JPH0652810B2 - Superconducting circuit device - Google Patents

Superconducting circuit device

Info

Publication number
JPH0652810B2
JPH0652810B2 JP58169765A JP16976583A JPH0652810B2 JP H0652810 B2 JPH0652810 B2 JP H0652810B2 JP 58169765 A JP58169765 A JP 58169765A JP 16976583 A JP16976583 A JP 16976583A JP H0652810 B2 JPH0652810 B2 JP H0652810B2
Authority
JP
Japan
Prior art keywords
superconducting
electrode
insulating layer
tunnel barrier
circuit device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58169765A
Other languages
Japanese (ja)
Other versions
JPS6060782A (en
Inventor
一郎 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP58169765A priority Critical patent/JPH0652810B2/en
Publication of JPS6060782A publication Critical patent/JPS6060782A/en
Publication of JPH0652810B2 publication Critical patent/JPH0652810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 本発明は超伝導回路装置に関し、更に詳しくは超伝導ト
ンネル障壁を有する超伝導回路装置に関するものであ
る。
The present invention relates to a superconducting circuit device, and more particularly to a superconducting circuit device having a superconducting tunnel barrier.

超伝導トンネル障壁を有する超伝導回路装置は例えば文
献プロシーディングオブザアイイーイーイー誌(Proceed
ings of the IEEE)Vol.55No.2February 1967 PP.172-18
0又はUSP4334158に示されている如くよく知られてい
る。
A superconducting circuit device having a superconducting tunnel barrier is described, for example, in the document Proceeding of the AI Magazine.
ings of the IEEE) Vol.55 No.2 February 1967 PP.172-18
0 or well known as shown in USP 4334158.

第1図(a),(b)は超伝導回路装置の従来例の一つを説明
するための図である。第1図(a)では基板1上に超伝導
基部電極2を形成し、その表面に絶縁層3を用いてトン
ネル障壁4の領域を規定し、該トンネル障壁4に接して
おおう部分に超伝導対向電極5を形成している。第1図
(b)では基板6上に第1の超伝導電極7を形成し、その
表面に絶縁層9を用いて第1のトンネル障壁8の領域を
規定し該第1のトンネル障壁8に接しておおう部分に第
2の超伝導電極10を形成し更に該第2の超伝導電極1
0の表面に絶縁層12を用いて第2のトンネル障壁11
を規定し、該第2のトンネル障壁11に接しておおう部
分に第3の超伝導電極13を形成している。
FIGS. 1 (a) and 1 (b) are views for explaining one of conventional examples of a superconducting circuit device. In FIG. 1 (a), a superconducting base electrode 2 is formed on a substrate 1, an insulating layer 3 is used on the surface of the superconducting base electrode 2 to define a region of a tunnel barrier 4, and the superconducting portion is in contact with the tunnel barrier 4. The counter electrode 5 is formed. Fig. 1
In (b), the first superconducting electrode 7 is formed on the substrate 6, the region of the first tunnel barrier 8 is defined by using the insulating layer 9 on the surface thereof, and the first superconducting electrode 7 is in contact with the first tunnel barrier 8. A second superconducting electrode 10 is formed on the portion and the second superconducting electrode 1 is further formed.
The second tunnel barrier 11 using the insulating layer 12 on the surface of
And a third superconducting electrode 13 is formed in a portion in contact with the second tunnel barrier 11.

