JPS6244439B2 - - Google Patents

Info

Publication number
JPS6244439B2
JPS6244439B2 JP53083139A JP8313978A JPS6244439B2 JP S6244439 B2 JPS6244439 B2 JP S6244439B2 JP 53083139 A JP53083139 A JP 53083139A JP 8313978 A JP8313978 A JP 8313978A JP S6244439 B2 JPS6244439 B2 JP S6244439B2
Authority
JP
Japan
Prior art keywords
region
excitation region
diffusion
layer
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53083139A
Other languages
Japanese (ja)
Other versions
JPS559480A (en
Inventor
Hiroo Yonezu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP8313978A priority Critical patent/JPS559480A/en
Publication of JPS559480A publication Critical patent/JPS559480A/en
Publication of JPS6244439B2 publication Critical patent/JPS6244439B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体レーザの大光出力化に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to increasing the optical output of a semiconductor laser.

高速光フアイバー通信、ビデオ/オーデイオデ
イスク等に用いる注入型ダブルヘテロ接合半導体
レーザでは、活性層に水平な方向の横モード(水
平横モードと称する事にする)としては基本モー
ドが必要である。
In injection type double heterojunction semiconductor lasers used for high-speed optical fiber communications, video/audio disks, etc., a fundamental mode is required as a transverse mode in the direction horizontal to the active layer (hereinafter referred to as a horizontal transverse mode).

この基本横モードを得るための半導体レーザの
例としては埋め込みヘテロ構造やトランスバース
ジヤンクシヨン構造(TJS)等各種のストライプ
構造が知られている。ところがこれらの半導体レ
ーザでは基本モードを安定に得るためにはモード
の大きさは2〜3μm前後と小さくなるため安定
に動作し得る連続発振光出力は1mW前後、瞬間
的でも10mW前後に制限されてしまう。これは高
密度の光出力によつて反射面が変質、破壊されて
しまうからである。従つてスポツトサイズの小さ
な基本モード動作では光出力が小さく、高速・長
距離光フアイバー通信をはじめ各種の用途に於て
大きな障害となつていた。
Various striped structures such as a buried hetero structure and a transverse junction structure (TJS) are known as examples of semiconductor lasers for obtaining this fundamental transverse mode. However, in order to stably obtain the fundamental mode of these semiconductor lasers, the mode size has to be small, around 2 to 3 μm, so the continuous wave optical output that can operate stably is limited to around 1 mW, and even momentarily to around 10 mW. Put it away. This is because the reflective surface is altered and destroyed by the high-density light output. Therefore, in the basic mode operation with a small spot size, the optical output is small, which has been a major obstacle in various applications including high-speed and long-distance optical fiber communications.

本発明の目的はスポツトサイズの小さな基本水
平横モード動作に於ても大きな光出力を安定に出
す事ができる半導体レーザ素子を提供する事にあ
る。
An object of the present invention is to provide a semiconductor laser device that can stably output a large optical output even in basic horizontal transverse mode operation with a small spot size.

本発明の半導体レーザは活性層より深く不純物
選択拡散等を施して選択拡散膜周辺部の活性層が
発光領域となるダブルヘテロ構造のTJS半導体レ
ーザを改良したもので、劈開面に垂直な直線的な
励起領域が反射面に直接接する事なく、且つ該励
起領域の延長上の反射面迄の間に存在する活性層
中の非励起領域の実効バンドギヤツプより該励起
領域の実効バンドギヤツプが小さい構造となつて
いる。
The semiconductor laser of the present invention is an improved double-hetero structure TJS semiconductor laser in which the active layer around the selective diffusion film becomes the light emitting region by performing selective diffusion of impurities deeper than the active layer. The structure is such that the excitation region does not come into direct contact with the reflection surface, and the effective bandgap of the excitation region is smaller than the effective bandgap of the non-excitation region in the active layer that exists between the excitation region and the reflection surface. ing.

