JPS6060783A - Manufacture of superconducting circuit device - Google Patents

Manufacture of superconducting circuit device

Info

Publication number
JPS6060783A
JPS6060783A JP58169764A JP16976483A JPS6060783A JP S6060783 A JPS6060783 A JP S6060783A JP 58169764 A JP58169764 A JP 58169764A JP 16976483 A JP16976483 A JP 16976483A JP S6060783 A JPS6060783 A JP S6060783A
Authority
JP
Japan
Prior art keywords
superconducting
electrode
tunnel barrier
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58169764A
Other languages
Japanese (ja)
Inventor
Ichiro Ishida
一郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58169764A priority Critical patent/JPS6060783A/en
Publication of JPS6060783A publication Critical patent/JPS6060783A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To eliminate the discontinuity due to the level-difference parts of electrodes by levelling the surface by arranging the adjacent superconducting electrodes in parallel to a substrate with contacting with the substrate and surrounding the side plane of the superconducting electrodes with an insulating layer so as to make it a flat structure. CONSTITUTION:The Nb layer 25' which will become the first superconductive electrode 25 is formed on a substrate 24 and is patterned by using a mask 31 to become the electrode 25. Next, a tunnel barrier 26 is formed on a surface of the electrode 25 and the Nb layer 27' which will become the second superconducting electrode 27 is deposited with being in contact with said barrier 26. Then, a resist layer 28 is formed and is levelled. Next, etching is done for levelling with leaving the first and second superconducting electrodes 25 and 27 of 1mum, for example. When anodizing is performed by using a mask 29 formed by resist, an insulating layer 30 of Nb2O5 is formed in the Nb layer which is not covered with the mask and the isolation of elements is done.

Description

【発明の詳細な説明】 本発明は超伝導回路装置の製造方法に関し、更に詳しく
は超伝導トンネル障壁を有する超伝導回路装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a superconducting circuit device, and more particularly to a superconducting circuit device having a superconducting tunnel barrier.

超伝導回路装置は例えは文献ブロンフイングオブサアイ
イーイーイー誌(ProceedingSof+)1e
IEEB)Vol、55NQ2February 19
67PP、172 180又はUSP4334158に
示されている如くよく知られている。
For example, a superconducting circuit device can be found in the literature Bronfing of the Society (ProceedingSof+) 1e.
IEEE) Vol, 55NQ2February 19
67PP, 172 180 or USP 4,334,158.

第1図7a) 、 (b)は超伝導回路装置の従来例の
一つを説明するだめの図である。第1図(a)では基板
1上に超伝導基部電極2を形成し、その表面に絶縁層3
を用いでトンネル障壁4の領域を規定し、該トンネル傷
壁4に接しておおうf隼分VC超云導対向電極5を形成
している。第1図(b)では基板6上に第1の超伝導電
&7を形成し、その表面に絶縁層9を用いて第1のトン
ネル障壁8の領域を規定し該第1のトンネル障壁8に接
しておおう部分に第2の超伝4を極10を形成し、更に
該第2の超伝導電極100表面に絶縁層12を用いて第
2のトンネル障壁1】を規定し、該第2のトンネル障壁
11に接しておおう部分に第3の超伝導電極13を形成
している。
FIGS. 1A and 7B are diagrams for explaining one conventional example of a superconducting circuit device. In FIG. 1(a), a superconducting base electrode 2 is formed on a substrate 1, and an insulating layer 3 is formed on its surface.
A region of the tunnel barrier 4 is defined by using a VC superconducting counter electrode 5 which is in contact with the tunnel wound wall 4. In FIG. 1(b), a first superconducting layer 7 is formed on a substrate 6, and an insulating layer 9 is used on its surface to define a region of a first tunnel barrier 8. A second superconducting electrode 4 is formed as a pole 10 in the contacting portion, and an insulating layer 12 is used on the surface of the second superconducting electrode 100 to define a second tunnel barrier 1]. A third superconducting electrode 13 is formed in a portion that is in contact with the tunnel barrier 11.

