JP2003101090A - Manufacturing method for high integrated superconducting circuit - Google Patents

Manufacturing method for high integrated superconducting circuit

Info

Publication number
JP2003101090A
JP2003101090A JP2001286597A JP2001286597A JP2003101090A JP 2003101090 A JP2003101090 A JP 2003101090A JP 2001286597 A JP2001286597 A JP 2001286597A JP 2001286597 A JP2001286597 A JP 2001286597A JP 2003101090 A JP2003101090 A JP 2003101090A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting electrode
interlayer insulating
insulating film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001286597A
Other languages
Japanese (ja)
Inventor
Tsunehiro Namigashira
経裕 波頭
Akira Yoshida
晃 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Superconductivity Technology Center
Fujitsu Ltd
Original Assignee
International Superconductivity Technology Center
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Superconductivity Technology Center, Fujitsu Ltd filed Critical International Superconductivity Technology Center
Priority to JP2001286597A priority Critical patent/JP2003101090A/en
Publication of JP2003101090A publication Critical patent/JP2003101090A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To separate a superconducting junction using a simple means with uniform inductance distribution, regardless of the position deviation of the upper superconducting electrode. SOLUTION: A lower superconducting electrode 2 is made of an oxide superconductor on a base substrate 1, and an interlayer insulating film 3 is formed on the lower superconducting electrode 2; and the interlayer insulating film 3 and the lower superconducting electrode 2 are processed in a base shape of a lamp edge structure and an upper superconducting electrode 5 is formed to form a superconducting junction 6, at a part where it comes into contact with the lower superconducting electrode 2. The upper superconducting electrode 5 is processed into a linear shape extending beyond the base-shaped lower superconducting electrode 2 and interlayer insulating film 3 and the linear upper superconducting electrode 5 reaching the top surface of the base-shaped interlayer insulating film 3 is polished away to separate the superconducting junction 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、通信、コンピュー
タ、計測などの分野で用いられつつある超伝導回路を高
集積化するのに好適な高集積超伝導回路の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly integrated superconducting circuit manufacturing method suitable for highly integrating a superconducting circuit which is being used in fields such as communication, computers, and measurement.

【0002】[0002]

【従来の技術】現在、通信用ルーター、サーバー、AD
変換器、磁束計(SQUID)、サンプラーなどに超伝
導回路が用いられつつある。
2. Description of the Related Art Currently, communication routers, servers, AD
Superconducting circuits are being used in converters, magnetometers (SQUIDs), samplers, and the like.

【0003】この超伝導回路を構成するのに酸化物超伝
導接合が多用されているが、その超伝導接合の種類の一
つにランプエッジ接合が知られている。
Oxide superconducting junctions are often used to form this superconducting circuit, and ramp edge junction is known as one of the types of the superconducting junctions.

【0004】図10乃至図12は従来の酸化物超伝導回
路を製造する工程を説明する為の工程要所に於ける酸化
物超伝導回路の要部切断側面図及び要部切断平面図(図
12のみ)であり、以下、これ等の図を参照しつつ説明
する。
10 to 12 are side views and a plan view of a main part of an oxide superconducting circuit at a process step for explaining a conventional process for manufacturing an oxide superconducting circuit (FIG. 12 only), and will be described below with reference to these figures.

【0005】図10(A)参照 (1)支持基板1に下部超伝導電極2を形成する。See FIG. 10 (A). (1) The lower superconducting electrode 2 is formed on the supporting substrate 1.

【0006】図10(B)参照 (2)下部超伝導電極2上に層間絶縁膜3を形成する。See FIG. 10B. (2) The interlayer insulating film 3 is formed on the lower superconducting electrode 2.

【0007】図10(C)参照 (3)レジスト膜4をマスクとして層間絶縁膜3の斜め
回転ミリングを行って層間絶縁膜3を塁状にする。
Referring to FIG. 10C, (3) the interlayer insulating film 3 is obliquely milled by using the resist film 4 as a mask to form the interlayer insulating film 3 in a base shape.

【0008】図11(A)参照 (4)レジスト膜4を除去してから層間絶縁膜3及び下
部超伝導電極2の斜め回転ミリングを行って下部超伝導
電極2も塁状にする。
Referring to FIG. 11 (A) (4) After removing the resist film 4, the interlayer insulating film 3 and the lower superconducting electrode 2 are obliquely milled to make the lower superconducting electrode 2 in a base shape.

【0009】図11(B)参照 (5)全面に上部超伝導電極5を形成する。このように
すると、上部超伝導電極5は台形状をなす下部超伝導電
極2の斜面で接触して超伝導接合6を生成し、ここにラ
ンプ・エッジ接合が実現される。
Referring to FIG. 11B, (5) the upper superconducting electrode 5 is formed on the entire surface. In this way, the upper superconducting electrode 5 comes into contact with the trapezoidal lower superconducting electrode 2 on the inclined surface to form the superconducting junction 6, where the ramp-edge junction is realized.

