JPS6063976A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6063976A
JPS6063976A JP17150383A JP17150383A JPS6063976A JP S6063976 A JPS6063976 A JP S6063976A JP 17150383 A JP17150383 A JP 17150383A JP 17150383 A JP17150383 A JP 17150383A JP S6063976 A JPS6063976 A JP S6063976A
Authority
JP
Japan
Prior art keywords
layer
substrate
type
ridges
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17150383A
Other languages
Japanese (ja)
Inventor
Takeshi Hamada
健 浜田
Masaru Wada
優 和田
Kunio Ito
国雄 伊藤
Yuichi Shimizu
裕一 清水
Fumiko Tajiri
田尻 文子
Masahiro Kume
雅博 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17150383A priority Critical patent/JPS6063976A/en
Publication of JPS6063976A publication Critical patent/JPS6063976A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion

Abstract

PURPOSE:To realize the titled device of high output by basic lateral mode oscillation by a method wherein each layer including an active layer is formed on a substrate with two parallel ridges formed, and the shape of a groove between ridges is made a dove tail form having depths varying discontinuously. CONSTITUTION:The two ridges are formed by etching on the plane (100) of an N type GaAs substrate 1 in the direction of <011>. An N type Ga0.57Al0.43As clad layer 2 of the first layer, a non-doped Ga0.92Al0.08As active layer 3 of the second layer, a P type Ga0.57Al0.43As clad layer 4 of the third layer, and an N type GaAs layer 5 of the forth layer are successively grown on the surface of the substrate where the ridges have been provided. Next, Zn is selectively diffused from the grown surface to the upper part of the substrate groove in stripe form, so that the diffusion front may reach the third layer. A metal for the P-side electrode is evaporated and alloyed, and the P-side ohmic electrode 6 is then formed. On the other hand, a metal for the N type electrode is evaporated on the substrate side and alloyed, and the N-side ohmic electrode 7 is then formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ装置に関するものであるっ従来例
の構成とその問題点 近年、光デイスクファイルなどへの情報の智込み、読み
出し、消去用として、あるいはレーザプリンタなどの用
途に、高出力で、1.1:本横モード発振−ノーる半導
体レーザが要求されている。横モード安定化のためには
、基板上にWik設けることが非常に有効な手段の1つ
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device.The structure of a conventional example and its problems In recent years, semiconductor laser devices have been used for reading, reading, and erasing information from optical disk files, etc. Alternatively, for applications such as laser printers, a semiconductor laser with high output and 1.1 transverse mode oscillation is required. One very effective means for stabilizing the transverse mode is to provide Wik on the substrate.

このような半導体レーザ装置の1例として第1図にOS
 P (Channeled 5ubstrate P
larar ) レーザと呼ばれるものを示す。このレ
ーザの構成はn型基板1上に溝を設け、その」二にn型
クラッド層2、アンドープ活性層3、p型りラッド層4
、n型Ga As層6全連続成長させ、その後成畏表面
よりp型不純物を溝部直上からp型りラッド層まで選択
拡散して拡散領域8を形成してあろうなお6.7は電極
用金属膜であるっこの構過においては、活性層3から第
1クラッド層2へ回れ出した光に対して、溝の外側と内
側とで実効的な屈JJi率差が生じ、そのために、光は
溝の内側へ閉じ込められ、基本横モード発振を実現でき
るというものであろう ところで、三と導体レーザの高出力化孕実現するには、
活性層全薄膜化して光のクラッド層への山1れ出し金入
きくして発光面積全人きくするのが有効な方法である。
As an example of such a semiconductor laser device, FIG.
P (Channeled 5ubstrate P
larar) Indicates what is called a laser. The structure of this laser is that a groove is provided on an n-type substrate 1, and on the second side, an n-type cladding layer 2, an undoped active layer 3, and a p-type cladding layer 4.
, the entire n-type GaAs layer 6 is continuously grown, and then p-type impurities are selectively diffused from the surface of the grown layer from just above the trench to the p-type rad layer to form a diffusion region 8. Note that 6.7 is for the electrode. In this structure, which is a metal film, there is an effective refractive index difference between the outside and inside of the groove for the light that has leaked from the active layer 3 to the first cladding layer 2. It would be possible to achieve fundamental transverse mode oscillation by being confined inside the groove, but in order to realize high output power of the conductor laser,
An effective method is to reduce the total thickness of the active layer so that all the light passes through the cladding layer, thereby increasing the entire light emitting area.