上記2例1′示した如く、トンネル障壁を用いた従来の
!73 伝導回路装置では第1の超伝導を極2及び7を
除いた各超伝導電極及び絶縁層がそれぞれの下地に生じ
た段差部分を越えて形成される構造である為、上記段差
部で、上記各超伝導電極及び絶縁層の不連続性が生じ易
く、装置の歩留及び信頼性の低下を招き易い構造であっ
た。又、上記段差部での上記各超伝導電極あるいけ絶縁
層の連続性を確保する為に、それぞれの膜厚はそれ等が
越えるべき段差部よりも厚くしなければならないという
装省製作上の制限があった。更には室温と42°に間の
熱サイクル経過時に、基板と超伝導電極間の熱膨張系数
の違いにより、超伝導電極内の基板と平行な方向に圧縮
応力又は引っばり応力が生じ、その結果トンネル障壁を
つきゃふるいわゆるヒロ、りが発生し、トンネル障壁の
劣化を招く事が例えば文献アイイーイーイートランザク
ションオンエレクトpンデバイス誌(IBEE Tra
nsactionon EIac+ron Devic
e )ED−271410PP、]979−19871
980年により報告されでいる。
As shown in the above two examples 1', the conventional method using a tunnel barrier! 73 In the conductive circuit device, since the first superconducting electrode and the insulating layer except for poles 2 and 7 are formed over the stepped portions of the respective bases, at the stepped portions, The structure was such that discontinuities were likely to occur in each of the superconducting electrodes and insulating layers, resulting in a decrease in yield and reliability of the device. In addition, in order to ensure the continuity of each superconducting electrode or insulating layer at the step, the thickness of each layer must be thicker than the step that they need to cross. There were restrictions. Furthermore, during a thermal cycle between room temperature and 42°, compressive stress or tensile stress is generated in the superconducting electrode in a direction parallel to the substrate due to the difference in thermal expansion coefficient between the substrate and the superconducting electrode. For example, it is reported in the literature IBEE Transactions on Electronic Devices that so-called cracks and rips occur that attack the tunnel barrier, leading to deterioration of the tunnel barrier.
nsactionon EIac+ron Devic
e) ED-271410PP, ]979-19871
It was reported in 980.

第2図は超伝導回路装置の別の従来例の一つを説明する
だめの図である。第2図では基板14上に超伝導基部電
極15が設けられ、その側面を除いた主表面上に絶縁層
】6が設けられ又、該超伝導基部電極15の側面にトン
ネル障壁17が設けられ、該トンネル障壁17に接して
対向電極】8が設けられている。
FIG. 2 is a diagram for explaining another conventional example of a superconducting circuit device. In FIG. 2, a superconducting base electrode 15 is provided on a substrate 14, an insulating layer 6 is provided on the main surface excluding the side surfaces, and a tunnel barrier 17 is provided on the side surfaces of the superconducting base electrode 15. , a counter electrode ]8 is provided in contact with the tunnel barrier 17.

上記例で示したトンネル障壁を用いた従来の超伝導回路
装置では対向電極18は下地に生じた段差部を越えて形
成されるため対向電極18は上記段差部で不連続性が生
じ易く装置の歩留及び信頼性の低下を招き易い構造であ
った。
In the conventional superconducting circuit device using the tunnel barrier shown in the above example, the counter electrode 18 is formed over the step portion formed in the base, so the counter electrode 18 tends to be discontinuous at the step portion, and the device This structure was likely to lead to a decrease in yield and reliability.

本発明の目的は上記構造上の欠点に鑑みてなされたもの
であり平面構造を実現する超伝導回路装置の製造方法を
提供することにある。
An object of the present invention has been made in view of the above-mentioned structural disadvantages, and it is an object of the present invention to provide a method for manufacturing a superconducting circuit device that realizes a planar structure.