【0010】図11(C)及び図12参照 (6)上部超伝導電極5のパターニングを行う。この場
合の上部超伝導電極5のパターンは図12で明らかであ
るが、ストライプをなしている。
11C and 12 (6) The upper superconducting electrode 5 is patterned. Although the pattern of the upper superconducting electrode 5 in this case is clear in FIG. 12, it has a stripe shape.

【0011】前記したように、超伝導接合6が二つ以上
連続するような構造の場合、図示されているように、下
部超伝導電極2は塁状形にして用いることが多く、ま
た、超伝導接合6の分離は上部超伝導電極5のパターニ
ングと同時に実施している。
As described above, in the case of a structure in which two or more superconducting junctions 6 are continuous, the lower superconducting electrode 2 is often used in the form of a base as shown in the drawing. The separation of the conductive junction 6 is carried out at the same time as the patterning of the upper superconducting electrode 5.

【0012】上部超伝導電極5をパターニングする場
合、フォト・リソグラフィ技術を適用することで実施し
ているので、光露光に依るレジスト層のパターニングを
行う場合のマスク合わせマージンを考慮し、上部超伝導
電極5の端部は超伝導接合6を遙に越えて層間絶縁膜3
の頂面上にまで延在した状態にパターニングされる。
Since patterning of the upper superconducting electrode 5 is carried out by applying a photolithography technique, the upper superconducting layer is considered in consideration of the mask alignment margin when patterning the resist layer by light exposure. The end of the electrode 5 far exceeds the superconducting junction 6 and the interlayer insulating film 3
Is patterned so as to extend to the top surface of the.

【0013】その結果、図11(C)と図12から明ら
かなように、上部超伝導電極5の端部がマスク合わせマ
ージンの為に延在しなければならない部分が2〔μ
m〕、従って、左右両端で4〔μm〕が必要であって、
その分、塁状の層間絶縁膜3及び下部超伝導電極2は大
きくなり、同じく、左右両端で8〔μm〕になってい
る。
As a result, as is apparent from FIGS. 11C and 12, the end portion of the upper superconducting electrode 5 has to extend for a mask alignment margin of 2 [μ].
m], therefore, 4 [μm] is required at the left and right ends,
Correspondingly, the base-shaped interlayer insulating film 3 and the lower superconducting electrode 2 are increased in size, and are also 8 [μm] at both left and right ends.

【0014】従って、ランプエッジ接合構造をもつ酸化
物超伝導回路では集積度を向上させることが困難であ
り、また、回路全体のインダクタンス低減も困難であ
り、更にまた、上部超伝導電極5の前記延在部分のばら
つきの為、隣合う接合のインダクタンスにもばらつきが
生じ、回路動作を困難にする原因になっている。
Therefore, it is difficult to improve the degree of integration in the oxide superconducting circuit having the ramp edge junction structure, and it is also difficult to reduce the inductance of the entire circuit. Due to the variation of the extending portion, the inductance of the adjacent junction also varies, which makes the circuit operation difficult.

【0015】[0015]

【発明が解決しようとする課題】本発明では、上部超伝
導電極の位置合わせずれとは関係なく、均一なインダク
タンス配分で超伝導接合を分離することを極めて簡単な
手段で実現できるようにする。
SUMMARY OF THE INVENTION In the present invention, it is possible to realize separation of a superconducting junction with a uniform inductance distribution by a very simple means regardless of misalignment of the upper superconducting electrode.

【0016】[0016]

【課題を解決するための手段】本発明に依る高集積超伝
導回路の製造方法に於いては、上部超伝導電極のパター
ニングは、単にライン状に加工するに止め、超伝導接合
の分離は、その後に実施する研磨に依って行うことが基
本になっている。
In the method of manufacturing a highly integrated superconducting circuit according to the present invention, the patterning of the upper superconducting electrode is stopped by simply processing it into a line, and the superconducting junction is separated. It is basically performed by polishing performed thereafter.

【0017】前記手段を採ることに依り、上部超伝導電
極をパターニングする際のマスク合わせマージンは不要
であり、しかも、均一なインダクタンス配分で超伝導接
合の分離を行うことができるので、下部超伝導電極の塁
状構造を縮小化することが可能となって回路全体の集積
度は向上し、又、インダクタンスの低減が可能となるの
で高速動作性及び実用性に優れた高集積超伝導回路を実
現することができる。
By adopting the above means, no mask alignment margin is required when patterning the upper superconducting electrode, and the superconducting junction can be separated with a uniform inductance distribution. It is possible to downsize the base structure of the electrodes and improve the degree of integration of the entire circuit. Also, because it is possible to reduce the inductance, a highly integrated superconducting circuit with excellent high-speed operability and practicality is realized. can do.