上記2例で示した如く、トンネル障壁を用いた従来の超
伝導回路装置では第1の超伝導電極2及び7を除いた各
超伝導電極及び絶縁層がそれぞれの下地に生じた段差部
分を越えて形成される構造である為、上記段差部で、上
記各超伝導電極及び絶縁層の不連続性が生じ易く、装置
の歩留及び信頼性の低下を招き易い構造であった。又、
上記段差部での上記各超伝導電極あるいは絶縁層の連続
性を確保する為に、それぞれの膜厚はそれ等が越えるべ
き段差部よりも厚くしなければならないという装置製作
上の制限があった。更には室温と4.2゜K間の熱サイクル
経過時に、基板と超伝導電極間の熱膨張系数の違いによ
り、超伝導電極内の基板と平行な方向に圧縮応力又は引
っぱり応力が生じ、その結果トンネル障壁をつきやぶる
いわゆるヒロックが発生し、トンネル障壁の劣化を招く
事が例えば文献アイイーイーイートランザクションオン
エレクトロンデバイス誌(IEEE Transaction on Electro
n Device)ED-27 No.10 PP.1979-1987 1980年により報告
されている。
As shown in the above two examples, in the conventional superconducting circuit device using the tunnel barrier, each superconducting electrode except the first superconducting electrodes 2 and 7 and the insulating layer exceed the stepped portion generated in each underlayer. Since the structure is formed as described above, discontinuity of each of the superconducting electrodes and the insulating layer is likely to occur at the step portion, and the yield and reliability of the device are likely to be deteriorated. or,
In order to secure the continuity of each of the superconducting electrodes or insulating layers at the step, there is a limitation in manufacturing the device that the film thickness of each should be thicker than the step that they should pass. . Furthermore, during the thermal cycle between room temperature and 4.2 ° K, due to the difference in the thermal expansion coefficient between the substrate and the superconducting electrode, compressive stress or tensile stress is generated in the superconducting electrode in the direction parallel to the substrate, resulting in tunneling. A so-called hillock that hits the barrier occurs, which may cause deterioration of the tunnel barrier, for example, in the literature IE Transaction on Electron Device Magazine.
n Device) ED-27 No.10 PP.1979-1987 1980.

第2図は超伝導回路装置の別の従来例の一つを説明する
ための図である。第2図では基板14上に超伝導基部電
極15が設けられ、その側面を除いた主表面上に絶縁層
16が設けられ、又、該超伝導基部電極15の側面にト
ンネル障壁17が設けられ、該トンネル障壁17に接し
て対向電極18が設けられている。
FIG. 2 is a diagram for explaining another conventional example of a superconducting circuit device. In FIG. 2, a superconducting base electrode 15 is provided on a substrate 14, an insulating layer 16 is provided on the main surface excluding the side surface thereof, and a tunnel barrier 17 is provided on the side surface of the superconducting base electrode 15. A counter electrode 18 is provided in contact with the tunnel barrier 17.

上記例で示したトンネル障壁を用いた従来の超伝導回路
装置では対向電極18は下地に生じた段差部を越えて形
成されるため対向電極18は上記段差部で不連続性が生
じ易く装置の歩留及び信頼性の低下を招き易い構造であ
った。
In the conventional superconducting circuit device using the tunnel barrier shown in the above example, since the counter electrode 18 is formed beyond the step portion formed in the base, the counter electrode 18 is apt to cause discontinuity in the step portion. The structure was likely to cause a decrease in yield and reliability.

本発明は上記構造上の欠点に鑑みてなされたものであ
り、所要の基板上に少なくとも、第1の超伝導体と第2
の超伝導体とを備え、該各超伝導体がその側面において
トンネル障壁を介して接触し、かつ該各超伝導体の側面
に接して包囲するように各超伝導体と同じ厚さの絶縁層
が同一層内に設けられ、装置主平面が同一平面内にある
平面構造を特徴とする。
The present invention has been made in view of the above structural defects, and at least the first superconductor and the second superconductor are provided on a required substrate.
Of the superconductor of the same thickness as each of the superconductors so that each of the superconductors is in contact with the side surface of the superconductor through the tunnel barrier and is in contact with and surrounds the side surface of each of the superconductors. It is characterized by a planar structure in which the layers are provided in the same layer and the device main plane is in the same plane.

