JPS6059769A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6059769A JPS6059769A JP58168691A JP16869183A JPS6059769A JP S6059769 A JPS6059769 A JP S6059769A JP 58168691 A JP58168691 A JP 58168691A JP 16869183 A JP16869183 A JP 16869183A JP S6059769 A JPS6059769 A JP S6059769A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- well
- substrate
- type
- regions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 229910052710 silicon Inorganic materials 0.000 abstract description 18
- 239000010703 silicon Substances 0.000 abstract description 18
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 17
- 230000015556 catabolic process Effects 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 18
- 238000009792 diffusion process Methods 0.000 description 10
- 239000012535 impurity Substances 0.000 description 7
- 230000000295 complement effect Effects 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000011229 interlayer Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/0203—Particular design considerations for integrated circuits
- H01L27/0248—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
- H01L27/0251—Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は半導体装置に関し、特に入力保護装置を備え冬
相補型MO8半導体装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a semiconductor device, and more particularly to a winter complementary MO8 semiconductor device equipped with an input protection device.
相補型MO8半導体装置の入力保護装置としては一導電
型半導体基板とソース・ドレインあるいはウェルのよう
な逆導電型の不純物拡散層とのプレイ、クダウン電圧を
保護電圧として利用するものがよく知られている。A well-known input protection device for a complementary MO8 semiconductor device is one that uses a semiconductor substrate of one conductivity type and an impurity diffusion layer of an opposite conductivity type such as a source/drain or a well, and uses a down voltage as a protection voltage. There is.
しかしこの構造では、保護耐圧が各導電型の不純物濃度
できまp、それより低い保護耐圧を得るには不純物濃度
を濃くする必要があった。そのためには、その濃い層を
形成するための工程がふえるか、あるいは、ソース、ド
レインあるいはウェルを利用しているような場合シ濃度
を濃くすることにより、周辺トランジスタの容景がふえ
高速化が妨げられるという欠点があった。However, in this structure, the protection voltage cannot be determined by the impurity concentration of each conductivity type, and in order to obtain a lower protection voltage, it is necessary to increase the impurity concentration. To achieve this, the number of steps required to form the dense layer must be increased, or if the source, drain, or well is used, the density can be increased, which increases the appearance of peripheral transistors and increases speed. It had the disadvantage of being blocked.
第1図および第2図は従来の相補型MO8半導体装置の
入力保護装置の断面図である。第1図に示す入力保護装
置はp型シリコン基板1上にnチャンネルトランジスタ
のソース・ドレイン形成時のn+拡散層2を設けそのブ
レークダウン電圧を利用したものであり、第2図に示す
入力保護装置はp型シリコン基板l上にnウェル3を形
成したときのnウェル層とのブレークダウン電圧を利用
したものである。これらの入力保護装置の保護電圧はp
型シリコン基板、n+拡散層、nウェル層の各層Jσで
決するため、これより低い保護電圧を?またい場合は各
不純物層j9−のいずれかをC”、!!くする必要があ
る。そのためには、別の濃い不純物層を形成するための
別工程が必要だったり、あるい(は上記各層[を儂くす
ることが必要となり、容量がふえ、高速化の妨げになる
という欠点があった。FIGS. 1 and 2 are cross-sectional views of a conventional input protection device for a complementary MO8 semiconductor device. In the input protection device shown in FIG. 1, an n+ diffusion layer 2 is provided on a p-type silicon substrate 1 when forming the source and drain of an n-channel transistor, and its breakdown voltage is utilized. The device utilizes the breakdown voltage with the n-well layer when an n-well 3 is formed on a p-type silicon substrate l. The protection voltage of these input protection devices is p
Since it is determined by each layer Jσ of the type silicon substrate, n+ diffusion layer, and n well layer, should the protection voltage be lower than this? If the impurity layers j9- are different from each other, it is necessary to make one of the impurity layers j9- This has the disadvantage that it requires the use of a different memory, which increases the capacity and impedes speed-up.
本発明の目的は、以」二のような欠点を除去し、不純物
濃度を変えたり、工程全増したりすることなく、容易に
保護制圧を変えることができる入力保護装置を備えた半
導体装置を提11、することにある。The object of the present invention is to eliminate the following two drawbacks and to provide a semiconductor device equipped with an input protection device that can easily change the protection pressure without changing the impurity concentration or increasing the total number of steps. 11. There is something to do.