本発明によれば所要の基板上に接して、第1の超伝導体
を島状に形成する工程と、該第1の超伝導体の全表面に
トンネル障壁を形成する工程と、該トンネル障壁に接し
て、第2の超伝導体を形成り、該第2の超伝導体が直接
基板に接してGする臼5分に該第2の超]云導体を、該
第1の超伝導体力;直接基板に接している部分に該第1
の#71伝導体だ(すを、それぞれのIγさが等しくな
るように残す工程と、しかる後VC該第1及び第2の超
伝導体をそれぞれ電気的に分離する工程とを含む事を特
徴とする超伝導回路装置の製造方法が匈ら牙1.る。
According to the present invention, there are a step of forming a first superconductor in an island shape in contact with a desired substrate, a step of forming a tunnel barrier on the entire surface of the first superconductor, and a step of forming a tunnel barrier on the entire surface of the first superconductor. A second superconductor is formed in contact with the substrate, and when the second superconductor is in direct contact with the substrate and G ;The first part is in direct contact with the board.
The #71 conductor of the VC is characterized by including a step of leaving the superconductors so that their Iγ values are equal, and a step of electrically separating the first and second VC superconductors, respectively. The method for manufacturing a superconducting circuit device is as follows: 1.

以下図面を用いて本発明を能、明する。第3図(a)〜
(e)は本発明?説明する為の図で超伝導回路装置の製
造の主璧工程における構造断面図である。第3図(a)
に示す如く所要の基板19上に接して笛1の超伝導電極
20を島状に形成する。次Vこ第3図(b)に示す如く
第1のえ6伝導電極200表面にトンネル障i21を形
成する。[2かる後に第3図(C)に示す如く第2のb
′3云導電導電極22トンネル障壁21に接しておおう
ように設けた後、第2の超(伝導電極及び第1の超伝導
電極を削り取って第3図(d)に示す構造を実現する。
The present invention will be explained below using the drawings. Figure 3(a)~
Is (e) the invention? It is a diagram for explaining, and is a structural cross-sectional view in the main process of manufacturing a superconducting circuit device. Figure 3(a)
As shown in the figure, the superconducting electrode 20 of the flute 1 is formed in the form of an island in contact with a desired substrate 19. Next, as shown in FIG. 3(b), a tunnel barrier i21 is formed on the surface of the first conductive electrode 200. [After 2, the second b as shown in Figure 3(C)
After the conductive electrode 22 is provided so as to be in contact with the tunnel barrier 21, the second superconducting electrode and the first superconducting electrode are removed to realize the structure shown in FIG. 3(d).

更に第1の超伝導1!極反び第2の超伝導電極内に電気
的に分離する絶縁層23を形成する。以上の工程により
、超伝導電極、素子間の連結線及び絶縁層が越えな(す
ればならない、装置主表面上の段差部を解消する事カニ
可能な累子構造を実現する新規なる!l!8i法が代ら
れる。
Furthermore, the first superconductor 1! An electrically isolated insulating layer 23 is formed within the second superconducting electrode. Through the above steps, the superconducting electrodes, connecting wires between elements, and insulating layers can be removed, and the stepped portion on the main surface of the device can be eliminated. 8i method will be replaced.

