JPH0564477B2 - - Google Patents

Info

Publication number
JPH0564477B2
JPH0564477B2 JP19632783A JP19632783A JPH0564477B2 JP H0564477 B2 JPH0564477 B2 JP H0564477B2 JP 19632783 A JP19632783 A JP 19632783A JP 19632783 A JP19632783 A JP 19632783A JP H0564477 B2 JPH0564477 B2 JP H0564477B2
Authority
JP
Japan
Prior art keywords
layer
substrate
active layer
mesa
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19632783A
Other languages
Japanese (ja)
Other versions
JPS6088487A (en
Inventor
Takeshi Hamada
Masaru Wada
Masahiro Kume
Juichi Shimizu
Kunio Ito
Fumiko Tajiri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19632783A priority Critical patent/JPS6088487A/en
Publication of JPS6088487A publication Critical patent/JPS6088487A/en
Publication of JPH0564477B2 publication Critical patent/JPH0564477B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • H01S5/2235Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer
    • H01S5/2275Buried mesa structure ; Striped active layer mesa created by etching

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体レーザ装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device.

従来例の構成とその問題点 近年、DADや光デイスクフアイルなどへの情
報の書き込み、読み出し用の光源として、あるい
は光通信用の光源として低しきい値で基本横モー
ド発振する半導体レーザが要求されている。これ
を実現するための有効な手段の1つとして、2回
成長を用いてつくりつけの電流狭搾機構(内部ス
トライプ)を半導体レーザの構造の中に取り入れ
る方法がある。第1図は内部ストライプを利用し
た従来の半導体レーザを一例の断面図を示す。以
下図面を参照しながらこの従来の半導体レーザに
ついて説明する。
Conventional configurations and their problems In recent years, semiconductor lasers that oscillate in a fundamental transverse mode at a low threshold have been required as light sources for writing and reading information into DADs, optical disk files, etc., and as light sources for optical communications. ing. One effective means to achieve this is to use double growth to incorporate a built-in current constriction mechanism (internal stripe) into the structure of the semiconductor laser. FIG. 1 shows a cross-sectional view of an example of a conventional semiconductor laser using internal stripes. This conventional semiconductor laser will be explained below with reference to the drawings.

第1図において、1はp型GaAs基板、2はn
型GaAs電流狭搾層、3はp型Ga1-xAlxAsクラツ
ド層、4はノンドープGa1-yAlyAs活性層、5は
n型Ga1-xAlxAsクラツド層、6はn型GaAsキヤ
ツプ層、7はn側オーミツク電極、8はp側オー
ミツク電極である。
In Figure 1, 1 is a p-type GaAs substrate, 2 is an n-type GaAs substrate, and 2 is an n-type GaAs substrate.
3 is a p-type Ga 1-x Al x As clad layer, 4 is a non-doped Ga 1-y Al y As active layer, 5 is an n-type Ga 1-x Al x As clad layer, and 6 is an n-type Ga 1-x Al x As clad layer. An n-type GaAs cap layer, 7 an n-side ohmic electrode, and 8 a p-side ohmic electrode.

以上のように構成された半導体レーザ装置につ
いて、以下その動作について説明する。
The operation of the semiconductor laser device configured as described above will be described below.

p側電極より基板に注入された電流は溝部以外
の部分では電流狭搾層2の働きで阻止されるため
に溝部直上の活性層4に集中的に流れ込む。この
注入された電流によつて活性層内に生じた光はク
ラツド層にしみ出すが、第1クラツド層3にしみ
出した光は溝部以外の部分では基板上の電流狭搾
層2に吸収されるため、光は溝部上の活性層のみ
に閉じ込められ、ここで安定な基本横モード発振
が得られる。
The current injected into the substrate from the p-side electrode is blocked by the current narrowing layer 2 in areas other than the groove, and therefore flows intensively into the active layer 4 directly above the groove. The light generated in the active layer by this injected current leaks into the clad layer, but the light that leaks into the first clad layer 3 is absorbed by the current constriction layer 2 on the substrate in areas other than the grooves. Therefore, light is confined only in the active layer above the groove, and stable fundamental transverse mode oscillation is obtained here.