しかし第1図に示した構造のレーザでは、液相エピタキ
シャル法を用いるかぎり溝部の上に極く薄い活性層金成
畏させることは非常に困難である。また第1図に示すa
spレーザでは溝の形状は上に広い台形となるが、この
形は高出力化には不利であるっなぜなら、光を閉じ込め
るのに十分なだけの溝の深さを得ようとすれば必然的に
溝の斜面部(a−b聞及びc−c1間)が長くなり、そ
こでの光の基板への吸収が大きくなり、そのため、たと
え活性層の薄膜化に成功して光をクラッド層へ大きくμ
j)れ出さぜることができても、上にのべたように溝の
形状による損失が大きく、1h′1い外部微分量子効率
を得ることが困難となるためであるう 発明の目的 不発明の目的は、上記従来の欠点を除去するものであり
、液相エピタキシャル成長を用いても、110Il性j
−↓く薄い活性層を成長させることが可能であり、かつ
活性層から漏れ出した光を損失を最小限+/=T秒さえ
て安定に閉じ込めることのできる半導体レーザ装置全提
供するものであるっ 発明の構成 この目的全達成するために本発明の半導体レーザ装置は
、2本の平行なリッジが形成された動板上に活性層を含
む各層が形成され、かつリッジ間の溝の形状が深さの不
連続に変化するダブテイル形であることを特徴としてい
るう 実施例の説明 以下本発明の一実施例について、図面全参照しながら説
明するっ n型GaAS基板1(100)面上に〈011〉方向に
高さ1.5μが2、幅20μツノ7の2本のリッジ全エ
ツチングにより形成する。このような基板面およびエツ
チング方向にすると、基板には第2図(a)に示すよう
な逆メサ状のエツジ孕もつ1ルノジが形成される。リッ
ジ間のu程の底部の幅は6μ7ノ1とする。リッジを設
けたJl(板面1−に第11悄n型CT”0.57 A
10.45 Asクラット層2をリッジ上の甲坦gBで
約0.4μ)2ノ、第2層ノンドーゾGap、g2Al
oo6ASμ2ノ1、第4層n型(raAs5’i約0
.5μツノlの厚さに連続成長を行なう(第2図(b)
)っ成I(全790℃の一定温度から5°Cの過冷却を
つけで行なうと、11カの形状はメルトバックにより第
2図(b)に示すようなダブテイル形に変化し、溝」二
部の幅は約6μmとなるっ 次に成長表面から基板溝部の上部にストライプ状に1l
li鉛の選択拡散全行ない、拡散フロントが第3層p型
Gao5□A1o43Asクラッド層に達するようにす
るっその後、p側電極用金属を蒸着し、合金処理を行な
ってp側オーミック電極6を形成するっ基板側にはn型
電極用金属全蒸着し、合金処理全行なってn側オーミッ
ク電極T全形成する(第2図(C))、このようにして
作製し/ζ半導体ウェハー金へき開し、Siブロックに
マウント して完成する、 以上のように構成された半導体レーザ装置について、以
下、その+1i/+作について説明するっ本発明のリッ
ジの効果により活性層が非常に薄いために活性層内に生
じた光のうち約90のはクラッド層内へ大きくμ(1れ
出すう第1クラッド層2へjiiれ出した光はリッジ間
の溝部に閉じ込められるが、本発明のダゾテイル形の溝
では光が吸収全受ける斜面部(第2図(C)のe −f
間及び1〜コ間)を短くすることができ、かつ溝の深さ
を十分とれるので、光の基板への吸収を非常に小さくお
さえることができ、半導体レーザの高出力化に大変有利
である。
However, in the laser having the structure shown in FIG. 1, it is very difficult to form a very thin active layer over the groove as long as the liquid phase epitaxial method is used. Also, a shown in FIG.
In sp lasers, the shape of the groove is a trapezoid with a wide top, but this shape is disadvantageous for achieving high output because it is necessary to obtain a groove deep enough to confine light. The slopes of the groove (between a-b and between c-c1) become longer, and the absorption of light into the substrate there increases.As a result, even if the active layer is made thinner, the light will not reach the cladding layer to a large extent. μ
j) Even if it is possible to extract the liquid, the loss due to the shape of the groove is large as described above, making it difficult to obtain an external differential quantum efficiency of 1h'1. The purpose of
- Provides a complete semiconductor laser device capable of growing a very thin active layer and stably confining light leaking from the active layer with minimal loss +/= T seconds. Structure of the Invention In order to achieve all of the above objects, the semiconductor laser device of the present invention is such that each layer including the active layer is formed on a moving plate on which two parallel ridges are formed, and the shape of the groove between the ridges is Description of an embodiment characterized by a dovetail shape in which the depth changes discontinuously An embodiment of the present invention will be described below with reference to all the drawings. Two ridges 7 having a height of 1.5 μm and a width of 20 μm are formed by full etching in the <011> direction. With such a substrate surface and etching direction, a groove having an inverted mesa-shaped edge as shown in FIG. 2(a) is formed on the substrate. The width of the bottom part between the ridges is 6μ7×1. Jl with a ridge (No. 11 n-type CT"0.57 A on plate surface 1-
10.45 As crack layer 2 on top of ridge gB about 0.4μ) 2nd layer non-dozo Gap, g2Al
oo6ASμ2no1, 4th layer n-type (raAs5'i about 0
.. Continuous growth was performed to a thickness of 5 μl (Figure 2 (b)
) Formation I (When supercooling is carried out at 5°C from a constant temperature of 790°C, the shape of the 11 parts changes to a dovetail shape as shown in Figure 2 (b) due to meltback, and grooves are formed.) The width of the second part is about 6 μm. Then, from the growth surface to the top of the substrate groove, 1L is formed in a stripe shape.
The selective diffusion of li lead is carried out so that the diffusion front reaches the third layer p-type Gao5□A1o43As cladding layer.After that, metal for the p-side electrode is evaporated and alloying is performed to form the p-side ohmic electrode 6. Finally, on the substrate side, the metal for the n-type electrode is completely vapor-deposited, and the alloy processing is performed to completely form the n-side ohmic electrode T (Fig. 2 (C)). The +1i/+ operation of the semiconductor laser device constructed as described above, which is completed by mounting it on a Si block, will be explained below. Approximately 90 of the light generated in the first cladding layer 2 is confined in the grooves between the ridges. Then, the slope part where all the light is absorbed (e - f in Fig. 2 (C)
Since it is possible to shorten the gap (between 1 and 1 and between .

