JPH0319276A - Cmos semiconductor device - Google Patents

Cmos semiconductor device

Info

Publication number
JPH0319276A
JPH0319276A JP1153435A JP15343589A JPH0319276A JP H0319276 A JPH0319276 A JP H0319276A JP 1153435 A JP1153435 A JP 1153435A JP 15343589 A JP15343589 A JP 15343589A JP H0319276 A JPH0319276 A JP H0319276A
Authority
JP
Japan
Prior art keywords
element isolation
well
type
region
isolation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1153435A
Other languages
Japanese (ja)
Inventor
Takashi Taniguchi
隆 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1153435A priority Critical patent/JPH0319276A/en
Publication of JPH0319276A publication Critical patent/JPH0319276A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Abstract

PURPOSE:To obtain a CMOS device excellent in latchup resistance by a method wherein a specified potential is directly applied to an N-well from above an element isolation region by applying a specified potential to an N-type conductive thin film in a simple manufacturing process. CONSTITUTION:A P-type Si substrate 1 is subjected to element isolation by a region 3, and an N-well 2 is arranged. A connection window 5 is formed in an interlayer insulating film 4 and an element isolation region 3 by a part of the element isolation region 3. N-type polysilicon 6 and silicide 7 are stacked in the window 5 and around the window, and thermal diffusion from the N-type polysilicon 6 to the substrate 1 is performed, thereby forming an N-layer 13. By applying a specified potential to the polycide wiring layers 6, 7, a specified potential can be applied to the N-well 2 under an element isolation oxide film 3 via the N-layer 13. By this constitution, a specified potential for restraining the potential change of the N-well caused by an external trigger can be realized with high degree of freedom, so that a highly reliable CMOS device excellent in latchup resistance can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はラッチアップ耐性の優れた構造を有するCMO
S型半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a CMO having a structure with excellent latch-up resistance.
The present invention relates to an S-type semiconductor device.

従来の技術 近年半導体装置は低消費電力の要求からCMOS型半導
体装置の開発が主流となってきている。しかしCMOS
型半導体装置では寄生サイリスタ構造を有するため外部
からのトリガー電流によってラッチアップを生じる可能
性がある。そしてラッチアップが生じると過大電流が流
れ動作不良となるばかうでなく素子破壊に到ることもあ
る。
2. Description of the Related Art In recent years, the development of CMOS type semiconductor devices has become mainstream due to the demand for low power consumption. However, CMOS
Since a type semiconductor device has a parasitic thyristor structure, latch-up may occur due to an external trigger current. When latch-up occurs, an excessive current flows, resulting in not only malfunction but also element destruction.

このラッチアップ現象は外部トリガーにより基板内1た
はウェル内に流れ込んだ電流によって基板電位1たはウ
ェル電位が所望の電位から変動するために生じるので基
板1たはウェルの電位変動を抑えることによってラッチ
アップ耐性を向上させることが可能となる。
This latch-up phenomenon occurs because the substrate potential 1 or well potential fluctuates from the desired potential due to the current flowing into the substrate 1 or well due to an external trigger. Therefore, by suppressing the potential fluctuation of the substrate 1 or well, It becomes possible to improve latch-up resistance.

以下にラッチアップ耐性を向上させるための従来の技術
について第2図の断面図を用いて説明する。
A conventional technique for improving latch-up resistance will be described below with reference to the cross-sectional view of FIG. 2.

図中1はP型シリコン基板、2はNウェル領域、3は素
子分離領域である。そしてNウェル領域2内にはゲート
酸化膜81、ゲート電極91かよびP型拡散層10によ
ってPチャンネルトランジスタが形成されておシ、同様
にゲート酸化膜82、ゲート電極92かよびN型拡散層
11によってNチャンネルトランジスタが形成されてい
る。
In the figure, 1 is a P-type silicon substrate, 2 is an N-well region, and 3 is an element isolation region. A P channel transistor is formed in the N well region 2 by a gate oxide film 81, a gate electrode 91, and a P type diffusion layer 10, and a P channel transistor is formed by a gate oxide film 82, a gate electrode 92, and an N type diffusion layer. 11 forms an N-channel transistor.