本発明の原理は既に本発明者等によつて出願さ
れている構造(特願昭52−72441)水平横モード
制御に都合よく適用する事にある。
The principle of the present invention is conveniently applied to the horizontal transverse mode control of a structure already filed by the present inventors (Japanese Patent Application No. 72441/1983).

半導体レーザの光出力を増していくと反射面が
破壊する光学損傷は反射面での温度上昇又は誘導
ブリルアン散乱が原因といわれており、約
106W/cm2オーダーの光出力密度で発生する。と
ころがレーザ光に対する吸収係数を反射面近傍の
活性層で小さくすると光学損傷は生じにくくな
り、107W/cm2の光出力密度即ち約1桁高い光出
力密度に耐える事が本発明者等によつて最近明ら
かになつた。従つてスポツトサイズが小さくなる
基本水平横モード発振をさせる構造にこの原理を
適用すれば、前述の小光出力という問題を解消す
る事ができる。
Optical damage that destroys the reflective surface when the optical output of a semiconductor laser is increased is said to be caused by temperature rise on the reflective surface or stimulated Brillouin scattering, and approximately
It occurs at an optical power density on the order of 10 6 W/cm 2 . However, the inventors have found that if the absorption coefficient for laser light is reduced in the active layer near the reflective surface, optical damage becomes less likely to occur, and it can withstand an optical output density of 10 7 W/cm 2 , that is, approximately an order of magnitude higher optical output density. This has recently come to light. Therefore, if this principle is applied to a structure that causes fundamental horizontal transverse mode oscillation, which reduces the spot size, the above-mentioned problem of small optical output can be solved.

二元、三元、四元の−族半導体では不純物
の種類と濃度による実効バンドギヤツプの相異が
知られている。GaAsを例にとると、n形濃度が
高い程、実効バンドギヤツプが大きく、p形濃度
が高い程実効バンドギヤツプは小さい。またp−
n補償したp形では実効バンドギヤツプの縮少は
著しく、p+−n+補償したp+形のときとくに著
しい。従つて不純物の種類と濃度の組合せにより
発振領域(励起領域)の活性層を実効バンドギヤ
ツプの小さい状態にし、反射面に隣接する領域
(非励起領域)の活性層を実効バンドギヤツプの
大きい状態にする事ができる。レーザ光の光量子
エネルギーは励起領域バンドギヤツプにほぼ等し
いからこのようにすれば反射面近傍の活性層では
レーザ光に対する吸収係数が小さくなる。このた
め光学損傷は生じにくくなるから従来より約1桁
高い光出力が安定に得られる。また、この構造
は、TJS構造であるため基本水平横モードを最も
効果的に得られる。
It is known that the effective band gap of binary, ternary, and quaternary - group semiconductors differs depending on the type and concentration of impurities. Taking GaAs as an example, the higher the n-type concentration, the larger the effective bandgap, and the higher the p-type concentration, the smaller the effective bandgap. Also p-
The reduction in the effective bandgap is remarkable for the n-compensated p-type, and is especially remarkable for the p + -n + compensated p + -type. Therefore, depending on the combination of impurity type and concentration, the active layer in the oscillation region (excitation region) can be brought into a state with a small effective band gap, and the active layer in the region adjacent to the reflective surface (non-excitation region) can be brought into a state with a large effective band gap. Can be done. Since the photon energy of the laser beam is approximately equal to the excitation region band gap, by doing this, the absorption coefficient for the laser beam becomes small in the active layer near the reflecting surface. As a result, optical damage is less likely to occur, and an optical output that is about one order of magnitude higher than that of the conventional method can be stably obtained. Furthermore, since this structure is a TJS structure, the fundamental horizontal transverse mode can be obtained most effectively.

次に本発明について図面を参照しながら説明す
る。
Next, the present invention will be explained with reference to the drawings.