実際、本実施例の半導体レーザでは、ノイ(木bi′I
モh’ 発4fA f、シキイ値電流約6 Q ill
 A 、外f’iVs (a ’J)効率約60%(両
面)、最大光出力約1007/I Wの高出力レーザ金
実現させることができた。ろ゛お本実施例では赤外光レ
ーザを用いて説明したが、活性層、クラッド層のAl量
を増加し、i月?l、!、毘レーザとしても、本発明は
全く同様の効果孕もたらすものであるっ 発明の効果 以上のように本発明の半導体レーザ”A b’f il
l、2本の平行なリッジの形成された基板」−に/+r
I(/I層を二含む各層を形成し、かつ前記リッジ間の
溝の形状を深さの不連続に変化するダプテイル形にする
ことにより、基本横モード発振で高出力の゛1′心体レ
ーザを実現することができ、その実用的幼果仁1、人な
るものがあるう
In fact, in the semiconductor laser of this embodiment, the noise (tree bi′I)
Moh' 4fA f, threshold current about 6Q ill
A, high-output laser gold with an external f'iVs (a'J) efficiency of about 60% (both sides) and a maximum optical output of about 1007/IW could be realized. In this example, an infrared laser was used, but by increasing the amount of Al in the active layer and cladding layer, l,! , the present invention brings about exactly the same effect as a bilaser.
l, a substrate formed with two parallel ridges'-/+r
By forming each layer including two I(/I layers) and by making the shape of the groove between the ridges into a doptail shape whose depth changes discontinuously, a high-output "1" core body with fundamental transverse mode oscillation can be achieved. The laser can be realized, and its practical young fruit 1, there is something called human beings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体レーザ装置の断面図、第2図(a
)〜(C1は本発明の一実施例における半導体レーザ装
置の製の方法の各工程における断面図である。 1−−− n型GaAs基板、2−・−n型Ga 1y
 A 1yAsクラッド層、3・・・・・ノンドープG
a、−xAlxAs活性層、4・・・・・p型Ga、−
yAlyAsクラッド層、5・・・・・・n型Ga A
s層、6・・・・p側オーミック電極用金属111が、
7・・・・・n側オーミック電極用金属膜、8・・・・
・・+111鉛拡散領域っ
Figure 1 is a cross-sectional view of a conventional semiconductor laser device, and Figure 2 (a
) to (C1 are cross-sectional views at each step of a method for manufacturing a semiconductor laser device in an embodiment of the present invention. 1---- n-type GaAs substrate, 2--n-type Ga 1y
A 1yAs cladding layer, 3...non-doped G
a, -xAlxAs active layer, 4... p-type Ga, -
yAlyAs cladding layer, 5...n-type Ga A
S layer, 6...The p-side ohmic electrode metal 111 is
7...Metal film for n-side ohmic electrode, 8...
...+111 lead diffusion area