12はNウェル領域内のN型拡散層であう,通常このN
型拡散層12を介してNウェル領域2に所望の電圧、例
えば電源電圧を与える構造になっている。
12 is an N type diffusion layer in the N well region.
The structure is such that a desired voltage, for example, a power supply voltage, is applied to the N-well region 2 via the type diffusion layer 12.

そしてラッチアップ耐性を向上させるためには、このN
ウェル内N型拡散層12をNウエ〃領域2の周囲を囲む
ように形成することが望ましい。すなわち、Nウェル内
N型拡散層を介してのNウェル領域2への電圧供給を充
分に行うことによって、外部トリガーによってもNウエ
μ内の電位変動を少なく抑えることができ、ラフチアッ
プ耐性の向上が図れる。
In order to improve latch-up resistance, this N
It is desirable to form the in-well N-type diffusion layer 12 so as to surround the N-well region 2 . In other words, by sufficiently supplying voltage to the N-well region 2 through the N-type diffusion layer in the N-well, potential fluctuations in the N-well μ can be suppressed to a small level even by an external trigger, improving resistance to rough-up. can be achieved.

発明が解決しようとする課題 しかし上述の従来例では、Nウエμ内のN型拡散層に所
定の電位を与える構造であシ、このN型拡散層領域は全
プロセスの初期の段階のいわゆる素子分離領域形戒工程
で確・定するため、試作品評価結果を基にラッチアップ
耐性を強化しようとしても、素子分離領域形戒用マスク
を変更する必要があ9、マスク対策の効果が確認できる
1でに長時間を要してし1い、プロセス釦よびデバイス
の開発期間を短縮することが困難であった。
Problems to be Solved by the Invention However, in the above-mentioned conventional example, the structure is such that a predetermined potential is applied to the N-type diffusion layer in the N-wafer μ, and this N-type diffusion layer region is used in the so-called element at the initial stage of the entire process. Even if we try to strengthen the latch-up resistance based on the prototype evaluation results, it is necessary to change the element isolation region shape mask because it is confirmed in the isolation region shape control process9, so the effectiveness of the mask countermeasure can be confirmed. However, it is difficult to shorten the development period for process buttons and devices.

本発明は上記従来の問題点を解決するもので、N型拡散
層がなくてもNウェルに所定の電位を与えることのでき
る自由度の高い、ラッチアップ耐性の優れたCMOS型
半導体装置を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, and provides a CMOS semiconductor device with a high degree of freedom in which a predetermined potential can be applied to an N-well without an N-type diffusion layer and with excellent latch-up resistance. The purpose is to

課題を解決するための手段 この目的を達或するために本発明の半導体装置は、電極
配線層を形成するN型導電性薄膜がP型シリコン基板上
のNウェル領域内の素子分離領域の一部に設けられた開
口部および前記素子分離領域の上部に形戒された層間絶
縁膜に設けられた開口部を介して前記素子分離領域の下
部のNウェル領域の表面と接し、前記Nウェル領域の表
面領域に前記N型導電性薄膜からの熱拡散により形成さ
れたN型拡散層を有する。
Means for Solving the Problems In order to achieve this object, the semiconductor device of the present invention has a semiconductor device in which an N-type conductive thin film forming an electrode wiring layer is formed in a part of an element isolation region in an N-well region on a P-type silicon substrate. The surface of the N-well region under the element isolation region is in contact with the surface of the N-well region under the element isolation region through an opening provided in the upper part of the element isolation region and an opening provided in an interlayer insulating film formed above the element isolation region. has an N-type diffusion layer formed by thermal diffusion from the N-type conductive thin film in the surface region.

作  用 本発明のCMOS型半導体装置によれば、N型導電性薄
膜に簡単な製造工程によシ所定の電位を与えることによ
って素子分離領域上から直接Nウェル領域へ所定の電位
を与えることができるため、Nウェル内のN型拡散層を
必要とせず、従来よう高い自由度でNウエρへ所定の電
位を与えることができ、ラッチアップ耐性の優れたCM
OS型半導体装置を得ることができる。
According to the CMOS type semiconductor device of the present invention, by applying a predetermined potential to the N-type conductive thin film through a simple manufacturing process, it is possible to directly apply a predetermined potential to the N-well region from above the element isolation region. As a result, a predetermined potential can be applied to the N-well ρ with a high degree of freedom unlike conventional methods without requiring an N-type diffusion layer in the N-well, making it possible to create a CM with excellent latch-up resistance.
An OS type semiconductor device can be obtained.