【0018】[0018]

【発明の実施の形態】図1乃至図4は本発明の原理的な
実施の形態を説明する為の工程要所に於ける超伝導回路
を表す要部切断側面図及び要部切断平面図(図3(B)
と図4(B)のみ)である。以下、これ等の図を参照し
つつ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIGS. 1 to 4 are side views and a plan view of a main section showing a superconducting circuit in a process step for explaining a principle embodiment of the present invention ( Figure 3 (B)
And FIG. 4B only). Hereinafter, description will be given with reference to these drawings.

【0019】図1(A)参照 (1)支持基板1に下部超伝導電極2を形成する。See FIG. 1A. (1) The lower superconducting electrode 2 is formed on the supporting substrate 1.

【0020】図1(B)参照 (2)下部超伝導電極2上に層間絶縁膜3を形成する。See FIG. 1 (B) (2) The interlayer insulating film 3 is formed on the lower superconducting electrode 2.

【0021】図1(C)参照 (3)レジスト膜4をマスクとして層間絶縁膜3の斜め
回転ミリングを行って層間絶縁膜3を塁状にする。
Referring to FIG. 1C, (3) the interlayer insulating film 3 is obliquely milled by using the resist film 4 as a mask to form the interlayer insulating film 3 in a base shape.

【0022】図2(A)参照 (4)レジスト膜4を除去してから層間絶縁膜3及び下
部超伝導電極2の斜め回転ミリングを行って下部超伝導
電極2も塁状にする。
Referring to FIG. 2 (A) (4) After removing the resist film 4, the interlayer insulating film 3 and the lower superconducting electrode 2 are obliquely milled to make the lower superconducting electrode 2 in a base shape.

【0023】図2(B)参照 (5)全面に上部超伝導電極5を形成する。これに依っ
て、上部超伝導電極5は台形状をなす下部超伝導電極2
の斜面と接触して超伝導接合6を生成し、ここにランプ
・エッジ接合が実現される。
Referring to FIG. 2B (5), the upper superconducting electrode 5 is formed on the entire surface. Accordingly, the upper superconducting electrode 5 is trapezoidal in shape.
To form a superconducting junction 6 where the ramp edge junction is realized.

【0024】図3(A)及び(B)参照 (6)上部超伝導電極5のパターニングを行う。この場
合の上部超伝導電極5のパターンは、図3(B)に明ら
かであるが、1本の連続したストライプをなしているの
で、この段階では、超伝導接合6の分離は行われていな
い。
3A and 3B (6) The upper superconducting electrode 5 is patterned. The pattern of the upper superconducting electrode 5 in this case is clear in FIG. 3B, but since it forms one continuous stripe, the superconducting junction 6 is not separated at this stage. .

【0025】図4(A)及び(B)参照 (7)台形の層間絶縁膜3上に在る上部超伝導電極5の
研磨を行って、その下地になっている層間絶縁膜3の部
分を表出させる。
4 (A) and 4 (B) (7) The upper superconducting electrode 5 on the trapezoidal interlayer insulating film 3 is polished to remove the underlying interlayer insulating film 3 portion. Show it up.

【0026】このようにすることで、超伝導接合6は分
離され、そして、この場合、上部超伝導電極5の延在方
向に沿う層間絶縁膜3の頂面の幅は2〔μm〕程度であ
り、また、同方向の下部超伝導電極2に於ける頂面の幅
は2.7〔μm〕程度である。
By doing so, the superconducting junction 6 is separated, and in this case, the width of the top surface of the interlayer insulating film 3 along the extending direction of the upper superconducting electrode 5 is about 2 [μm]. In addition, the width of the top surface of the lower superconducting electrode 2 in the same direction is about 2.7 [μm].

【0027】図5乃至図8は本発明に於ける具体的な実
施例1を説明する為の工程要所に於ける超伝導回路を表
す要部切断側面図及び要部平面図(図7(B)と図8
(B)のみ)であり、以下、これ等の図を参照しつつ説
明する。
FIGS. 5 to 8 are sectional side views and a plan view of a main part showing a superconducting circuit in a process main part for explaining a specific embodiment 1 of the present invention (see FIG. B) and FIG.
(B) only), and will be described below with reference to these drawings.

【0028】図5(A)及び(B)参照 (1)レジスト・プロセスとイオン・ミリング法を適用
することに依り、LSAT(LaSrAlTaOx )か
らなる支持基板11に深さを500〔nm〕のグランド
・プレーン形成用凹所を形成する。
See FIGS. 5A and 5B. (1) By applying the resist process and the ion milling method, the depth of the support substrate 11 made of LSAT (LaSrAlTaO x ) is 500 nm. Form a recess for forming the ground plane.

【0029】(2)レーザ・アブレーション法を適用す
ることに依り、グランド・プレーン形成用凹所を含めた
支持基板11上にグランド・プレーン形成用凹所が充分
に埋まる程度の厚さのYBCO(YBa2 Cu
3 7-x )からなるグランド・プレーン層12を形成す
る。
(2) By applying the laser ablation method, YBCO (thickness enough to completely fill the recess for forming the ground plane on the supporting substrate 11 including the recess for forming the ground plane) YBa 2 Cu
A ground plane layer 12 of 3 O 7-x ) is formed.