第1図は、(Al・Ga)Asダブルヘテロ接合レ
ーザにZn拡散を適用した例である。第1図aの
上面図に於て領域6にZn拡散が施されており、
このZn拡散領域6と非拡散領域との境界10,
11は、反射面9近傍で曲折している。長さ250
μmの中央の直線境界領域10に対してこれに垂
直な反射面9の近くに設けられた境界領域11は
10μm離れている。反射面9間の共振器長は300
μmである。
Figure 1 shows an example of applying Zn diffusion to an (Al/Ga)As double heterojunction laser. In the top view of FIG. 1a, Zn diffusion is applied to region 6,
The boundary 10 between this Zn diffusion region 6 and the non-diffusion region,
11 is bent near the reflective surface 9. length 250
The boundary area 11 provided near the reflective surface 9 perpendicular to the straight boundary area 10 at the center of μm is
10μm apart. The resonator length between the reflective surfaces 9 is 300
It is μm.

第1図bは第1図aの中央一点鎖線A−A′に
沿つて切断した断面構造である。n形GaAs基板
1上に連続液相成長法で、第1層のn−
Al0.3Ga0.7As層(厚さ5μm、キヤリアー濃度2
×1017cm-3)2、第2層のn−GaAs活性層(厚
さ0.15μm、キヤリヤー濃度3×1018cm-3)3、
第3層のn−Al0.3Ga0.7As層(厚さ3μm、キヤ
リヤー濃度2×1017cm-3)4が設けられている。
第3層のn−Al0.3Ga0.7As層4上に第1図aに示
した形状で形成したSi3N4膜5(第1図aに於て
は、右側の領域に形成してある。)を拡散マスク
として例えば650℃でZn選択拡散を行い、その深
さを第1層のn−Al0.3Ga0.7As層2内にまで到ら
せる(Zn拡散領域6)。Zn拡散領域先端近傍のホ
ール濃度は約1×1019cm-3と高濃度なため非発光
成分が多くレーザ発振しにくい。このため更に高
温、例えば900℃でさらに熱処理してZn拡散領域
先端を約2〜3μm移動させる。その結果活性層
3中をZnが移動した領域7のホール濃度は平均
濃度として約5×1018cm-3となり、発光効率も改
善されてレーザ発振し易くなる。Au/Crのp形
オーミツク電極8、Au/Au−Ge−Niのn形オー
ミツク電極8′が夫々通常の方法で設けられてい
る。電流は活性層3内のn形領域からZn押し込
み領域7へ注入され、そこが発光、発振領域とな
る。
FIG. 1b shows a cross-sectional structure taken along the center dotted line A-A' of FIG. 1a. The first layer of n-
Al 0 . 3 Ga 0 . 7 As layer (thickness 5 μm, carrier concentration 2
×10 17 cm -3 )2, second n-GaAs active layer (thickness 0.15 μm, carrier concentration 3 ×10 18 cm -3 )3,
A third n-Al 0.3 Ga 0.7 As layer (3 μm thick, carrier concentration 2×10 17 cm −3 ) 4 is provided.
A Si 3 N 4 film 5 is formed on the third n-Al 0.3 Ga 0.7 As layer 4 in the shape shown in FIG. Zn is selectively diffused at , for example, 650 °C using a diffusion mask (formed in Area 6). Since the hole concentration near the tip of the Zn diffusion region is as high as approximately 1×10 19 cm -3 , there are many non-emissive components, making it difficult for laser oscillation. For this reason, further heat treatment is performed at a higher temperature, for example, 900° C., to move the tip of the Zn diffusion region by about 2 to 3 μm. As a result, the average hole concentration in the region 7 where Zn has moved in the active layer 3 becomes approximately 5×10 18 cm −3 , and the luminous efficiency is improved, making laser oscillation easier. A p-type ohmic electrode 8 of Au/Cr and an n-type ohmic electrode 8' of Au/Au--Ge--Ni are provided in a conventional manner. A current is injected from the n-type region in the active layer 3 to the Zn pushed region 7, which becomes a light-emitting and oscillating region.