その為超伝導電極、連結線及び絶縁層の連続性カニ向上
する。更に室温と42°に間の熱サイクル経過時に、基
板と、1B伝導電極の熱膨張系数の違1.Nにより超伝
導電極内の基板と平行な方向に圧縮16カ又は引っばり
応力が生じても、トンネル障壁番よ上記力の方向に対し
てほぼ垂直な面内に設けられてしするため、トンネル障
壁をつきゃふるいわゆるヒロックの発生に起因するトン
ネル障壁を防止することができる。また、本発明はトン
ネル障壁を用Gする超伝導回路装置において高歩留反び
高イF1頼1を実現し更には多層構造からなる装置を容
易に実現することができる。
Therefore, the continuity of superconducting electrodes, connecting wires, and insulating layers is improved. Furthermore, during thermal cycles between room temperature and 42°, the difference in thermal expansion coefficients between the substrate and the 1B conduction electrode 1. Even if compressive or tensile stress is generated by N in the direction parallel to the substrate in the superconducting electrode, the tunnel barrier is placed in a plane almost perpendicular to the direction of the force, so the tunnel It is possible to prevent tunnel barriers caused by the formation of so-called hillocks that block barriers. Further, the present invention can realize high yield and high F1 reliability in a superconducting circuit device using a tunnel barrier, and furthermore, can easily realize a device having a multilayer structure.

次に本発明をより良く理解するために芙施例により説明
すく)。第4p”4(a)〜(11)は本発明の一実施
例としてジョセ1ンン累子回路の製造方法を説明するだ
y)の図で主要工程における断面構造を示す。
Next, in order to better understand the present invention, the present invention will be explained with reference to examples. 4th page 4(a) to (11) are diagrams illustrating a method for manufacturing a Josephine transducer circuit as an embodiment of the present invention, and show cross-sectional structures in main steps.

同図においで基板24上に例えばN、bを用いて第1の
超伝導電極25になるNb1iH25’を例えは厚さ1
.5μmのIllさに形成し、(第4図(a))例えば
フォトレジストマスク31を用いてバターニングを行な
い必要な第1の超伝導電@、25を形成する(第4図(
b))。その替二第1のM3伝導電極250表面に例え
ば放電酸化法によりトンネル障壁26を形成する(紀4
図(C))。この工程は放電酸化法Vt限らず、例えば
aSifc装置全体に唯積させて、これをトンネル障壁
として用いる事もT:きる。しかる後にトンネル障壁2
6に接するように第2の超伝導@127VCなる、J/
llえはNb f427’ f堆積スル(第414(d
+)。ソ(1)後伊1えばAZ−1350J7オトレジ
スlを用いてフォトレジスト層28を形成する。このフ
ォトレジストル128は自からの粘性によって凹部には
厚く、6郡には薄く塗布され、その結果フォトレジスト
層28の主表面は平担化される(第4図(e))。AZ
−1350J 7 、トレジストとNbとのエツチング
速度比はCF、ガスを用いた反応性スバツタエッチンク
においてcr’、ガス圧30mTorr 以下で、けば
1であり、この条件下でエツチングを行えばエツチング
面は平担化された主表面に平行な面になる。この場合ト
ンネル障壁26の部分ではトンネル障壁の厚さが高さ数
+^である為そのエツチングに要する時間はぐ1秒程度
であり、Nbのエツチング速度比1500λ毎分に対し
て無視しうる。その結果、第1、第2の超伝導電極25
,27を例えば1μmの厚さを残して工。
In the same figure, Nb1iH25', which will become the first superconducting electrode 25, is placed on the substrate 24 using, for example, N, b, with a thickness of 1
.. 5 .mu.m thick (FIG. 4(a)), and patterning is performed using, for example, a photoresist mask 31 to form the necessary first superconducting electrode 25 (FIG. 4(a)).
b)). Alternatively, a tunnel barrier 26 is formed on the surface of the second first M3 conductive electrode 250 by, for example, a discharge oxidation method.
Figure (C)). This process is not limited to the discharge oxidation method, but can also be used, for example, by depositing it on the entire aSifC device and using it as a tunnel barrier. Then tunnel barrier 2
6 becomes the second superconductor @127VC, J/
Il is Nb f427' f deposition thread (414th (d
+). (1) After that, a photoresist layer 28 is formed using, for example, AZ-1350J7 photoresist. Due to its own viscosity, this photoresist 128 is applied thickly to the recesses and thinly to the six areas, and as a result, the main surface of the photoresist layer 28 is flattened (FIG. 4(e)). AZ
-1350J 7, the etching rate ratio between the resist and Nb is cr' in reactive sputter etching using CF gas, and is 1 when the gas pressure is 30 mTorr or less, and if etching is performed under these conditions, the etching rate is 1. The plane becomes parallel to the flattened major surface. In this case, since the thickness of the tunnel barrier 26 is the number of heights +^, the time required for etching is only about 1 second, which can be ignored compared to the Nb etching speed ratio of 1500λ/min. As a result, the first and second superconducting electrodes 25
, 27, leaving a thickness of, for example, 1 μm.