【0030】(3)レジスト・プロセスを適用すること
に依り、グランド・プレーン形成用凹所を埋めたグラン
ド・プレーン層12上及び支持基板11の平坦面に在る
グランド・プレーン層12上にも僅かに掛かる程度にレ
ジスト膜を形成する。
(3) By applying the resist process, also on the ground plane layer 12 that fills the recess for forming the ground plane and on the ground plane layer 12 on the flat surface of the support substrate 11. The resist film is formed so that it is slightly covered.

【0031】レジスト膜のパターンを上記のようにする
ことで、次の工程でグランド・プレーン層12をウエッ
ト・エッチングする際、サイドからのエッチングに依る
グランド・プレーン部分への侵食を防止することができ
る。
By setting the pattern of the resist film as described above, when the ground plane layer 12 is wet-etched in the next step, it is possible to prevent the ground plane portion from being eroded by the etching from the side. it can.

【0032】(4)1/1000に希釈したHClをエ
ッチャントとするウエット・エッチング法を適用するこ
とに依り、前記レジスト膜をマスクとしてグランド・プ
レーン層12のエッチングを行う。
(4) The ground plane layer 12 is etched using the resist film as a mask by applying a wet etching method using HCl diluted to 1/1000 as an etchant.

【0033】この工程に依り、支持基板11の平坦面上
に在るグランド・プレーン層12は殆ど除去されるので
あるが、グランド・プレーン形成用凹所の縁辺近傍には
前記したレジスト膜パターンの関係で一部が突起状に残
留する。
By this step, the ground plane layer 12 on the flat surface of the support substrate 11 is almost removed, but the resist film pattern described above is formed near the edge of the recess for forming the ground plane. Due to the relationship, a part remains as a protrusion.

【0034】(5)径が0.03〔μm〕以下のアルミ
ナを用いて表面を研磨することで平坦化する。尚、この
研磨に依って前記グランド・プレーン層12の突起が除
去されてしまうことは云うまでもない。
(5) The surface is polished by using alumina having a diameter of 0.03 [μm] or less to flatten the surface. Needless to say, the protrusion of the ground plane layer 12 is removed by this polishing.

【0035】(6)レーザ・アブレーション法を適用す
ることに依り、厚さ200〔nm〕のLSATからなる
層間絶縁層13を形成し、引き続き、厚さ200〔n
m〕のYBCOからなる下部超伝導電極14を形成し、
更に、厚さ400〔nm〕のLSATからなる層間絶縁
膜15を形成する。
(6) By applying the laser ablation method, the interlayer insulating layer 13 made of LSAT having a thickness of 200 nm is formed, and then the thickness of 200 nm is applied.
m], the lower superconducting electrode 14 made of YBCO is formed,
Further, the interlayer insulating film 15 made of LSAT and having a thickness of 400 nm is formed.

【0036】図6(A)参照 (7)リソグラフィ技術に於けるレジスト・プロセスを
適用することに依り、層間絶縁膜15を塁状に加工する
為のレジスト膜16を形成する。尚、レジストにはOM
R−83(商品名 東京応化製)を使用した。
Referring to FIG. 6 (A) (7), by applying a resist process in the lithography technique, a resist film 16 for forming the base insulating film 15 into a base is formed. The resist is OM
R-83 (trade name, manufactured by Tokyo Ohka) was used.

【0037】(8)30度斜め方向からのArイオンを
用いるイオン・ミリング法を適用することに依り、回転
ミリングを行って層間絶縁膜15を截頭角錐型の塁状に
加工する。
(8) By applying an ion milling method using Ar ions from a 30 ° oblique direction, rotational milling is performed to process the interlayer insulating film 15 into a truncated pyramid-shaped base.

【0038】図6(B)参照 (9)レジスト膜16を除去してから、再び、30度斜
め方向からのAr及び酸素混合ガスからなるイオンを用
いるイオン・ミリング法を適用することに依り、塁状の
層間絶縁膜15をマスクに回転ミリングを行って下部超
伝導電極14を塁状に加工する。
Referring to FIG. 6B, (9) by removing the resist film 16 and then again applying an ion milling method using ions of Ar and oxygen mixed gas from an oblique direction of 30 degrees, The lower superconducting electrode 14 is processed into a base shape by performing rotary milling using the base-shaped interlayer insulating film 15 as a mask.

【0039】この工程を経ることで、下部超伝導電極1
4はランプ構造となって、その表面には、薄い改質バリ
ヤ層が生成される。
Through this process, the lower superconducting electrode 1
4 has a lamp structure, and a thin modified barrier layer is formed on the surface thereof.