第1図aに於てレーザ発振領域となる中央の直
線領域(励起領域)10は、反射面9迄の間に合
計50μmのZn拡散されていない活性層12(非
励起領域と称することにする)をもつことにな
る。非励起領域12は3×1018cm-3のn+であり
一方励起領域10は5×1018cm-3のp+−n+不純
物補償型のp+である。励起領域10の実効バン
ドギヤツプは非励起領域12のそれより約
40meV小さい。従つて励起領域10で生ずるレ
ーザ光に対しては非励起領域12の吸収係数は20
〜30cm-1と極めて小さい。このため、励起領域1
0に沿つた直線上で容易にレーザ発振が生ずる。
In FIG. 1a, the central linear region (excitation region) 10 that becomes the laser oscillation region has a total of 50 μm of active layer 12 (hereinafter referred to as the non-excitation region) in which Zn is not diffused up to the reflection surface 9. ). The non-excited region 12 is 3×10 18 cm −3 n + while the excited region 10 is 5×10 18 cm −3 p + −n + impurity-compensated p + . The effective bandgap of the excited region 10 is approximately larger than that of the non-excited region 12.
40 meV small. Therefore, for the laser beam generated in the excitation region 10, the absorption coefficient of the non-excitation region 12 is 20.
It is extremely small at ~30 cm -1 . For this reason, the excitation region 1
Laser oscillation easily occurs on a straight line along 0.

この構造で室温連続発振を行わせると、基本水
平横モード約100mWの光出力を出しても反射面
上に光学損傷は現れない。これに対して、非励起
領域12のない構造、即ち反射面9が励起領域1
0に直接接している構造では約15〜20mWで光学
損傷が生ずる。
When continuous oscillation is performed at room temperature with this structure, no optical damage will appear on the reflective surface even if an optical output of about 100 mW in the fundamental horizontal transverse mode is produced. On the other hand, a structure without the non-excitation region 12, that is, the reflective surface 9 is in the excitation region 1
For structures in direct contact with zero, optical damage occurs at approximately 15-20 mW.

尚励起領域10と領域11とに沿つて発振する
事はない。それは曲がり部分での放射損失が大き
いからである。従つて領域11は第1図aの如
く、励起領域10と平行にせず、斜めに反射面9
と交叉するようにするなどいかなる形状にしても
よい。また領域11の直線上で発振する事もな
い。この場合は中央部が1×1019cm-3以上のp+
になつていて発光しにくいからである。
Note that oscillation does not occur along the excitation region 10 and region 11. This is because the radiation loss at the curved portion is large. Therefore, the region 11 is not parallel to the excitation region 10, as shown in FIG.
It may be in any shape, such as intersecting with. Further, oscillation does not occur on a straight line in the region 11. In this case, the central part has a p + of 1 × 10 19 cm -3 or more
This is because they are old and difficult to emit light.

この構造では領域11にも電流が流れそこの活
性層は反射面9上に露出している。またレーザ光
13が放出される反射面9上も自然放出光及びレ
ーザ光によつて反射面が酸化され易い。従つて長
期安定動作を行うにはSiO2,Al2O3,Si3N4,C
等の表面保護膜を反射面9上に設ける事が望まし
い。
In this structure, current also flows in region 11, and the active layer there is exposed on reflective surface 9. Further, the reflective surface 9 from which the laser beam 13 is emitted is also likely to be oxidized by the spontaneously emitted light and the laser beam. Therefore, for long-term stable operation, SiO 2 , Al 2 O 3 , Si 3 N 4 , C
It is desirable to provide a surface protective film such as the above on the reflective surface 9.

尚励起領域10と領域11との間隔を第1図で
は10μmにとつたがレーザ光が領域11に結合し
ない距離以上とれば十分である。
Although the distance between the excitation region 10 and the region 11 is set to 10 μm in FIG. 1, it is sufficient that the distance is at least such that the laser beam does not couple to the region 11.

