 2.14... P-well diffusion layer, 3, 13, 15, 17... Silicon oxide film, 4.18... Tungsten silicide film, 5°7
.. 19.21...Resist film, 6.20...Boron ion, 8,22...Arsenic ion, 9...Coating, 1
0°24...p-type diffusion layer, 11, 25...n-type diffusion layer, 16...gate electrode, 23...PSG film, 26
...Carrier distribution in the P-type diffusion layer, 27...Carrier distribution in the n-type diffusion layer.

Claims (1)

【特許請求の範囲】[Claims] 1、高濃度n型拡散層および高濃度p型拡散層を形成す
べき領域上のシリサイド膜中に上記シリサイド膜中の打
込み不純物濃度が固溶度以上となるように、ヒ素もしく
はリンおよびホウ素をイオン打込みする工程と、上記シ
リサイド膜上に、上記ヒ素もしくはリンおよびホウ素の
拡散係数が、上記シリサイド膜より小さな被膜を形成す
る工程と、熱処理温度が1000〜1200℃、熱処理
時間が5〜60秒の範囲の熱処理を行なう工程を含むこ
とを特徴とする半導体装置の製造方法。
1. Arsenic or phosphorus and boron are added to the silicide film on the regions where the high concentration n-type diffusion layer and the high concentration p-type diffusion layer are to be formed so that the implanted impurity concentration in the silicide film is higher than the solid solubility. a step of implanting ions, a step of forming a film on the silicide film in which the diffusion coefficient of arsenic or phosphorus and boron is smaller than that of the silicide film, and a heat treatment temperature of 1000 to 1200°C and a heat treatment time of 5 to 60 seconds. 1. A method for manufacturing a semiconductor device, comprising the step of performing heat treatment in the range of .
JP60046521A 1985-03-11 1985-03-11 Method for manufacturing semiconductor device Expired - Lifetime JPH0697658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046521A JPH0697658B2 (en) 1985-03-11 1985-03-11 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046521A JPH0697658B2 (en) 1985-03-11 1985-03-11 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61206219A true JPS61206219A (en) 1986-09-12
JPH0697658B2 JPH0697658B2 (en) 1994-11-30

Family

ID=12749575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046521A Expired - Lifetime JPH0697658B2 (en) 1985-03-11 1985-03-11 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0697658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259228A (en) * 1990-03-09 1991-11-19 Seiko Instr Inc Electrooptic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03259228A (en) * 1990-03-09 1991-11-19 Seiko Instr Inc Electrooptic device

Also Published As

Publication number Publication date
JPH0697658B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
JP3031855B2 (en) Method for manufacturing semiconductor device
US5256894A (en) Semiconductor device having variable impurity concentration polysilicon layer
US4170492A (en) Method of selective oxidation in manufacture of semiconductor devices
JPS59920A (en) Manufacture of semiconductor device
US4502894A (en) Method of fabricating polycrystalline silicon resistors in integrated circuit structures using outdiffusion
JPH03270068A (en) Manufacture of high performance bicmos circuit
JPH0734477B2 (en) Method for manufacturing semiconductor device
JPH02191341A (en) Manufacture of mos field effect transistor
JPS61206219A (en) Manufacture of semiconductor device
JPH0526343B2 (en)
JPS62265765A (en) Semiconductor device and manufacture thereof
JPH06163576A (en) Manufacture of semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS61248476A (en) Manufacture of semiconductor device
JP3120428B2 (en) Method for manufacturing MOS type semiconductor device
JPS59138363A (en) Semiconductor device and manufacture thereof
JPS61292318A (en) Manufacture of semiconductor device
JPH0770543B2 (en) Transistor manufacturing method
JP3147374B2 (en) Semiconductor device
JP3231475B2 (en) Method for manufacturing semiconductor device
JPS5826177B2 (en) Manufacturing method of semiconductor device
JPS6323362A (en) Manufacture of semiconductor device
JPS60261172A (en) Manufacture of semiconductor device
JPH0230145A (en) Manufacture of semiconductor device
JPH04283966A (en) Manufacture of mos semiconductor device