以下図面に従って本発明を説明する。先ず第3図を用い
て本発明の原理を説明する。第3図に示す如く本発明に
よる超伝導回路装置の基本構造は所要の基板19上に第
1の超伝導電極20及び第2の超伝導電極22及び絶縁
層23が設けられ、第1の超伝導電極20と第2の超伝
導電極22の側面はトンネル障壁21を介して接触して
おり、第1の超伝導電極20と第2の超伝導電極22の
トンネル障壁に接触していない側面は絶縁層23と接触
している平面構造となっている。この結果超伝導電極及
び絶縁層が越えなければならない段差部を解消する事が
可能な新規なる構造が得られる。その為超伝導電極及び
絶縁層の連続性が向上する。又、絶縁層の厚さ及び第2
の超伝導電極の厚さは越える段差の高さに依存せず独立
に決定する事ができる。この場合配線部分の下地を平坦
化する為に、絶縁層、第1の超伝導電極及び第2の超伝
導電極のそれぞれの厚さを等しくする。更に室温と4.2゜
K間の熱サイクル経過時に、基板と超伝導電極の熱膨張
系数の違いにより、超伝導電極内の基板と平行な方向に
圧縮応力又は引っぱり応力が生じても、トンネル障壁は
上記力の方向に対してほぼ垂直な面内に設けられている
ため、トンネル障壁をつきやぶるいわゆるヒロックの発
生に起因するトンネル障壁の劣化を防止することができ
る。
The present invention will be described below with reference to the drawings. First, the principle of the present invention will be described with reference to FIG. As shown in FIG. 3, the basic structure of the superconducting circuit device according to the present invention is such that a first superconducting electrode 20, a second superconducting electrode 22 and an insulating layer 23 are provided on a required substrate 19 to form a first superconducting electrode. The side surfaces of the conduction electrode 20 and the second superconducting electrode 22 are in contact with each other via the tunnel barrier 21, and the side surfaces of the first superconducting electrode 20 and the second superconducting electrode 22 which are not in contact with the tunnel barrier are It has a planar structure in contact with the insulating layer 23. As a result, it is possible to obtain a new structure capable of eliminating the stepped portion that must be crossed by the superconducting electrode and the insulating layer. Therefore, the continuity of the superconducting electrode and the insulating layer is improved. Also, the thickness of the insulating layer and the second
The thickness of the superconducting electrode can be independently determined without depending on the height of the step. In this case, the insulating layer, the first superconducting electrode, and the second superconducting electrode are made equal in thickness in order to flatten the base of the wiring portion. Room temperature and 4.2 °
Even if a compressive stress or a tensile stress is generated in the direction parallel to the substrate in the superconducting electrode due to the difference in the thermal expansion coefficient between the substrate and the superconducting electrode during the thermal cycle between K, the tunnel barrier will be in the direction of the force. On the other hand, since it is provided in a plane that is substantially vertical, it is possible to prevent the deterioration of the tunnel barrier due to the generation of so-called hillocks that hit the tunnel barrier.

また、本発明はトンネル障壁を用いる超伝導回路装置に
おいて、高歩留及び高信頼性を実現すると共に多層構造
からなる装置を容易に実現することができる。
Further, the present invention can realize a high yield and high reliability in a superconducting circuit device using a tunnel barrier and easily realize a device having a multilayer structure.