第2図は他の実施例で、プロトン照射によつて
電流の流れる領域を制限して、動作電流の低減を
計つたものである。第2図bは第1図bと同様に
断面を示す図である。Zn拡散領域20は第1の
実施例の場合と異り第2図aに示すように短形状
になつている。このままでは矩形の周囲全面にわ
たつて電流が流れるので閾電流、動作電流とも大
きくなる。励起領域21この領域は第1の実施例
と同様にして作られたから約10μm離してZn拡
散領域20側にプロトン照射をZn拡散深さより
も深く施せばこのプロトン照射領域22は全て電
気的に絶縁化される。従つて電流は殆んど励起領
域21近傍にのみ有効に流れる。また高温動作に
於ては第1図の構造では第1層n−Al0.3Ga0.7As
層2中に存在する広面積のpn接合を流れる電流
が多くなつて閾電流を増すが、第2図の構造では
その面積が少いから有利である。その結果第1図
の構造に比べて閾電流は約70%に減少し、より高
温での連続発振が可能である。第1図に於てこれ
をさけるためには第1層2のAl組成比を増す必
要がある。
FIG. 2 shows another embodiment in which the area through which current flows is restricted by proton irradiation to reduce the operating current. FIG. 2b is a cross-sectional view similar to FIG. 1b. Unlike the first embodiment, the Zn diffusion region 20 has a rectangular shape as shown in FIG. 2a. If this continues, the current will flow all over the periphery of the rectangle, so both the threshold current and the operating current will become large. Excitation region 21 This region was created in the same manner as in the first embodiment, so if proton irradiation is applied to the Zn diffusion region 20 side at a distance of about 10 μm deeper than the Zn diffusion depth, this proton irradiation region 22 is completely electrically isolated. be converted into Therefore, the current effectively flows almost only in the vicinity of the excitation region 21. In addition, in high temperature operation, in the structure shown in Fig. 1, the first layer n-Al 0.3 Ga 0.7 As
Although more current flows through the wide-area pn junction present in layer 2, increasing the threshold current, the structure of FIG. 2 is advantageous because its area is small. As a result, the threshold current is reduced to about 70% compared to the structure shown in Figure 1, allowing continuous oscillation at higher temperatures. In order to avoid this in FIG. 1, it is necessary to increase the Al composition ratio of the first layer 2.

尚プロトン照射領域22と励起領域21との距
離は5μm程度が近接限界であり、これより接近
する程プロトンの一部が励起領域21に入るよう
になり発光効率をおとす。プロトン照射深さにつ
いては第1層のn−Al0.3Ga0.7As層2中のZn拡散
前面より浅くてもよい。この場合、p形オーミツ
ク電極8からみた電気抵抗が大きい程有効である
からプロトン照射深さは深い程望ましい。また第
2図aに於てプロトン照射領域22は共振器の長
さ方向にZn拡散領域21とほぼ同じ長さでつく
られていてもよい。
Note that the distance between the proton irradiation region 22 and the excitation region 21 is approximately 5 μm as the proximity limit, and as the distance approaches closer than this, a portion of the protons enters the excitation region 21, reducing luminous efficiency. The proton irradiation depth may be shallower than the front surface of the Zn diffusion in the n-Al 0.3 Ga 0.7 As layer 2 of the first layer. In this case, the greater the electrical resistance seen from the p-type ohmic electrode 8, the more effective the proton irradiation, so the deeper the proton irradiation depth, the better. Further, in FIG. 2a, the proton irradiation region 22 may be formed to have approximately the same length as the Zn diffusion region 21 in the longitudinal direction of the resonator.

第3図は第3の実施例で、第2図の場合と同じ
目的を半絶縁性GaAs基板30を用いて達成する
構造である。Zn拡散領域31は半絶縁性GaAs基
板30に迄達しているからSi3N4膜32によつて
分離されたp形オーミツク電極33及びn形オー
ミツク電極34を介して流れる電流は同図bに於
てエピタキシヤル層を横方向に流れる。このため
第2図と同様閾電流の低下とより高温での動作が
可能になる。レーザ発振は勿論励起領域35にそ
つて生ずる。尚ケースに接着するために基板30
の表面にはAu/Au−Ge−Ni等の金属36が蒸着
されている。
FIG. 3 shows a third embodiment, which has a structure in which the same purpose as in FIG. 2 is achieved using a semi-insulating GaAs substrate 30. Since the Zn diffusion region 31 reaches the semi-insulating GaAs substrate 30, the current flowing through the p-type ohmic electrode 33 and the n-type ohmic electrode 34 separated by the Si 3 N 4 film 32 is shown in FIG. It flows laterally through the epitaxial layer. Therefore, as in FIG. 2, it is possible to lower the threshold current and operate at a higher temperature. Laser oscillation naturally occurs along the excitation region 35. In addition, the board 30 is attached in order to adhere to the case.
A metal 36 such as Au/Au-Ge-Ni is deposited on the surface.