チングを終了すれば装置の主表面は平担化される。After finishing the cutting, the main surface of the device is flattened.

その後素子として残すべき部分VC例えばフォトレジス
トでマスク29を形成しく第4図(g))、陽4?g酸
化をほどこすとマスクでおおわれていないNb層にNb
、O,の絶縁層30が形成され、第4図(h)に示す如
く素子分離が行われる。
Thereafter, a mask 29 is formed using photoresist, for example, for the portion VC to be left as an element (FIG. 4(g)), positive 4? g When oxidation is applied, Nb is added to the Nb layer not covered by the mask.
, O, are formed, and element isolation is performed as shown in FIG. 4(h).

第5図(a)〜(k)は本発明の他の実施例として、超
伝導トンネル障壁を2ヶ以上用いる素子を含む回路の製
造について説明するための図で主要工程における構造断
面図を示す。同図において基鈑124に例えばNbを用
いて第1の超伝導−極125になるNl)層125′を
例えば15μmの厚さに設けlξ後(第5図(a))、
例えばフォトレジストマスク133を用いてバターニン
グを行ない必扱な第1(1)超伝導電極125を形成す
る(第5図(b))その後記1の超伝導電極125の表
面に例えば放電m化法により第1のトンネル障壁126
 ft形成する(第51囚(C))。
FIGS. 5(a) to 5(k) are diagrams for explaining the manufacture of a circuit including an element using two or more superconducting tunnel barriers as another embodiment of the present invention, and show structural cross-sectional views in main steps. . In the same figure, a layer 125' of Nl (Nl), which will become the first superconducting pole 125 using Nb, for example, is provided on the base plate 124 to a thickness of, for example, 15 μm (FIG. 5(a)).
For example, patterning is performed using a photoresist mask 133 to form the necessary first (1) superconducting electrode 125 (FIG. 5(b)). First tunnel barrier 126 according to the method
Form ft (51st prisoner (C)).

この工程は放電酸化法に限らず、例えばa Siを装置
全体に堆積させて、これをトンネル障壁として用いる事
もできる。しかる後に第1のトンネル障壁126に接す
るように第20M伝導電極127になるべき、例えばN
 l) l、、< 127’を堆積する(第5図(d)
 )。その後例えばフォトレジストマスクを用いてバタ
ーニングを行ない第2の超伝導電極】27になるべき部
分を形成する。(第5図(e))その後記2の超伝導電
極127の表面に例えは放%、酸化法により、第2のト
ンネル障壁128ヲ形成する(第5図(f))、この工
程は放電酸化法に限らず、例えはa Siを装置全体に
堆積させて、これをトンネル障壁として用いる事もでき
る。しかる後に第2のトンネル障壁128に接するよう
に第3の超伝導電極になるへき、例えばNbJけ129
′を堆積する(第5図(g))。その後例えはAZ−1
350Jフオトレジストを用いて、フォトレジスト層1
30を形成する。
This process is not limited to the discharge oxidation method; for example, it is also possible to deposit a Si over the entire device and use it as a tunnel barrier. Thereafter, a conductive electrode 127, for example, N
l) Deposit l, , <127' (Fig. 5(d)
). Thereafter, patterning is performed using, for example, a photoresist mask to form a portion to become the second superconducting electrode 27. (FIG. 5(e)) Thereafter, a second tunnel barrier 128 is formed on the surface of the superconducting electrode 127 described above by, for example, an oxidation method (FIG. 5(f)). In addition to the oxidation method, for example, it is also possible to deposit a Si over the entire device and use it as a tunnel barrier. Thereafter, a third superconducting electrode is formed in contact with the second tunnel barrier 128, for example, NbJ 129.
' is deposited (Fig. 5(g)). After that, the analogy is AZ-1
Photoresist layer 1 using 350J photoresist
form 30.