次に本発明をより良く理解するために実施例をあげて説
明する。第4図に本発明の一実施例としてジョセフソン
素子回路の断面構造を示す。同図において基板24上に
例えばNbを用いてグランドプレーン層124が設けられ
ている。その上に例えばSiO又はNb2O5を用いて絶縁層22
4が設けられている。上記グランドプレート層124及び上
記絶縁層224は必ずしも必要としないが本実施例では適
切なデバイスパラメータを実現するためにこれ等を用い
た構造を示した。上記絶縁層224上に接して例えばNb
で第1の超伝導電極25、第2の超伝導電極27及び例
えばNb2O5を用いて絶縁層28がほぼ同じ厚さで設けら
れている。第1の超伝導電極25と第2の超伝導電極2
7はトンネル障壁26を介して基板に平行に配置されて
おり、その周囲に接した絶縁層28で包囲されている。
各素子の連結は連結線路29によって行われる。この場
合第1、第2の超伝導電極及び絶縁層によって構成され
る装置の主表面はほぼ平担化されているため、連続線路
29の連続性は良効である。第5図に本発明の他の実施
例として超伝導トンネル障壁を2ケ以上用いる素子を含
む回路断面構造を示す。同図において基板30上に例え
ばNbを用いてグランドプレーン層130が設けられてい
る。その上に例えばSiO又はNb2O5を用いて絶縁層230が
設けられている。上記グランドプレート層130及び上記
絶縁層230は必ずしも必要ないが、本実施例では適切な
デバイスパラメータを実現するためにこれ等を用いた構
造を示した。上記絶縁層230上に接して例えばNbで第
1の超伝導電極31、第2の超伝導電極33、第3の超
伝導電極35及び例えばNb2O5を用いて絶縁層36がほ
ぼ同じ厚さで設けられている。第1の超伝導電極31と
第2の超伝導電極33はトンネル障壁32を介して基板
に平行に配置され、更に第2の超伝導電極33と第3の
超伝導電極35はトンネル障壁34を介して基板に平行
に配置され、第1、第2及び第3の超伝導電極のトンネ
ル障壁に接触していない側面は絶縁層36に接して包囲
されている。各素子の連結は連結線路37によって行わ
れる。この場合第1、第2、第3の超伝導電極及び絶縁
層によって構成される主表面はほぼ平担化されているた
め連結線路37の連続性は良好である。
Next, in order to better understand the present invention, examples will be described. FIG. 4 shows a cross-sectional structure of a Josephson device circuit as an embodiment of the present invention. In the figure, the ground plane layer 124 is provided on the substrate 24 by using, for example, Nb. An insulating layer 22 is formed on the insulating layer 22 by using, for example, SiO or Nb 2 O 5.
4 are provided. Although the ground plate layer 124 and the insulating layer 224 are not always necessary, this embodiment shows a structure using them in order to realize appropriate device parameters. In contact with the insulating layer 224, for example, Nb
Then, the insulating layer 28 is provided with substantially the same thickness using the first superconducting electrode 25, the second superconducting electrode 27, and Nb 2 O 5, for example. First superconducting electrode 25 and second superconducting electrode 2
7 is arranged in parallel with the substrate through a tunnel barrier 26, and is surrounded by an insulating layer 28 in contact with the periphery.
The connection of each element is performed by the connection line 29. In this case, since the main surface of the device constituted by the first and second superconducting electrodes and the insulating layer is almost flat, the continuity of the continuous line 29 is good. FIG. 5 shows a circuit sectional structure including an element using two or more superconducting tunnel barriers as another embodiment of the present invention. In the figure, the ground plane layer 130 is provided on the substrate 30 by using, for example, Nb. An insulating layer 230 is provided thereon by using, for example, SiO or Nb 2 O 5 . Although the ground plate layer 130 and the insulating layer 230 are not always necessary, this embodiment shows a structure using them in order to realize appropriate device parameters. The insulating layer 36 is in contact with the insulating layer 230 and is made of, for example, Nb. The first superconducting electrode 31, the second superconducting electrode 33, the third superconducting electrode 35 and, for example, Nb 2 O 5 are used to form the insulating layer 36 having substantially the same thickness. It is provided by The first superconducting electrode 31 and the second superconducting electrode 33 are arranged in parallel to the substrate via the tunnel barrier 32, and the second superconducting electrode 33 and the third superconducting electrode 35 further form the tunnel barrier 34. The side surfaces of the first, second and third superconducting electrodes which are arranged parallel to the substrate and are not in contact with the tunnel barriers are surrounded by the insulating layer 36. The connection of each element is performed by the connection line 37. In this case, since the main surface formed by the first, second and third superconducting electrodes and the insulating layer is substantially flat, the continuity of the connecting line 37 is good.

以上実施例について説明したことから明らかなように本
発明の特徴はトンネル障壁を介して接触する超伝導電極
を基板上に接して基板に平行な方向に配置し、その超伝
導電極及びトンネル障壁の側面を絶縁層で包囲した平面
構造の超伝導回路装置にある。
As is apparent from the above description of the embodiments, the feature of the present invention is that the superconducting electrodes that are in contact with each other through the tunnel barrier are arranged on the substrate in contact with each other in the direction parallel to the substrate. A superconducting circuit device having a planar structure in which the side surface is surrounded by an insulating layer.

【図面の簡単な説明】[Brief description of drawings]