【0040】図7(A)参照 (10)レーザ・アブレーション法を適用することに依
り、厚さ200〔nm〕のYBCOからなる上部超伝導
電極17を形成する。
Referring to FIG. 7A (10), by applying the laser ablation method, the upper superconducting electrode 17 made of YBCO having a thickness of 200 nm is formed.

【0041】ここで、下部超伝導電極14並びに上部超
伝導電極17は、下部超伝導電極14に於けるランプ構
造表面に於いて、薄い改質バリヤ層を介して接触し、超
伝導接合18を生成する。
Here, the lower superconducting electrode 14 and the upper superconducting electrode 17 are in contact with each other on the surface of the lamp structure of the lower superconducting electrode 14 through the thin modified barrier layer, and the superconducting junction 18 is formed. To generate.

【0042】図7(B)参照 (11)リソグラフィ技術に於けるレジスト・プロセ
ス、及び、Arイオンを用いるイオン・ミリング法を適
用することに依り、YBCOからなる上部超伝導電極1
7を幅2〔μm〕のライン状にパターニングする。
See FIG. 7B. (11) By applying the resist process in the lithography technique and the ion milling method using Ar ions, the upper superconducting electrode 1 made of YBCO is formed.
7 is patterned into a line shape having a width of 2 [μm].

【0043】図8(A)及び(B)参照 (12)研磨法を適用することに依り、塁状の層間絶縁
膜15上に在るライン状の上部超伝導電極17のみを除
去し、超伝導接合18の分離を行う。
8 (A) and 8 (B) (12) By applying the polishing method, only the line-shaped upper superconducting electrode 17 on the base-shaped interlayer insulating film 15 is removed, and The conductive junction 18 is separated.

【0044】このようにして作製した超伝導回路に於い
て、塁状の層間絶縁膜15頂面の上部超伝導電極17延
在方向の幅は2〔μm〕程度である。
In the superconducting circuit thus manufactured, the width of the top surface of the base-shaped interlayer insulating film 15 in the extending direction of the upper superconducting electrode 17 is about 2 [μm].

【0045】ところで、前記実施例1の工程(12)に
於いて、ライン状の上部超伝導電極17を研磨し、超伝
導接合18の分離を行っているのであるが、その際、超
伝導接合18がダメージを受け易いことが知られてい
る。
By the way, in the step (12) of the first embodiment, the line-shaped upper superconducting electrode 17 is polished and the superconducting junction 18 is separated. It is known that 18 is susceptible to damage.

【0046】図9は本発明に於ける具体的な実施例2を
説明する為の工程要所に於ける超伝導回路を表す要部切
断側面図であり、以下、図を参照しつつ説明する。尚、
図5乃至図8に於いて用いた記号と同記号は同部分を表
すか或いは同じ意味を持つものとする。
FIG. 9 is a cutaway side view of a main part showing a superconducting circuit in a process step for explaining a specific second embodiment of the present invention, which will be described below with reference to the drawings. . still,
The same symbols as those used in FIGS. 5 to 8 represent the same parts or have the same meanings.

【0047】図9(A)参照 (1)超伝導回路は、実施例1の工程(1)乃至工程
(11)と全く同じ工程を経て、支持基板1上に塁状の
下部超伝導電極14及び層間絶縁膜15、ライン状の上
部超伝導電極17が形成された状態にある。
Referring to FIG. 9A, the superconducting circuit (1) is the same as the steps (1) to (11) of the first embodiment, and the base-shaped lower superconducting electrode 14 is formed on the supporting substrate 1. And the interlayer insulating film 15 and the line-shaped upper superconducting electrode 17 are formed.

【0048】スピン・コート法を適用することに依り、
レジスト(例えばOMR−83:商品名 東京応化製)
を塗布して保護膜19を形成する。
By applying the spin coat method,
Resist (for example, OMR-83: trade name manufactured by Tokyo Ohka)
Is applied to form a protective film 19.

【0049】図9(B)参照 (2)実施例1の工程(12)と同様にして、塁状の層
間絶縁膜15上に在るライン状の上部超伝導電極17及
び保護膜19のみを除去し、超伝導接合18の分離を行
う。
Referring to FIG. 9B, (2) In the same manner as in step (12) of Example 1, only the line-shaped upper superconducting electrode 17 and the protective film 19 on the base-shaped interlayer insulating film 15 are removed. Then, the superconducting junction 18 is separated.

【0050】(3)この後、レジスト剥離液中に浸漬
し、残っている保護膜19を除去すれば、実施例1に依
って完成された超伝導回路と同じ構造のものが得られ、
また、その超伝導回路では、超伝導接合18は研磨に依
るダメージがなく、良好な状態を維持している。
(3) After that, by immersing in the resist stripping solution and removing the remaining protective film 19, a structure having the same structure as the superconducting circuit completed according to Example 1 is obtained.
Further, in the superconducting circuit, the superconducting junction 18 is maintained in a good state without being damaged by polishing.