このフォトレジス)Ji130は自らの粘性によってQ
li都には厚く、凸曲には薄く塗布され、その結果フォ
トレジスト層130の主表面は平担化される(耀5図(
h))。AZ−1350JフオトレノストとNb との
エツチング速度比はCF、ガスを用いた反え・性スバッ
タヱッチンクにおいて、CIi’、ガス圧30mTnr
r以下でほば1であり、この条件下でエツチングを行え
はエツチング面は平担化された主表面に平行な面になる
。トンネル障α!128及び126の品分では、トンネ
ル障壁の厚さが高マ数十にである為、そのエツチングに
要する時間は数沙でちり、Nbのエツチング速度比15
0OA毎分に対して無視しつる。七の結果第1、第2及
び第3の1B伝導電極125 、127 、129を例
えは1μmの厚さを残1.てエツチングを終了すれば装
置の主表面は平担化される。(第5図(i))その後素
子として残すべき部分に例えばフォトレジストでマスク
134を形成しくM5図(J))、陽極酸化をほどこす
と、マスクでおおわれていないNb層にNl)、O,の
絶縁層132が形成され、第5図(kloc示す如く素
子分離が行わ、れる。
This photoresist) Ji130 has a Q due to its own viscosity.
The photoresist layer 130 is coated thickly on the edges and thinly on the convex curves, and as a result, the main surface of the photoresist layer 130 is flattened (see Figure 5).
h)). The etching rate ratio between AZ-1350J photorenost and Nb was determined by CF, gas pressure, and CIi', gas pressure 30 mTnr.
Below r, it is approximately 1, and if etching is performed under these conditions, the etched surface will be a plane parallel to the flattened main surface. Tunnel disorder α! For products No. 128 and No. 126, the thickness of the tunnel barrier is several tens of mm high, so the etching time is only a few millimeters, and the etching speed ratio of Nb is 15.
Ignore for 0OA per minute. As a result of the seventh step, the first, second and third 1B conductive electrodes 125, 127, 129 are left with a thickness of 1 μm. When etching is completed, the main surface of the device is flattened. (Fig. 5 (i)) After that, a mask 134 is formed using photoresist, for example, in the part to be left as an element (Fig. M5 (J)), and when anodization is performed, the Nb layer not covered with the mask is covered with Nl), O , an insulating layer 132 is formed, and element isolation is performed as shown in FIG. 5 (kloc).