第4図は第4の実施例で、第2図と全く同じ目
的をプロトン照射の代りにメサエツチング又は劈
開で達成する構造である。第1図の層構造を用い
て励起領域40から約20μm離れてほぼ平行に結
晶がメサエツチング、又は劈開されている(側面
41)メサエツチングの場合深さは、Zn拡散深
さより深ければ十分である。
FIG. 4 shows a fourth embodiment, which has a structure in which the same purpose as in FIG. 2 is achieved by mesa etching or cleavage instead of proton irradiation. In the case of mesa etching or cleavage (side surface 41) in which the crystal is mesa etched or cleaved approximately 20 .mu.m away from the excitation region 40 and approximately parallel to it using the layer structure of FIG. 1, it is sufficient that the depth is deeper than the Zn diffusion depth.

尚第2図、第3図及び第4図に於て長期安定動
作を行わせるにはやはり表面保護膜を反射面9上
に設ける事が望ましい。
In addition, in FIGS. 2, 3, and 4, it is desirable to provide a surface protective film on the reflective surface 9 in order to ensure long-term stable operation.

以上の実施例に於て、励起領域と非励起領域の
長さ、各層のAl組成、層厚、キヤリアー濃度は
上記に限らない。本発明の効果は励起領域と非励
起領域の実効バンドギヤツプ差が数meV以上あ
れば十分発揮される。非励起領域の長さは注入キ
ヤリヤーの拡散長以上あれば十分であるが長くな
りすぎると、励起領域から反射面迄の間にレーザ
光が回折して反射面で反射した光のうち、励起領
域に戻る割合が減少する。このため閾電流が上昇
する。層構造に関しては最も基本の三層構造につ
いて説明したが、各種の構造が考えられる。第1
図bに於て第3層n−Al0.3Ga0.7As層4の代りに
n,p,n−Al0.3Ga0.7Asの3層がある構造、更
にはn−GaAs基板1をp−GaAs基板にし、且つ
第1層のn−Al0.3Ga0.7As層2の代りにn,p又
はn,p,n−Al0.3Ga0.7As層にし、Zn拡散深さ
をp−GaAs基板に到達させる構造にして、n形
電極を第1図bの上面から取り出す構造、等いか
なる構造にしても同様様の効果が得られる。
In the above embodiments, the lengths of the excited region and non-excited region, the Al composition of each layer, the layer thickness, and the carrier concentration are not limited to the above. The effects of the present invention can be sufficiently exhibited if the effective band gap difference between the excited region and the non-excited region is several meV or more. It is sufficient that the length of the non-excited region is longer than the diffusion length of the injection carrier, but if it is too long, the laser beam will be diffracted between the excitation region and the reflective surface, and some of the light reflected by the reflective surface will be lost in the excitation region. The rate of return to Therefore, the threshold current increases. Regarding the layer structure, although the most basic three-layer structure has been described, various structures are possible. 1st
In Figure b, there is a structure in which there are three layers of n, p, and n-Al 0.3 Ga 0.7 As instead of the third n- Al 0.3 Ga 0.7 As layer 4; The GaAs substrate 1 is a p-GaAs substrate, and the first n-Al 0.3 Ga 0.7 As layer 2 is replaced by n,p or n,p,n- Al 0.3 Ga 0.7 As . Similar effects can be obtained with any structure, such as a structure in which the Zn diffusion depth reaches the p-GaAs substrate, and a structure in which the n-type electrode is taken out from the top surface of FIG. 1b.