【0051】前記実施例1及び2では、超伝導電極材料
や層間絶縁膜材料をレーザ・アブレーション法を適用し
て成膜しているが、これは他の成膜法、例えばスパッタ
リング法などに代替することができる。
In the first and second embodiments, the superconducting electrode material and the interlayer insulating film material are formed by applying the laser ablation method, but this is replaced by another film forming method such as sputtering method. can do.

【0052】超伝導電極材料として、YBCOの他、例
えばNdBaCuOを用いることができ、また、層間絶
縁膜材料として、LSATの他、例えばMgOやセリア
などを用いることができ、更にまた、実施例2に於ける
保護膜としてレジストの他、保護膜として作用すると共
にYBCOにダメージを与えることなく除去できるもの
であれば適宜に選択することができる。
In addition to YBCO, for example, NdBaCuO can be used as the superconducting electrode material, and as the interlayer insulating film material, for example, MgO or ceria can be used in addition to LSAT. In addition to the resist as the protective film in the above, it can be appropriately selected as long as it acts as a protective film and can be removed without damaging the YBCO.

【0053】[0053]

【発明の効果】本発明に依る高集積超伝導回路の作製方
法に於いては、支持基板上に酸化物超伝導体からなる下
部超伝導電極を形成し、下部超伝導電極上に層間絶縁膜
を形成し、層間絶縁膜及び下部超伝導電極をランプ・エ
ッジ構造の塁状に加工し、酸化物超伝導体からなる上部
超伝導電極を形成して下部超伝導電極との接触部分に超
伝導接合を生成させ、上部超伝導電極を塁状の下部超伝
導電極及び層間絶縁膜を跨いで延在するライン状に加工
し、塁状層間絶縁膜の頂面に在るライン状の上部超伝導
電極を研磨除去して超伝導接合を分離する。
According to the method of manufacturing a highly integrated superconducting circuit according to the present invention, a lower superconducting electrode made of an oxide superconductor is formed on a supporting substrate, and an interlayer insulating film is formed on the lower superconducting electrode. Process, the interlayer insulating film and the lower superconducting electrode are processed into a ramp-shaped base structure, and the upper superconducting electrode made of an oxide superconductor is formed. A junction is formed, and the upper superconducting electrode is processed into a line shape extending over the base-shaped lower superconducting electrode and the interlayer insulating film, and the line-shaped upper superconducting layer on the top surface of the base-shaped interlayer insulating film is processed. The electrodes are polished off to separate the superconducting junction.

【0054】前記構成を採ることに依り、上部超伝導電
極をパターニングする際のマスク合わせマージンは不要
であり、しかも、均一なインダクタンス配分で超伝導接
合の分離を行うことができるので、下部超伝導電極の塁
状構造を縮小化することが可能となって回路全体の集積
度は向上し、又、インダクタンスの低減が可能となるの
で高速動作性及び実用性に優れた高集積超伝導回路を実
現することができる。
By adopting the above-mentioned structure, no mask alignment margin is required when patterning the upper superconducting electrode, and the superconducting junction can be separated with a uniform inductance distribution. It is possible to downsize the base structure of the electrodes and improve the degree of integration of the entire circuit. Also, because it is possible to reduce the inductance, a highly integrated superconducting circuit with excellent high-speed operability and practicality is realized. can do.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の原理的な実施の形態を説明する為の工
程要所に於ける超伝導回路を表す要部切断側面図であ
る。
FIG. 1 is a cutaway side view of a main part showing a superconducting circuit in a process key point for explaining a principle embodiment of the present invention.

【図2】本発明の原理的な実施の形態を説明する為の工
程要所に於ける超伝導回路を表す要部切断側面図であ
る。
FIG. 2 is a side sectional view showing an essential part of a superconducting circuit in a process key part for explaining a principle embodiment of the present invention.

【図3】本発明の原理的な実施の形態を説明する為の工
程要所に於ける超伝導回路を表す要部切断説明図であ
る。
FIG. 3 is a fragmentary explanatory view showing a superconducting circuit in a process key point for explaining a principle embodiment of the present invention.

【図4】本発明の原理的な実施の形態を説明する為の工
程要所に於ける超伝導回路を表す要部切断説明図であ
る。
FIG. 4 is a fragmentary explanatory view showing a superconducting circuit in a process key point for explaining a principle embodiment of the present invention.

【図5】本発明に於ける具体的な実施例1を説明する為
の工程要所に於ける超伝導回路を表す要部切断側面図で
ある。
FIG. 5 is a cutaway side view of a main part showing a superconducting circuit in a process key point for explaining a specific example 1 of the present invention.

【図6】本発明に於ける具体的な実施例1を説明する為
の工程要所に於ける超伝導回路を表す要部切断側面図で
ある。
FIG. 6 is a side sectional view showing an essential part of a superconducting circuit in a process step for explaining a specific example 1 of the present invention.