以北実施例をもとに説明したが本発明によれば表面にト
ンネル障壁を設けた第1の超伝導電極に接しておおうよ
うに第2の超伝導電極を形成し、装置表面を平担化した
後等エツチング面が基板と平行になるエツチング条件下
でエツチングを行い、その後素子分離をしてトンネル障
壁を介して隣接する超伝導電極が基板上に接して且つ基
板面に平行な方向に配置されその超伝導電極の側面が絶
縁層で包囲された平面構造の超伝導回路装置を実現する
ことができる、
Although the explanation has been made based on the above embodiments, according to the present invention, the second superconducting electrode is formed so as to be in contact with the first superconducting electrode whose surface is provided with a tunnel barrier, and the device surface is made flat. After etching, etching is performed under etching conditions such that the etched plane is parallel to the substrate, and then the elements are separated so that adjacent superconducting electrodes are in contact with the substrate through a tunnel barrier and in a direction parallel to the substrate surface. It is possible to realize a superconducting circuit device with a planar structure in which the side surfaces of the superconducting electrodes are surrounded by an insulating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は従来の技術を説明するだめ
の超伝導回路装置の構造断面図である。 第2図は従来の技術を説明するだめの超伝導回路装置の
構造1υ1而図である。 tJr、3図(a)〜(,1は本発明の詳細な説明する
ための図で超に嗜回路装置製造の主袈工程に於ける構造
断面図である。 第4図(a)〜(h)は本発明の一実施例を説明するだ
めの図で、ジョセフソン素子回路製造の主費工程に於け
る構造断面図である。 第5図(−〜(k)は本発明の一実施例を説明するだめ
の図で超伝導トンネル障壁を2ケリ上用いる素子を含む
回路の製造の主要工程に於ける構造IIJi面図である
。 図において、1,6,14,19.24及び124は基
板、2,7,15.20は第1の超伝導電極、3,9,
12,16.23は絶縁層、418.11,17.21
はトンネル障壁、5,10゜18.22は第2の超伝導
電極、13は第3の超伝導電極、25’ 、 125’
i−i第1のB伝導電極になるべきNb層、25 、1
25は第1の超伝導Nb電極、28 、29 、31 
、133 、131及び130はフォトレジスト層、 
27’、 127’は第2の超伝導電極になるべきNb
層、27 、127は第2の超伝導Nb1E極、26 
、126Vi第1のトンネル障壁、128は第2のトン
ネルの障壁、30 、132はNb2O,絶縁層、12
9′は第3の超伝導電極になるべきNb層。 129は第3の超伝導電極である。 オ 1 図 (a) 11 87 (b) 第2図 161コげ 第3図 (a) (d) (b) (e) (C) 牙 4 図 1 ZZ U”−”−””’−”−””−”−” 浸※※ (d) (h) 第5図 (d) 第5図 (h)(k) 9p (i) 1ス1
FIGS. 1(a) and 1(b) are structural sectional views of a superconducting circuit device for explaining the conventional technology. FIG. 2 is a diagram showing the structure of a superconducting circuit device to explain the conventional technology. tJr, Figures 3 (a) to (, 1 are structural cross-sectional views in the main process of manufacturing a super-circuit circuit device, which are diagrams for explaining the present invention in detail. Figures 4 (a) to () Fig. 5 (h) is a diagram for explaining one embodiment of the present invention, and is a structural sectional view in the main cost process of manufacturing a Josephson element circuit. This is a diagram for explaining an example, and is a side view of the structure IIJi in the main process of manufacturing a circuit including an element using two superconducting tunnel barriers. is the substrate, 2, 7, 15.20 is the first superconducting electrode, 3, 9,
12, 16.23 are insulating layers, 418.11, 17.21
is the tunnel barrier, 5,10°18.22 is the second superconducting electrode, 13 is the third superconducting electrode, 25', 125'
ii Nb layer to become the first B conduction electrode, 25, 1
25 is the first superconducting Nb electrode, 28 , 29 , 31
, 133, 131 and 130 are photoresist layers;
27' and 127' are Nb which should become the second superconducting electrode
layer, 27, 127 is the second superconducting Nb1E pole, 26
, 126Vi first tunnel barrier, 128 second tunnel barrier, 30, 132 Nb2O insulating layer, 12
9' is the Nb layer that should become the third superconducting electrode. 129 is the third superconducting electrode. E 1 Figure (a) 11 87 (b) Figure 2 161 Burnt Figure 3 (a) (d) (b) (e) (C) Fang 4 Figure 1 ZZ U"-"-""'-" −””−”−” Soak※※ (d) (h) Figure 5 (d) Figure 5 (h) (k) 9p (i) 1st 1

Claims (1)