実施例に於て励起領域を形成するに、Znの押
し込み拡散を用いた。この際温度、時間は任意に
選びうる。押し込み拡散法の他に中濃度拡散を先
に行つた後に少し浅い高濃度拡散を行つて励起領
域を形成してもよい。また中濃度拡散のみでも実
現可能である。拡散不純物はZn以外にCdでもよ
く、又熱拡散に依らずイオン打込み法を利用して
p形領域を形成してもよい。以上Zn拡散を例に
とつたが、Si,Se等のn形不純物拡散、イオン
打込み等を用いても同種の構造を実現する事がで
きるのは明白である。
In the example, forced diffusion of Zn was used to form the excitation region. At this time, the temperature and time can be selected arbitrarily. In addition to the forced diffusion method, the excitation region may be formed by first performing medium concentration diffusion and then performing slightly shallow high concentration diffusion. It is also possible to achieve this by only medium concentration diffusion. The diffusion impurity may be Cd instead of Zn, and the p-type region may be formed using an ion implantation method without relying on thermal diffusion. Although Zn diffusion has been taken as an example above, it is clear that the same type of structure can be realized using n-type impurity diffusion such as Si or Se, ion implantation, etc.

また活性層としてGaAsを例にとつたが
AlyGa1-yAsでもよい。更に(InGa)(As P)/
InP,(AlGa)(AsSb)/GaSb等の四元ダブルヘ
テロ接合結晶にも容易に適用できる事は説明する
迄もない。
Also, GaAs was used as an example for the active layer.
Al y Ga 1-y As may also be used. Furthermore (InGa) (As P)/
It goes without saying that it can be easily applied to quaternary double heterojunction crystals such as InP, (AlGa) (AsSb)/GaSb, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の最も典型的な実施例であり、
aは上面図、bはaのA−A′線に沿つた断面図
である。 1:n−GaAs基板、2:第1層n−
Al0.3Ga0.7As層、3:第2層n−GaAs活性層、
4:第3層n−Al0.3Ga0.7As層、5:Si3N4膜、
6:Zn拡散領域、7:Zn押し込み領域(発光領
域)、8:Au/Cr p形オーミツク電極、8′:
Au/Au−Ge−Ni n形オーミツク電極、9:反
射面、10:励起領域、11:曲折領域、12:
非励起領域、13:レーザ光。 第2図はプロトン照射を用いた本発明第2の実
施例でありaは上面図、bはaのA−A′線に沿
つた断面図である。 20:Zn拡散領域、21:励起領域、22:
プロトン照射絶縁性領域。 第3図は本発明の第3の実施例であり、aは上
面図、bはA−A′線に沿つた断面図である。 30:半絶縁性GaAs基板、31:Zn拡散領
域、32:Si3N4膜、33:Au/Cr p形オーミ
ツク電極、34:Au/Au−Ge−Ni n形オーミ
ツク電極、35:励起領域、36:Au/Au−Ge
−Ni金属層。 第4図は本発明の第4の実施例であり、aは上
面図、bはA−A′線に沿つた断面図である。 40:励起領域、41:メサエツチング側面。
FIG. 1 shows the most typical embodiment of the present invention.
A is a top view, and b is a sectional view taken along the line A-A' of a. 1: n-GaAs substrate, 2: first layer n-
Al 0.3 Ga 0.7 As layer , 3: second layer n- GaAs active layer,
4: Third layer n-Al 0.3 Ga 0.7 As layer, 5 : Si 3 N 4 film,
6: Zn diffusion region, 7: Zn indentation region (light emitting region), 8: Au/Cr p-type ohmic electrode, 8':
Au/Au-Ge-Ni n-type ohmic electrode, 9: reflective surface, 10: excitation region, 11: bending region, 12:
Non-excited region, 13: laser light. FIG. 2 shows a second embodiment of the present invention using proton irradiation, in which a is a top view and b is a sectional view taken along line A-A' of a. 20: Zn diffusion region, 21: excitation region, 22:
Proton irradiation insulating region. FIG. 3 shows a third embodiment of the present invention, in which a is a top view and b is a sectional view taken along line A-A'. 30: Semi-insulating GaAs substrate, 31: Zn diffusion region, 32: Si 3 N 4 film, 33: Au/Cr p-type ohmic electrode, 34: Au/Au-Ge-Ni n-type ohmic electrode, 35: excitation region , 36:Au/Au−Ge
−Ni metal layer. FIG. 4 shows a fourth embodiment of the present invention, in which a is a top view and b is a sectional view taken along line A-A'. 40: Excitation region, 41: Mesa etching side surface.