第1図(a),(b)は従来の技術を説明するための超伝導回
路装置の構造断面図である。 第2図は従来の技術を説明するための超伝導回路装置の
構造断面図である。 第3図は本発明の原理を説明するための超伝導回路装置
の構造断面図である。 第4図は本発明の一実施例を説明するためのジョセフソ
ン素子回路の構造断面図である。 第5図は本発明の他の一実施例を説明するための超伝導
トンネル障壁を2ケ以上用いる素子を含む回路の構造断
面図である。 図に於いて、1,6,14,19,24及び30は基
板、2,7,15,20,25及び31は第1の超伝導
電極、3,9,12,16,23,28,36は絶縁
層、4,8,11,17,21,26,32及び34は
トンネル障壁5,10,18,22,27及び33は第
2の超伝導電極、13及び35は第3の超伝導電極、12
4及び130はグランドプレーン層、224及び230は絶縁層、
29及び37は連結線路である。
FIGS. 1 (a) and 1 (b) are structural cross-sectional views of a superconducting circuit device for explaining a conventional technique. FIG. 2 is a structural sectional view of a superconducting circuit device for explaining a conventional technique. FIG. 3 is a structural sectional view of a superconducting circuit device for explaining the principle of the present invention. FIG. 4 is a structural sectional view of a Josephson device circuit for explaining an embodiment of the present invention. FIG. 5 is a structural sectional view of a circuit including an element using two or more superconducting tunnel barriers for explaining another embodiment of the present invention. In the figure, 1, 6, 14, 19, 24 and 30 are substrates, 2, 7, 15, 20, 25 and 31 are first superconducting electrodes, 3, 9, 12, 16, 23, 28, 36 is an insulating layer, 4,8,11,17,21,26,32 and 34 are tunnel barriers 5,10,18,22,27 and 33 are second superconducting electrodes, 13 and 35 are third superconducting electrodes. Conductive electrode, 12
4 and 130 are ground plane layers, 224 and 230 are insulating layers,
Reference numerals 29 and 37 are connection lines.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】所要の基板上に少なくとも、第1の超伝導
体と、第2の超伝導体とを備え、該各超伝導体がその側
面において、トンネル障壁を介して接触し、かつ該各超
伝導体の他方の側面に接して包囲するように各超伝導体
と同じ厚さの絶縁層が同一層内に設けられ、装置主平面
が同一平面内にある平面構造を特徴とする超伝導回路装
置。
1. At least a first superconductor and a second superconductor are provided on a required substrate, each superconductor being in contact with its side surface through a tunnel barrier, and said superconductor. A superstructure characterized by a planar structure in which an insulating layer having the same thickness as each superconductor is provided in the same layer so as to surround and contact the other side surface of each superconductor, and the main plane of the device is in the same plane. Conduction circuit device.
JP58169765A 1983-09-14 1983-09-14 Superconducting circuit device Expired - Lifetime JPH0652810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58169765A JPH0652810B2 (en) 1983-09-14 1983-09-14 Superconducting circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58169765A JPH0652810B2 (en) 1983-09-14 1983-09-14 Superconducting circuit device

Publications (2)

Publication Number Publication Date
JPS6060782A JPS6060782A (en) 1985-04-08
JPH0652810B2 true JPH0652810B2 (en) 1994-07-06

Family

ID=15892436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58169765A Expired - Lifetime JPH0652810B2 (en) 1983-09-14 1983-09-14 Superconducting circuit device

Country Status (1)

Country Link
JP (1) JPH0652810B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471999A (en) * 1977-11-19 1979-06-08 Rikagaku Kenkyusho Josephson effect element and method of fabricating same
JPS57122587A (en) * 1981-01-22 1982-07-30 Nippon Telegr & Teleph Corp <Ntt> Josephson element and manufacture thereof

Also Published As

Publication number Publication date
JPS6060782A (en) 1985-04-08

Similar Documents

Publication Publication Date Title
JPS59198734A (en) Multilayer interconnection structure
US4754311A (en) Semiconductor device with contacts to parallel electrode strips
JPH0652810B2 (en) Superconducting circuit device
CN1060926A (en) Direct current superconducting quantum interference device and manufacture method thereof
US6117765A (en) Method of preventing cracks in insulating spaces between metal wiring patterns
JPS6146081A (en) Manufacture of josephson junction element
JPS6060783A (en) Manufacture of superconducting circuit device
JPH05144809A (en) Semiconductor device
JPS60177689A (en) Superconductive circuit device
JPH01183138A (en) Semiconductor device
JPS63306675A (en) Josephson junction element
JPS61147573A (en) Thin film transistor array
JPH0653326A (en) Manufacture of semiconductor device
JP3256977B2 (en) Semiconductor device
JP2989943B2 (en) Superconducting integrated circuit manufacturing method
JP2002313791A (en) Circuit wiring and its manufacturing method
JPS5889877A (en) Superconductive circuit device
JP2663833B2 (en) Semiconductor device and manufacturing method thereof
JP2674346B2 (en) Josephson device and manufacturing method thereof
JPS6156476A (en) Josephson junction element
JPH02133952A (en) Semiconductor device
JPH04186828A (en) Semiconductor device
JPH0322067B2 (en)
JP2891102B2 (en) Method of forming oxide superconducting integrated circuit
JP3163591B2 (en) Wiring structure formation method