本発明の半導体装置は、−導電型半dh体基板に該半導
体基板と逆導電型の2つ以上のウェルを所定の距離隔て
て設け、一方のウェル全前記半導体基板と接続して同電
位にし、他方のウェルと前記半導体基板とでダイオード
を形成することにより構成される。In the semiconductor device of the present invention, two or more wells of a conductivity type opposite to that of the semiconductor substrate are provided on a -conductivity type semi-DH substrate, separated by a predetermined distance, and one well is all connected to the semiconductor substrate to have the same potential. , the other well and the semiconductor substrate form a diode.
次に、本発明の実施例について、ト、1而−i 、’5
+!tj l。Next, regarding the embodiments of the present invention,
+! tj l.
て説明する。I will explain.
第3図は本発明の一実施例の断面図である。FIG. 3 is a sectional view of one embodiment of the present invention.
第3図において、■は9m7+)コン基板であ−リ、こ
のシリコン基板に逆導電型でちるnウェル3a。In FIG. 3, ``■'' is a 9m7+) silicon substrate, and an n-well 3a formed of the opposite conductivity type is formed on this silicon substrate.
3bの2つ乞ある任意の距頗(を隔てて設け、一方のn
ウェル3bはn″−拡散層を通じ釡坂配媒10によりシ
リコン基板と接続し、シリコン基板と同電位にする。な
お、8はI) !l;μシリコン基板表面に形成された
p 拡散層である。可た他方のウェル3a Id、 p
型シリコン基板1とダイオードを形成する。ここで2は
n+拡散層である。なお、4はシリコン酸化膜、7はフ
ィールド酸化膜、9は層間絶縁膜でちゃ、Aは入力端子
、Bは内部回路入力電位点、Rは抵抗である。3b.
The well 3b is connected to the silicon substrate through the n''-diffusion layer by the Kamasaka medium 10, and is made to have the same potential as the silicon substrate. Note that 8 is the p-diffusion layer formed on the surface of the silicon substrate. Possible other well 3a Id, p
A mold silicon substrate 1 and a diode are formed. Here, 2 is an n+ diffusion layer. Note that 4 is a silicon oxide film, 7 is a field oxide film, 9 is an interlayer insulating film, A is an input terminal, B is an internal circuit input potential point, and R is a resistor.
第3図に示す構成の入力保護装置の入力端子Aに電圧を
加えると、p型シリコン基板1とnウェル領域の界面が
ら空乏層が広かシ、nウェル領域3a、3bを適当な距
離全おいて形成しておくと、p型シリコン基板lとnウ
ェル間のブレークダウ71T定圧より低い電圧でnウェ
ル領域3a、3bは空乏層でつなが9電流が流れること
になる。When a voltage is applied to the input terminal A of the input protection device having the configuration shown in FIG. If the n-well regions 3a and 3b are formed at a lower voltage than the constant voltage of the breakdown 71T between the p-type silicon substrate l and the n-well, the depletion layer will connect the n-well regions 3a and 3b, and a current will flow.
従って、B点の電圧は抵抗Rとの分割電位でクランプさ
れるが、負性抵抗を持つ横型npnバイポーラトランジ
スタ特性から、B点の電圧をp型シリコン基板−nウェ
ル間のブレークダウン電圧より低い電圧以下にすること
が可能となる。従って、nウェル領域3a、3bを適当
な距離をおいて形成することにより、nウェル濃度をt
↓くすることなく、nウェル間の距離という設計的なも
ので保護電圧を低く自由に変えることが可能となる。Therefore, the voltage at point B is clamped at the divided potential with resistor R, but due to the characteristics of a lateral npn bipolar transistor with negative resistance, the voltage at point B is lower than the breakdown voltage between the p-type silicon substrate and the n-well. It becomes possible to lower the voltage below that. Therefore, by forming n-well regions 3a and 3b at an appropriate distance, the n-well concentration can be reduced to t.
It is possible to freely change the protection voltage to a low value by design, such as the distance between the n-wells, without increasing the voltage.
第4図(al〜(e)は本発明の一実施例の半導体装置
の製造方法を説明するための工程順に示した断面図であ
る。FIGS. 4A to 4E are cross-sectional views shown in order of steps for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention.