【特許請求の範囲】 所要の基板上に接して、第1の超(云導体を島状に形成
する工程と、該第1の超伝導体の全表面にトンネル障壁
を形成する工程と、 − −゛、該 トンネル障壁に接して、第2の超伝導体を形成する工程
と、該第2の超伝導体を削り取り、ついで該第2の超伝
導体及び該第1の超伝導体を削り取り、該第2の超伝導
体が直接基板に按じている部分に該第2の超伝導体を、
該第1の超伝導体が直接基板に接している部分に該第1
の超伝導体だけを、それぞれの厚さが等しくなるように
残す工程と、しかる後に、該第1及び第2の超伝導体を
それぞれ電気的に分離する工程とを含む事を特徴とする
超伝導回路装置の製造方法。
[Claims] A step of forming a first superconductor in an island shape in contact with a desired substrate, and a step of forming a tunnel barrier on the entire surface of the first superconductor, - -゛, a step of forming a second superconductor in contact with the tunnel barrier, scraping off the second superconductor, and then scraping off the second superconductor and the first superconductor; , the second superconductor is placed directly on the substrate,
The first superconductor is in direct contact with the substrate.
A superconductor characterized by comprising the steps of: leaving only the first and second superconductors so that their thicknesses are equal, and then electrically separating the first and second superconductors, respectively. A method for manufacturing a conductive circuit device.
JP58169764A 1983-09-14 1983-09-14 Manufacture of superconducting circuit device Pending JPS6060783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169764A JPS6060783A (en) 1983-09-14 1983-09-14 Manufacture of superconducting circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169764A JPS6060783A (en) 1983-09-14 1983-09-14 Manufacture of superconducting circuit device

Publications (1)

Publication Number Publication Date
JPS6060783A true JPS6060783A (en) 1985-04-08

Family

ID=15892418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169764A Pending JPS6060783A (en) 1983-09-14 1983-09-14 Manufacture of superconducting circuit device

Country Status (1)

Country Link
JP (1) JPS6060783A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165379A (en) * 1986-01-17 1987-07-21 Agency Of Ind Science & Technol Manufacture of josephson junction device
JP2003101090A (en) * 2001-09-20 2003-04-04 Fujitsu Ltd Manufacturing method for high integrated superconducting circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165379A (en) * 1986-01-17 1987-07-21 Agency Of Ind Science & Technol Manufacture of josephson junction device
JP2003101090A (en) * 2001-09-20 2003-04-04 Fujitsu Ltd Manufacturing method for high integrated superconducting circuit

Similar Documents

Publication Publication Date Title
JP2964537B2 (en) Semiconductor device and manufacturing method thereof
JPS6060783A (en) Manufacture of superconducting circuit device
JPS6146081A (en) Manufacture of josephson junction element
JPH11204530A (en) Semiconductor element and preventing method of crack generated in insulating layer of semiconductor element
JPH03241864A (en) Capacitor for microwave integrated circuit
JPH055192B2 (en)
JPH01248536A (en) Manufacture of semiconductor device
JPS61196555A (en) Formation for multilayer interconnection
JPH0652810B2 (en) Superconducting circuit device
JPH058596B2 (en)
JP2663833B2 (en) Semiconductor device and manufacturing method thereof
JPH0519993B2 (en)
JPH03104190A (en) Multi-layer wiring board and manufacture thereof
JPS61244078A (en) Manufacture of superconducting lines
JPH03125469A (en) Structure for mim capacitor
KR920005391B1 (en) Contact window manufacturing method of semiconductor device using conductive matrial spacer
JPH02166776A (en) Manufacture of josephson junction
SU950794A1 (en) Method for making josephsonian bridges
JPS62200746A (en) Semiconductor device
JPS5895839A (en) Manufacture of semiconductor device
JPS6334928A (en) Formation of through hole
JPS59105337A (en) Forming method of multilayered wiring
JPS6324622A (en) Semiconductor device
JPS6060786A (en) Manufacture of superconducting circuit device
JPS61241989A (en) Manufacture of superconducting line