実施例 以下本発明の一実施例について図面を参照しながら説明
する。第1図は本発明の半導体装置の実施例の断面図を
示すものである。第1図において、1はP型シリコン基
板、2はNウェル領域、3は素子分離領域、4は層間絶
縁膜、6は40層間絶縁膜および3の素子分離領域に設
けられたコンタクト用窓、6はN型ボリシリコン層、7
は6のポリシリコン層と共にポリサイド配線を形成する
シリサイド層、8は60N型ポリシリコン層からの熱拡
散によって形威されたN型拡散層である。その他は第2
図の説明と同様である。図からも明らかなように、ポリ
サイド配線層6,7に所定の電位を与えるとN型拡散層
8を介して素子分離用酸化膜の下のNウエ〃領域に所定
の電位を与えることが可能となる。
EXAMPLE An example of the present invention will be described below with reference to the drawings. FIG. 1 shows a cross-sectional view of an embodiment of the semiconductor device of the present invention. In FIG. 1, 1 is a P-type silicon substrate, 2 is an N-well region, 3 is an element isolation region, 4 is an interlayer insulating film, 6 is a 40 interlayer insulating film, and 3 is a contact window provided in the element isolation region. 6 is an N-type polysilicon layer, 7
A silicide layer forms a polycide wiring together with the polysilicon layer 6, and an N-type diffusion layer 8 is formed by thermal diffusion from the 60N-type polysilicon layer. Others are second
It is the same as the explanation of the figure. As is clear from the figure, when a predetermined potential is applied to the polycide wiring layers 6 and 7, it is possible to apply a predetermined potential to the N-wafer region under the element isolation oxide film via the N-type diffusion layer 8. becomes.

発明の効果 以上のような構造を有するCMOS型半導体装置を用い
れば、外部トリガーによるNウェルの電位変動を抑える
ための所定電位供給を従来よシ高い自由度で実施するこ
とができ、ラッチアップ耐性の優れた信頼性の高いCM
OS型半導体装置を実現できる。さらに本発明の構造は
溝掘シ型キャパシター構造を有するDRAMプロセスに
全く変更を加えずに導入することが可能であり、さらに
開発段階でラッチアップ耐性を強化する場合コンタクト
窓用マスク以降の変更にて対処できるため開発効率を上
げることが可能となる。
Effects of the Invention By using a CMOS type semiconductor device having a structure as described above, it is possible to supply a predetermined potential to suppress N-well potential fluctuations caused by an external trigger with a higher degree of freedom than before, and the latch-up resistance is improved. Excellent and reliable commercials
An OS type semiconductor device can be realized. Furthermore, the structure of the present invention can be introduced into a DRAM process having a grooved capacitor structure without making any changes, and furthermore, if latch-up resistance is to be strengthened at the development stage, changes after the contact window mask can be implemented. This makes it possible to improve development efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例のCMOS型半導体装置の断面図
、第2図は従来例を説明するための断面図である。 1・・・・・・P型シリコン基板、2・・・・・・Nウ
エ〃領域、3・・・・・・素子分離領域、4・・・・・
・層間絶縁膜、6・・・・・・コンタクト用窓、e・・
・・・・N型ポリシリコX薄膜、7・・・・・・シリサ
イド薄膜、81 ,82・・・・・・ゲート酸化膜、9
1,92・・・・・・ゲート電極、10・・・・・・P
型拡散層、11・・・・・・N型拡散層、12・・・・
・・Nウェル内N型拡散層、13・・・・・・N型ポリ
シリコン薄膜からの熱拡散によυ形成されたN型拡散層
FIG. 1 is a sectional view of a CMOS type semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view for explaining a conventional example. 1...P type silicon substrate, 2...N wafer region, 3...element isolation region, 4...
・Interlayer insulating film, 6... Contact window, e...
...N-type polysilico X thin film, 7... Silicide thin film, 81, 82... Gate oxide film, 9
1,92...gate electrode, 10...P
Type diffusion layer, 11...N type diffusion layer, 12...
...N-type diffusion layer in N-well, 13...N-type diffusion layer formed by thermal diffusion from the N-type polysilicon thin film.