まず、第4図(a)に示すように、p型シリコン基板l
上にシリコン酸化膜4を形成し、しかる後nウェル領域
を形成する以外の部分をホトレジスト5で覆う。First, as shown in FIG. 4(a), a p-type silicon substrate l
A silicon oxide film 4 is formed thereon, and then the portions other than those where the n-well region is to be formed are covered with photoresist 5.
次に、第4図(bJに示すように、ホトレジスlfマス
クとして、例えばリンのイオン注入を行ない、ホトレジ
ス) lc除去し、高温熱処理を行いnウェル3a、3
b全形成する。Next, as shown in FIG. 4 (bJ), as a photoresist lf mask, for example, ion implantation of phosphorus is performed, the photoresist lc is removed, and high temperature heat treatment is performed to form the n wells 3a, 3.
b Complete formation.
次に、第4図(C1に示すように、耐酸化性物質、例え
ばシリコン窒化膜6を形成した後、素子形成領域以外の
シリコン窒化膜を選択的にエツチングする。Next, as shown in FIG. 4 (C1), after forming an oxidation-resistant material, for example, a silicon nitride film 6, the silicon nitride film outside the element formation region is selectively etched.
次いで、第4図(d)に示すように、酸化によりフィー
ルド酸化膜7を形成し、しかる後シリコン窒化膜6を除
去する。Next, as shown in FIG. 4(d), a field oxide film 7 is formed by oxidation, and then the silicon nitride film 6 is removed.
次に、第4図telに示すように、通常の相補型MO8
半導体装置の製造方法に従い、n 拡散層2を、例えば
リンのイオン注入で、p 拡散層8をホウ素のイオン注
入で形成し、層間絶縁膜9を形成し、nウェル上、p型
シリコン基板上にコンタクト孔をあけ、p型シリコン基
板とnウェル3bは金属配線10で電気的に接続させる
と第3図に示したと同様な構造の半導体装置が得られる
。Next, as shown in FIG. 4, a normal complementary MO8
In accordance with a semiconductor device manufacturing method, the n-diffusion layer 2 is formed by, for example, phosphorus ion implantation, the p-diffusion layer 8 is formed by boron ion implantation, the interlayer insulating film 9 is formed, and the layers are formed on the n-well and on the p-type silicon substrate. A contact hole is formed in , and the p-type silicon substrate and n-well 3b are electrically connected by metal wiring 10 to obtain a semiconductor device having a structure similar to that shown in FIG.
第5図及び第6図は倒れも本発明の実施例の構成要素で
ある距離をおいて形成したnウェルの変形例の平面図で
ある。この距離をおいて形成するnウェルは上記例は勿
論、その数、形イjζに限定されるものではない。FIGS. 5 and 6 are plan views of modified examples of n-wells formed at a distance, in which collapse is also a component of the embodiment of the present invention. Of course, the number and shape of n-wells formed at this distance are not limited to those in the above example.
壕だ、以上の本発明の詳細な説明ではp型シリコンノ1
(板を例にしたが、n型シリコン基板についても同様実
施できることは説明する寸でもない。In the above detailed explanation of the present invention, p-type silicon No. 1 is used.
(Although a plate is used as an example, it is not necessary to explain that the same can be applied to an n-type silicon substrate.
以上説明したとおり、本発明によれば、不純物濃度を変
えたり、工程を新たに追加したりすることなく、目的と
する保護電圧をもつ7′ζλ力保護装置を備えた半導体
装置を容易にイ;Jることが出来る。As explained above, according to the present invention, a semiconductor device equipped with a 7′ζλ force protection device having a target protection voltage can be easily installed without changing the impurity concentration or adding a new process. ;J can do it.