Claims (1)

【特許請求の範囲】[Claims] 1 ダブルヘテロ構造を有する半導体材料に活性
層より深く選択的に不純物導入領域を設けてその
不純物導入領域周辺部が励起領域となるトランス
バースジヤンクシヨン構造の半導体レーザに於
て、劈開面に垂直な直線的な励起領域が、反射面
に直接、接することなく、且つ該励起領域の延長
上の反射面迄の間に存在する活性層中の非励起領
域の実効バンドギヤツプより該励起領域の実効バ
ンドギヤツプが小さい事を特徴とする。大光出力
基本横モード半導体レーザ素子。
1 In a semiconductor laser with a transverse junction structure, an impurity doped region is selectively provided deeper than the active layer in a semiconductor material having a double heterostructure, and the region around the impurity doped region becomes an excitation region. The effective bandgap of the linear excitation region is greater than the effective bandgap of the non-excitation region in the active layer that exists between the excitation region and the reflection surface, which is an extension of the excitation region without directly contacting the reflection surface. Characterized by small size. Large optical output fundamental transverse mode semiconductor laser device.
JP8313978A 1978-07-07 1978-07-07 Large light output, lateral mode of semiconductor laser element Granted JPS559480A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8313978A JPS559480A (en) 1978-07-07 1978-07-07 Large light output, lateral mode of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8313978A JPS559480A (en) 1978-07-07 1978-07-07 Large light output, lateral mode of semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS559480A JPS559480A (en) 1980-01-23
JPS6244439B2 true JPS6244439B2 (en) 1987-09-21

Family

ID=13793862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8313978A Granted JPS559480A (en) 1978-07-07 1978-07-07 Large light output, lateral mode of semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS559480A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589386A (en) * 1981-07-08 1983-01-19 Mitsubishi Electric Corp Semiconductor laser device
JPH07109924B2 (en) * 1989-03-13 1995-11-22 シャープ株式会社 Semiconductor laser device and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932589A (en) * 1972-07-21 1974-03-25
JPS4938593A (en) * 1972-08-11 1974-04-10
JPS4994292A (en) * 1973-01-11 1974-09-06

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4932589A (en) * 1972-07-21 1974-03-25
JPS4938593A (en) * 1972-08-11 1974-04-10
JPS4994292A (en) * 1973-01-11 1974-09-06

Also Published As

Publication number Publication date
JPS559480A (en) 1980-01-23

Similar Documents

Publication Publication Date Title
US4943970A (en) Surface emitting laser
US4282494A (en) Stripe-geometry double heterojunction laser element
JP2008135786A (en) High power semiconductor laser diode
US4278949A (en) Semiconductor laser structure and manufacture
US4803691A (en) Lateral superradiance suppressing diode laser bar
US4525841A (en) Double channel planar buried heterostructure laser
US4297652A (en) Injection-type semiconductor laser
JPS6343908B2 (en)
JPH0518473B2 (en)
US4759025A (en) Window structure semiconductor laser
US5388116A (en) Semiconductor laser device
JPS6244439B2 (en)
JPH0426558B2 (en)
JPH0114717B2 (en)
US4592061A (en) Transverse junction stripe laser with steps at the end faces
US5136601A (en) Semiconductor laser
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH0474876B2 (en)
JPS6018988A (en) Semiconductor laser
JPS6244713B2 (en)
JPS62137893A (en) Semiconductor laser
JP3200918B2 (en) Semiconductor laser device
JP2878709B2 (en) Semiconductor laser device
JP3217495B2 (en) Semiconductor laser device