ところで半導体レーザの利用分野が広がるあつ
れて、低しきい値、基本横モード発振だけでなく
高出力も達成しうる半導体レーザに対する要求が
急速に高まつてきた。半導体レーザを高出力化す
る非常に有効な手段の1つは、活性層を非常に薄
く(0.05μm程度)成長し、クラツド層へのもれ
出しを多くすることにより、半導体レーザの断面
における発光面積を大きくして、単位面積当りの
光出力密度を減少させる方法である。
However, as the field of application of semiconductor lasers has expanded, the demand for semiconductor lasers that can achieve not only low threshold voltage and fundamental transverse mode oscillation but also high output has rapidly increased. One of the very effective means of increasing the output power of a semiconductor laser is to grow the active layer very thinly (about 0.05 μm) and increase the leakage into the cladding layer, thereby reducing the light emission in the cross section of the semiconductor laser. This is a method of increasing the area and decreasing the optical output density per unit area.

第2図に理論計算の結果を示す。第2図におい
て横軸は活性層の膜厚、従軸は端面破壊に至る光
出力密度を一定pd=2MW/cm3としたときの、レ
ーザ端面から出射され最大光出力を示したもので
ある。図から明らかなように、活性層膜厚が0.1
〜0.2μm付近から薄くなるに従つて得られる光出
力は著しく増大する。ところが、第1図に示すよ
うな構造では、平坦な基板上に平坦な活性層を成
長させるために、活性層を薄膜化したときの制御
が難しく、0.1μm程度が限界である。このことか
ら第1図の構造は、低しきい値、基本横モード発
振には有利でも、高出力化には非常に不利であ
り、現在のところ数mWの出力のものしか実現し
ていない。
Figure 2 shows the results of theoretical calculations. In Figure 2, the horizontal axis is the film thickness of the active layer, and the minor axis is the maximum optical output emitted from the laser edge when the optical output density leading to edge destruction is constant pd = 2MW/ cm3 . . As is clear from the figure, the active layer thickness is 0.1
As the thickness decreases from around 0.2 μm, the obtained light output increases significantly. However, in the structure shown in FIG. 1, since a flat active layer is grown on a flat substrate, it is difficult to control the thinning of the active layer, and the limit is about 0.1 μm. For this reason, although the structure shown in FIG. 1 is advantageous for low threshold voltage and fundamental transverse mode oscillation, it is very disadvantageous for increasing output power, and so far only an output of several mW has been realized.

発明の目的 本発明は上記欠点に鑑み、内部ストライプを利
用して低しきい値、基本横モード発振を維持しつ
つ、活性層の薄膜化を可能にして高出力を実現さ
せる新構造の半導体レーザ装置を提供することを
目的とするものである。
Purpose of the Invention In view of the above-mentioned drawbacks, the present invention provides a semiconductor laser with a new structure that utilizes internal stripes to maintain low threshold and fundamental transverse mode oscillation while making it possible to thin the active layer and achieve high output. The purpose is to provide a device.

発明の構成 この目的を達成するため、本発明の半導体レー
ザ装置は、メサを有する基板上に、その伝導型が
交互に変化するように少なくとも一層の半導体層
が形成され、半導体表面より基板メサ部に達する
溝が形成され、その半導体表面に活性層を含む各
層が前記半導体表面層とは異なる伝導型を有する
層を第1層として形成されたことを特徴としてい
る。
Structure of the Invention In order to achieve this object, a semiconductor laser device of the present invention includes at least one semiconductor layer formed on a substrate having a mesa so that the conductivity types of the semiconductor layer alternately change. The semiconductor device is characterized in that a trench is formed that reaches the semiconductor surface, and each layer including the active layer is formed as a first layer having a conductivity type different from that of the semiconductor surface layer.

この構成によつて、内部ストライプの利点を維
持しつつ、結晶成長の異方性を利用して再現性良
く活性層の薄膜化を達成することができる。
With this configuration, it is possible to achieve thinning of the active layer with good reproducibility by utilizing the anisotropy of crystal growth while maintaining the advantages of internal stripes.

実施例の説明 以下本発明の一実施例について、図面を参照し
ながら説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第3図a〜cは本発明の一実施例における半導
体レーザ装置の作製方法の各工程における断面図
である。
3a to 3c are cross-sectional views at each step of a method for manufacturing a semiconductor laser device according to an embodiment of the present invention.

まずp型GaAs基板1(100)面上にエツチン
グにより、第3図aに示すような高さ3μm幅15μ
mのメサを形成する。その基板上に液相エピタキ
シヤル法により、n型GaAs電流狭搾層2をメサ
上で0.8μm、メサ以外の基板平坦部の最も薄い所
で1μmの厚さになるように成長を行なう(第3
図a)。
First, etching is performed on the p-type GaAs substrate 1 (100) surface to form a pattern with a height of 3 μm and a width of 15 μm as shown in Figure 3a.
Forms a mesa of m. On the substrate, an n-type GaAs current confining layer 2 is grown by liquid phase epitaxial method to a thickness of 0.8 μm on the mesa and 1 μm at the thinnest part of the flat part of the substrate other than the mesa (the 3
Diagram a).