第1図、第2図は従来の相補型MO8半導体装置の入力
保護装置の断面図、第3図は本発明の一実施例の断面図
、第4図(a)〜(eJは本発明の一実施例の製造方法
を説明するための工程順に示した断面図、第5図、第6
図は何れも本発明の実施例の構成要素の距離をおいて形
成したNウェルの変形例の平面図である。
1・・・・・・p型シリコン基板、2・・・・・・n
拡散層、3a、3b・・・・・・nウェル、4・・・・
・/リコン酸化[;q15・・・・・・ホトレジスト、
6・・・・・シリコン渚化膜、7・・・・・・フィール
ド酸化膜、8・・・・・・p+拡散層、 9・・・・・
層間絶縁膜、10・・・・・・金属配MJ 、 A・・
・・・・入力端子、B・・・・・・内部回路入力電位点
、■も・・・・・・抵抗。
代理人 弁理士 内 原 1・ ゛パ
1 。
d 2 ゴか ど 刀1 and 2 are cross-sectional views of a conventional input protection device of a complementary MO8 semiconductor device, FIG. 3 is a cross-sectional view of an embodiment of the present invention, and FIGS. 4(a) to (eJ are Cross-sectional views shown in the order of steps for explaining the manufacturing method of one embodiment, FIGS. 5 and 6
Each figure is a plan view of a modified example of an N-well in which the components of the embodiment of the present invention are formed at a distance. 1...p-type silicon substrate, 2...n
Diffusion layer, 3a, 3b...N-well, 4...
・/Recon oxidation [;q15...Photoresist,
6...Silicon oxide film, 7...Field oxide film, 8...P+ diffusion layer, 9...
Interlayer insulating film, 10... Metal interconnection MJ, A...
...Input terminal, B...Internal circuit input potential point, ■ also...Resistance. Agent: Patent Attorney Uchihara 1. d2 gokado sword
Claims (1)
上のウェルをある所定の距離隔てて設け、一方のウェル
を前記半導体基板と接続して同電位にし、他方のウェル
と前記半導体基板とでダイオードを形成したことを特徴
とする半導体装置。Two or more wells of a conductivity type opposite to one semiconductor substrate are provided in a semiconductor substrate of one conductivity type, separated by a certain distance, one well is connected to the semiconductor substrate to have the same potential, and the other well and the semiconductor substrate are connected to each other at the same potential. A semiconductor device characterized in that a diode is formed by and.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58168691A JPS6059769A (en) | 1983-09-13 | 1983-09-13 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58168691A JPS6059769A (en) | 1983-09-13 | 1983-09-13 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6059769A true JPS6059769A (en) | 1985-04-06 |
Family
ID=15872672
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58168691A Pending JPS6059769A (en) | 1983-09-13 | 1983-09-13 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6059769A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6246554A (en) * | 1985-08-23 | 1987-02-28 | Nec Corp | Complementary type mos semiconductor integrated circuit device |
-
1983
- 1983-09-13 JP JP58168691A patent/JPS6059769A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6246554A (en) * | 1985-08-23 | 1987-02-28 | Nec Corp | Complementary type mos semiconductor integrated circuit device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5066602A (en) | Method of making semiconductor ic including polar transistors | |
EP0178991B1 (en) | A complementary semiconductor device having high switching speed and latchup-free capability | |
US5089429A (en) | Self-aligned emitter bicmos process | |
JPH10214907A (en) | Semiconductor device and its manufacture | |
US3653988A (en) | Method of forming monolithic semiconductor integrated circuit devices | |
JP2000049237A (en) | Semiconductor device and its manufacture | |
US4509250A (en) | Process for manufacturing a monolithic integrated circuit comprising at least one bipolar planar transistor | |
JPS6059769A (en) | Semiconductor device | |
JPH0311107B2 (en) | ||
JPS5951143B2 (en) | MIS type semiconductor device | |
JP2780896B2 (en) | Method for manufacturing semiconductor integrated circuit | |
JPS6230363A (en) | Semiconductor device | |
JPS63301555A (en) | Semiconductor device | |
JPS61156830A (en) | Semiconductor device and manufacture thereof | |
JPH0319276A (en) | Cmos semiconductor device | |
JPS627710B2 (en) | ||
JPS61208863A (en) | Cmos semiconductor device | |
JPH0425709B2 (en) | ||
JPH0666427B2 (en) | Method for manufacturing MOS semiconductor integrated circuit device | |
JPH04359473A (en) | Insulation gate type field effect transistor | |
JPH07112043B2 (en) | Semiconductor integrated circuit | |
JPH01243586A (en) | Semiconductor device | |
JPS62291163A (en) | Semiconductor integrated circuit device | |
JPH0745517A (en) | Semiconductor device and its manufacture | |
JPS60218874A (en) | Semiconductor device |