Claims (1)

【特許請求の範囲】[Claims] P型シリコン基板上にNウェル領域を有するCMOS型
半導体装置において電極配線層を形成するN型導電性を
有する導電性薄膜が前記Nウェル領域内の素子分離領域
の一部に設けられた開口部および前記素子分離領域の上
部に形成された層間絶縁膜に設けられた開口部を介して
前記素子分離領域の下部のNウェル領域の表面と接し、
前記Nウェル領域の表面領域に前記N型導電性を有する
導電性薄膜からの熱拡散により形成されたN型拡散層を
有することを特徴とするCMOS型半導体装置。
In a CMOS semiconductor device having an N-well region on a P-type silicon substrate, a conductive thin film having N-type conductivity forming an electrode wiring layer is provided in a part of an element isolation region in the N-well region. and in contact with the surface of the N-well region under the element isolation region through an opening provided in an interlayer insulating film formed on the upper part of the element isolation region,
A CMOS type semiconductor device comprising an N-type diffusion layer formed by thermal diffusion from the conductive thin film having N-type conductivity in a surface region of the N-well region.
JP1153435A 1989-06-15 1989-06-15 Cmos semiconductor device Pending JPH0319276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1153435A JPH0319276A (en) 1989-06-15 1989-06-15 Cmos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1153435A JPH0319276A (en) 1989-06-15 1989-06-15 Cmos semiconductor device

Publications (1)

Publication Number Publication Date
JPH0319276A true JPH0319276A (en) 1991-01-28

Family

ID=15562461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1153435A Pending JPH0319276A (en) 1989-06-15 1989-06-15 Cmos semiconductor device

Country Status (1)

Country Link
JP (1) JPH0319276A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846058A (en) * 1994-08-01 1996-02-16 Nec Corp Manufacture of mos semiconductor device
EP0721217A3 (en) * 1995-01-05 1999-06-16 Texas Instruments Inc. CMOS integrated circuits

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0846058A (en) * 1994-08-01 1996-02-16 Nec Corp Manufacture of mos semiconductor device
EP0721217A3 (en) * 1995-01-05 1999-06-16 Texas Instruments Inc. CMOS integrated circuits

Similar Documents

Publication Publication Date Title
KR20040102052A (en) Semiconductor device formed over a multiple thickness buried oxide layer, and methods of making same
US8022480B2 (en) Semiconductor device and method for manufacturing the same
US6080610A (en) Method a CMOS transistor and isolated back electrodes on an SOI substrate
US6638799B2 (en) Method for manufacturing a semiconductor device having a silicon on insulator substrate
US8227329B2 (en) Semiconductor device and method for manufacturing the same
KR100231717B1 (en) Semiconductor device and method of fabricating the same
JPH10135351A (en) Semiconductor device and its manufacturing method
US7256462B2 (en) Semiconductor device
JPH0319276A (en) Cmos semiconductor device
JPS5984572A (en) Semiconductor device
JPS62262462A (en) Semiconductor device
JPH05136405A (en) Semiconductor device
JP2011204938A (en) Semiconductor device and method of manufacturing the same
JP2985796B2 (en) Semiconductor device
JPS59195869A (en) Manufacture of semiconductor device
JPH1041483A (en) Semiconductor device and its manufacturing method
JPH09260590A (en) Semiconductor device and manufacture thereof
JPH0222858A (en) Semiconductor device
JPH04313238A (en) Semiconductor device
JP2002009277A (en) Offset gate type fet and semiconductor device
JP2001196475A (en) Semiconductor device and its manufacturing method
JPH02260452A (en) Semiconductor device
JPH08321558A (en) Semiconductor device
JPH05218317A (en) Semiconductor integrated circuit device
JPH05343668A (en) Semiconductor device, semiconductor integrated circuit and manufacturing method thereof