【図7】本発明に於ける具体的な実施例1を説明する為
の工程要所に於ける超伝導回路を表す要部切断説明図で
ある。
FIG. 7 is a fragmentary explanatory view showing a superconducting circuit in a process key point for explaining a specific example 1 of the present invention.

【図8】本発明に於ける具体的な実施例1を説明する為
の工程要所に於ける超伝導回路を表す要部切断説明図で
ある。
FIG. 8 is a fragmentary explanatory view showing a superconducting circuit in a process key point for explaining a specific example 1 of the present invention.

【図9】本発明に於ける具体的な実施例2を説明する為
の工程要所に於ける超伝導回路を表す要部切断側面図で
ある。
FIG. 9 is a side sectional view showing a main part of a superconducting circuit in a process main part for explaining a second specific example of the present invention.

【図10】従来の酸化物超伝導回路を製造する工程を説
明する為の工程要所に於ける酸化物超伝導回路の要部切
断側面図である。
FIG. 10 is a side sectional view of a main part of an oxide superconducting circuit at a process step for explaining a conventional process for manufacturing an oxide superconducting circuit.

【図11】従来の酸化物超伝導回路を製造する工程を説
明する為の工程要所に於ける酸化物超伝導回路の要部切
断側面図である。
FIG. 11 is a side sectional view of a main part of an oxide superconducting circuit at a process step for explaining a process of manufacturing a conventional oxide superconducting circuit.

【図12】従来の酸化物超伝導回路を製造する工程を説
明する為の工程要所に於ける酸化物超伝導回路の要部切
断平面図である。
FIG. 12 is a plan view of a main part of an oxide superconducting circuit at a process step for explaining a process of manufacturing a conventional oxide superconducting circuit.

【符号の説明】[Explanation of symbols]

1 支持基板 2 下部超伝導電極 3 層間絶縁膜 4 レジスト膜 5 上部超伝導電極 6 超伝導接合 1 Support substrate 2 Lower superconducting electrode 3 Interlayer insulation film 4 Resist film 5 Upper superconducting electrode 6 Superconducting junction

───────────────────────────────────────────────────── フロントページの続き (72)発明者 波頭 経裕 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 (72)発明者 吉田 晃 神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内 Fターム(参考) 4M113 AA06 AA16 AA25 AA37 AD36 AD42 AD67 AD68 BA01 BA04 BB07 BC04 BC05 BC08 BC22 CA34    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Nobuhiro Hazu             4-1, Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 1 within Fujitsu Limited (72) Inventor Akira Yoshida             4-1, Kamiodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa             No. 1 within Fujitsu Limited F term (reference) 4M113 AA06 AA16 AA25 AA37 AD36                       AD42 AD67 AD68 BA01 BA04                       BB07 BC04 BC05 BC08 BC22                       CA34

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】支持基板上に酸化物超伝導体からなる下部
超伝導電極を形成する工程と、 次いで、該下部超伝導電極上に層間絶縁膜を形成する工
程と、 次いで、該層間絶縁膜及び下地の下部超伝導電極をラン
プ・エッジ構造の塁状に加工する工程と、 次いで、酸化物超伝導体からなる上部超伝導電極を形成
して該下部超伝導電極との接触部分に超伝導接合を生成
させる工程と、 次いで、該上部超伝導電極を該塁状の下部超伝導電極及
び層間絶縁膜を跨いで延在するライン状に加工する工程
と、 次いで、該塁状層間絶縁膜の頂面に在る該ライン状の上
部超伝導電極を研磨除去して該超伝導接合を分離する工
程とが含まれてなることを特徴とする高集積超伝導回路
の製造方法。
1. A step of forming a lower superconducting electrode made of an oxide superconductor on a supporting substrate, a step of forming an interlayer insulating film on the lower superconducting electrode, and a step of forming the interlayer insulating film. And a step of processing the underlying lower superconducting electrode into a ramp-shaped base structure, and then forming an upper superconducting electrode made of an oxide superconductor and superconducting at a contact portion with the lower superconducting electrode. A step of forming a bond, a step of processing the upper superconducting electrode into a line shape extending across the base-shaped lower superconducting electrode and the interlayer insulating film, and then a step of forming the base-shaped interlayer insulating film. And a step of polishing and removing the line-shaped upper superconducting electrode present on the top surface to separate the superconducting junction.
【請求項2】該上部超伝導電極をライン状に加工した
後、全面に保護膜を形成してから塁状層間絶縁膜の頂面
に在る該ライン状の上部超伝導電極を研磨除去して該超
伝導接合を分離する工程とが含まれてなることを特徴と
する請求項1記載の高集積超伝導回路の製造方法。
2. After the upper superconducting electrode is processed into a line shape, a protective film is formed on the entire surface, and then the line-shaped upper superconducting electrode on the top surface of the base-shaped interlayer insulating film is removed by polishing. 2. The method for manufacturing a highly integrated superconducting circuit according to claim 1, further comprising a step of separating the superconducting junction.
JP2001286597A 2001-09-20 2001-09-20 Manufacturing method for high integrated superconducting circuit Pending JP2003101090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286597A JP2003101090A (en) 2001-09-20 2001-09-20 Manufacturing method for high integrated superconducting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286597A JP2003101090A (en) 2001-09-20 2001-09-20 Manufacturing method for high integrated superconducting circuit