この1回目の成長が終わつたウエハーの表面に
<011>方向に溝を形成する。溝の位置は基板上
のメサの直上とし、溝の底は基板に達しているよ
うにする。
Grooves are formed in the <011> direction on the surface of the wafer after this first growth. The groove is positioned directly above the mesa on the substrate, with the bottom of the groove reaching the substrate.

溝を設けた基板表面に再び液相エピタキシヤル
法により、第1層p型Ga0.57Al0.43Asクラツド層
3を溝近傍のメサ上で約0.2μm、第2層ノンドー
プGa0.92Al0.08As活性層4を同じ場所で0.05μm、
第3層n型Ga0.57Al0.43Asクラツド層5を同じ場
所で約1.5μm、第4層n型GaAsキヤツプ層6を
約2μmの厚さになるように連続成長を行なう。
その後、n側電極用金属を蒸着し、合金処理を行
なつて、n側オーミツク電極7を形成する。基板
側にはp側電極用金属を蒸着し、合金処理を行な
つてp側オーミツク電極8を形成する。(第3図
c)。
A first p-type Ga 0.57 Al 0.43 As cladding layer 3 is formed on the mesa near the groove by a thickness of about 0.2 μm, and a second non-doped Ga 0.92 Al 0.08 As active layer is formed on the grooved substrate surface again by liquid phase epitaxial method. 4 at the same location, 0.05μm,
A third n-type Ga 0.57 Al 0.43 As cladding layer 5 is successively grown at the same location to a thickness of about 1.5 μm, and a fourth n-type GaAs cap layer 6 is grown to a thickness of about 2 μm.
Thereafter, a metal for the n-side electrode is deposited and alloyed to form the n-side ohmic electrode 7. A metal for the p-side electrode is deposited on the substrate side, and an alloying process is performed to form the p-side ohmic electrode 8. (Figure 3c).

このようにして作製した半導体ウエハーをへき
開し、Siブロツクにマウントして完成する。
The semiconductor wafer produced in this way is cleaved and mounted on a Si block to complete the process.

以上のように構成された半導体レーザ装置につ
いて、以下その動作について説明する。1回目の
エピタキシヤル成長で形成した電流狭搾層の働き
で、基板側より注入された電流は溝部上の活性層
に集中的に注入される。その結果、低しきい値で
基本横モード発振がここで得られる。またあらか
じめ基板に形成した突起の効果で、第3図aに示
すように1回目のエピタキシヤル成長で形成する
電流狭搾層はメサの両側に裾を引く形状となる。
そのためこの上に2回目の成長を行なうと、結晶
成長の異方性により、メサ上部の成長はそれ以外
の裾の部分よりも抑制されるために、メサ上部に
は極めて薄い活性層を再現性良く形成することが
できる。
The operation of the semiconductor laser device configured as described above will be described below. Due to the action of the current confinement layer formed in the first epitaxial growth, the current injected from the substrate side is intensively injected into the active layer above the groove. As a result, a fundamental transverse mode oscillation is obtained here with a low threshold. Further, due to the effect of the protrusions previously formed on the substrate, the current confining layer formed in the first epitaxial growth has a shape that trails on both sides of the mesa, as shown in FIG. 3a.
Therefore, when a second growth is performed on top of this, due to the anisotropy of crystal growth, the growth at the top of the mesa is suppressed more than at the other skirts, so it is difficult to reproducibly create an extremely thin active layer on the top of the mesa. Can be formed well.

以上のように本実施例によれば、基板上に成長
に先立つてメサを形成しておくことにより、基本
横モード発振、しきい値30mA、光出力30mWの
安定した高出力が実現できた。
As described above, according to this example, by forming a mesa on the substrate prior to growth, stable high output of fundamental transverse mode oscillation, threshold value of 30 mA, and optical output of 30 mW was achieved.

なお、本実施例でp型基板の場合を示したがn
型基板の場合も全く同様の効果が期待できる。
Note that although this example shows the case of a p-type substrate,
Exactly the same effect can be expected in the case of a molded substrate.