Claims (1)

【特許請求の範囲】[Claims] 2本の平行なりッジが形成された基板上に活性層を含む
各層が形成され、かつ前記リッジ間の溝が溝幅が深さ方
向に対して不連続に変化する部分を有するダプテイル形
をなしていることを特徴とする半導体レーザ装置っ
Each layer including the active layer is formed on a substrate on which two parallel ridges are formed, and the groove between the ridges has a doptail shape in which the groove width changes discontinuously in the depth direction. A semiconductor laser device characterized by
JP17150383A 1983-09-16 1983-09-16 Semiconductor laser device Pending JPS6063976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17150383A JPS6063976A (en) 1983-09-16 1983-09-16 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17150383A JPS6063976A (en) 1983-09-16 1983-09-16 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6063976A true JPS6063976A (en) 1985-04-12

Family

ID=15924309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17150383A Pending JPS6063976A (en) 1983-09-16 1983-09-16 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6063976A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5646593A (en) * 1979-09-12 1981-04-27 Xerox Corp Heteroostructure semiconductor laser

Similar Documents

Publication Publication Date Title
JPS5940592A (en) Semiconductor laser element
JPS6063976A (en) Semiconductor laser device
JP2846668B2 (en) Broad area laser
JPH03290984A (en) Semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
US4393504A (en) High power semiconductor laser
JPS63177485A (en) Semiconductor laser
JPS61160990A (en) Semiconductor laser device
JPH06104527A (en) Fabrication of semiconductor laser
KR100259003B1 (en) Semiconductor laser diode
JPS59115582A (en) Semiconductor laser
JPS6257116B2 (en)
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPS59184585A (en) Semiconductor laser of single axial mode
JPH041516B2 (en)
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPS63287080A (en) Manufacture of semiconductor laser
JPS609187A (en) Semiconductor light-emitting device
JPS622720B2 (en)
JPH0564477B2 (en)
JPS60257583A (en) Semiconductor laser device
JPS6244439B2 (en)
JPH01218087A (en) Semiconductor laser device
JPS60130186A (en) Semiconductor laser device
JPS61276389A (en) Semiconductor optical element