Publications (1)

Publication Number Publication Date
JP2003101090A true JP2003101090A (en) 2003-04-04

Family

ID=19109546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286597A Pending JP2003101090A (en) 2001-09-20 2001-09-20 Manufacturing method for high integrated superconducting circuit

Country Status (1)

Country Link
JP (1) JP2003101090A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060783A (en) * 1983-09-14 1985-04-08 Nec Corp Manufacture of superconducting circuit device
JPS6486575A (en) * 1987-06-17 1989-03-31 Hitachi Ltd Superconducting device
JPH10150229A (en) * 1996-11-20 1998-06-02 Nec Corp Superconductive circuit
JPH10150228A (en) * 1996-11-20 1998-06-02 Nec Corp Superconductive circuit and its manufacture
JPH10308539A (en) * 1997-05-09 1998-11-17 Toshiba Corp Superconducting integrated circuit and manufacture of superconducting integrated circuit
JP2000091652A (en) * 1998-09-11 2000-03-31 Fujitsu Ltd Superconducting element and manufacture thereof
JP2000277820A (en) * 1999-03-26 2000-10-06 Fujitsu Ltd Superconducting junction element and its manufacture
JP2000357823A (en) * 1999-06-17 2000-12-26 Hitachi Ltd Superconducting circuit
JP2001244511A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Method of manufacturing josephson device having ramp edge structure and film-forming device
JP2001257392A (en) * 2000-03-13 2001-09-21 Toshiba Corp Superconducting element and producing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060783A (en) * 1983-09-14 1985-04-08 Nec Corp Manufacture of superconducting circuit device
JPS6486575A (en) * 1987-06-17 1989-03-31 Hitachi Ltd Superconducting device
JPH10150229A (en) * 1996-11-20 1998-06-02 Nec Corp Superconductive circuit
JPH10150228A (en) * 1996-11-20 1998-06-02 Nec Corp Superconductive circuit and its manufacture
JPH10308539A (en) * 1997-05-09 1998-11-17 Toshiba Corp Superconducting integrated circuit and manufacture of superconducting integrated circuit
JP2000091652A (en) * 1998-09-11 2000-03-31 Fujitsu Ltd Superconducting element and manufacture thereof
JP2000277820A (en) * 1999-03-26 2000-10-06 Fujitsu Ltd Superconducting junction element and its manufacture
JP2000357823A (en) * 1999-06-17 2000-12-26 Hitachi Ltd Superconducting circuit
JP2001244511A (en) * 2000-02-28 2001-09-07 Hitachi Ltd Method of manufacturing josephson device having ramp edge structure and film-forming device
JP2001257392A (en) * 2000-03-13 2001-09-21 Toshiba Corp Superconducting element and producing method therefor

Similar Documents

Publication Publication Date Title
US10283694B2 (en) Method for increasing the integration level of superconducting electronics circuits, and a resulting circuit
US4560436A (en) Process for etching tapered polyimide vias
US20210288241A1 (en) Under-Cut Via Electrode for Sub 60nm Etchless MRAM Devices by Decoupling the Via Etch Process
US4499119A (en) Method of manufacturing super-conductive tunnel junction devices with precise junction area control
JP2005039244A (en) Electronic device and method of forming multilayer wiring
JP2003101090A (en) Manufacturing method for high integrated superconducting circuit
KR20030032877A (en) Magnetic memory and method of its manufacture
JPS6146081A (en) Manufacture of josephson junction element
KR950006343B1 (en) Fabricating method of semiconductor device
JP4843772B2 (en) Method for manufacturing superconducting circuit device
JP2003324221A (en) Superconducting circuit
JP2003224310A (en) Superconductive junction
JP2003086851A (en) Low-inductance superconducting junction and its manufacturing method
JP2994304B2 (en) Superconducting integrated circuit and method of manufacturing superconducting integrated circuit
JPS6260241A (en) Manufacture of multilayer interconnection structure
KR100217953B1 (en) Manufacture of strip-type emitter of fed
JP2827256B2 (en) Etchback flattening method
JPH08335725A (en) Contact structure of superconductive layers and its manufacture
JP2003023067A (en) Formation method for via metal layer and via metal layer formed substrate
JPS61183943A (en) Electrode wiring method
JPH0374515B2 (en)
JP2004103795A (en) Method of manufacturing superconducting elements
JPS6273682A (en) Formation of josephson-contact
JP2003198007A (en) Method of forming tunnel junction and tunnel junction device
JPH1126429A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306