発明の効果 以上のように本発明は、メサを有する基板上に
内部ストライプ型のレーザを構成することにより
低しきい値、基本横モード発振を維持しつつ、高
出力を実現させることができ、その実用的効果は
大なるものがある。
Effects of the Invention As described above, the present invention can achieve high output while maintaining a low threshold value and fundamental transverse mode oscillation by configuring an internal stripe type laser on a substrate having a mesa. Its practical effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は内部ストライプを利用した従来の半導
体レーザの一例の断面図、第2図は活性層膜厚と
最大光出力の関係の理論計算の結果を示す図、第
3図a〜cは本発明の一実施例の作製方法の各工
程における断面図である。 1……p型GaAs基板、2……n型GaAs電流
狭搾層、3……p型Ga1-xAlxAsクラツド層、4
……ノンドープGa1-yAlyAs活性層、5……n型
Ga1-xAlxAsクラツド層、6……n型GaAsキヤツ
プ層、7……n側オーミツク電極、8……p側オ
ーミツク電極。
Figure 1 is a cross-sectional view of an example of a conventional semiconductor laser using internal stripes, Figure 2 is a diagram showing the results of theoretical calculations of the relationship between active layer thickness and maximum optical output, and Figures 3 a to c are from this book. FIG. 3 is a cross-sectional view of each step of a manufacturing method according to an embodiment of the invention. 1... p-type GaAs substrate, 2... n-type GaAs current confining layer, 3... p-type Ga 1-x Al x As cladding layer, 4
...Non-doped Ga 1-y Al y As active layer, 5...n-type
Ga 1-x Al x As cladding layer, 6... n-type GaAs cap layer, 7... n-side ohmic electrode, 8... p-side ohmic electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 メサを有する基板上に、伝導型が交互に変化
するように少なくとも一層の半導体層が形成さ
れ、前記半導体層表面より基板メサ部に達する溝
が形成され、前記の半導体層表面に活性層を含む
各層が前記半導体層の表面層とは異なる伝導型を
有する層を第一層として形成されたことを特徴と
する半導体レーザ装置。
1. At least one semiconductor layer is formed on a substrate having a mesa so that the conductivity type changes alternately, a groove is formed from the surface of the semiconductor layer to the mesa portion of the substrate, and an active layer is formed on the surface of the semiconductor layer. 1. A semiconductor laser device, wherein each of the layers includes a layer having a conductivity type different from that of the surface layer of the semiconductor layer as a first layer.
JP19632783A 1983-10-20 1983-10-20 Semiconductor laser device Granted JPS6088487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19632783A JPS6088487A (en) 1983-10-20 1983-10-20 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19632783A JPS6088487A (en) 1983-10-20 1983-10-20 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS6088487A JPS6088487A (en) 1985-05-18
JPH0564477B2 true JPH0564477B2 (en) 1993-09-14

Family

ID=16355973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19632783A Granted JPS6088487A (en) 1983-10-20 1983-10-20 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6088487A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839900A (en) * 1985-08-21 1989-06-13 Sharp Kabushiki Kaisha Buried type semiconductor laser device
JPS62296583A (en) * 1986-06-17 1987-12-23 Matsushita Electric Ind Co Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JPS6088487A (en) 1985-05-18

Similar Documents

Publication Publication Date Title
US4841532A (en) Semiconductor laser
JPH0564477B2 (en)
US4821278A (en) Inverted channel substrate planar semiconductor laser
JP2846668B2 (en) Broad area laser
JP2940158B2 (en) Semiconductor laser device
JPH0156547B2 (en)
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JP2840833B2 (en) Semiconductor laser manufacturing method
JP2822195B2 (en) Semiconductor laser manufacturing method
JPH0325037B2 (en)
JPS6297384A (en) Semiconductor laser device
JPS60132381A (en) Semiconductor laser device
JPS609187A (en) Semiconductor light-emitting device
JPS6318874B2 (en)
JP2804533B2 (en) Manufacturing method of semiconductor laser
JPS6234473Y2 (en)
JP4024319B2 (en) Semiconductor light emitting device
JPH07120836B2 (en) Semiconductor laser
JPH0740621B2 (en) Method for manufacturing surface-emitting type semiconductor laser
JPS60257583A (en) Semiconductor laser device
JPH06152057A (en) Optical semiconductor device
JPS6136720B2 (en)
JPH02231785A (en) Manufacture of semiconductor laser device
JPS62283690A (en) Semiconductor laser
JPS63181494A (en) Semiconductor laser device