JPS6058623A - Pattern formation - Google Patents

Pattern formation

Info

Publication number
JPS6058623A
JPS6058623A JP58166468A JP16646883A JPS6058623A JP S6058623 A JPS6058623 A JP S6058623A JP 58166468 A JP58166468 A JP 58166468A JP 16646883 A JP16646883 A JP 16646883A JP S6058623 A JPS6058623 A JP S6058623A
Authority
JP
Japan
Prior art keywords
substrate
film
processed
electron beam
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58166468A
Other languages
Japanese (ja)
Inventor
Kei Kirita
桐田 慶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58166468A priority Critical patent/JPS6058623A/en
Publication of JPS6058623A publication Critical patent/JPS6058623A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To make unnecessary the successive heat processings by selective irradiation of energy particles or X-ray under the condition that a substrate to be processed is kept under the heated condition. CONSTITUTION:A Si oxide film 2 and phosphorus-added polycrystalline Si film 3 are stacked on a Si substrate 1 and it is used as a substrate 4 to be processed. A negative electron beam resist film 5 is formed by bonding on the substrate 4. This substrate 4 is heated by a heating source 6 and the film 5 is selectively irradiated with electron beam 7 under this condition. The film 5 is developed and the lower layer films 3, 2 are removed by etching with the resist film 5' after development used as a mask. According to this method, generation of damage by irradiation of high energy electron beam can be suppressed and therefore successive heat precessings can be eliminated.

Description

【発明の詳細な説明】 [発明の属する技術分野] 本発明は高エネルギーの粒子線・電磁波を用いたパター
ン形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a pattern forming method using high-energy particle beams and electromagnetic waves.

[従来技術とその問題点] 超LSIを始めとして、半導体素子の集積度が高まるに
つれて微細圧して且つ高精度のパターン形成技術が要求
されている。1μm以下の微細・;ターン形成技術とし
ては、従来のフォトリングラフィ技術に代わって、電子
ビーム、イオンビームによる直接描画方法、X線露光方
法等が採用されようとしている。しかし乍ら、これらの
パターン形成方法を、例えば、シIJ コy M OS
 (Metal −0xide −Sem1condu
ctor )素子の製造に適用した場合、シリコン酸化
膜(8i0z )中或いはシリコン(Si)−シリコン
酸化膜界面に正の固定電荷、中性捕獲中心、界面準位等
を生ぜしめ、MO8素子の特性を劣化せしめることが周
知となっている。
[Prior Art and its Problems] As the degree of integration of semiconductor devices, including VLSIs, increases, there is a need for pattern forming technology that uses fine pressure and has high precision. As techniques for forming fine turns of 1 μm or less, direct writing methods using electron beams or ion beams, X-ray exposure methods, etc. are being adopted in place of conventional photolithography techniques. However, these pattern forming methods, for example,
(Metal-Oxide-Sem1condu
When applied to the manufacturing of MO8 devices, positive fixed charges, neutral capture centers, interface states, etc. are generated in the silicon oxide film (8i0z) or at the silicon (Si)-silicon oxide film interface, and the characteristics of the MO8 device are It is well known that it causes deterioration.

高性能、高信頼性のMO8素子を得るには、これらの損
傷を除去若しくは低減させる必要がある。
In order to obtain a high-performance, highly reliable MO8 element, it is necessary to eliminate or reduce these damages.

このために、通常、パターン形成後の素子基体を熱処理
する方法が採られる。この熱処理工程はパターン形成工
程とは別工穆であり、従来のフォトリソグラフィ技術を
用いたMOS素子製造工程では不要で、上記高エネルギ
ーのビーム、X線を用いる製造工程で新たに付は加えら
れる工程である。
For this purpose, a method is usually adopted in which the element substrate is heat-treated after pattern formation. This heat treatment process is a separate process from the pattern formation process, and is unnecessary in the MOS device manufacturing process using conventional photolithography technology, but is newly added in the manufacturing process using high-energy beams and X-rays. It is a process.

従って、高エネルギービームX線を用いた素子の生産性
は、従来のフォトリングラフィ技術を用いる場合に比べ
て、著しく低下する。
Therefore, the productivity of devices using high-energy beam X-rays is significantly lower than when using conventional photolithography techniques.

[発明の目的] 本発明は上述した問題に鑑みてなされたもので後続の熱
処理工程が不要な所定エネルギー量−子線、X線を用い
たパターン形成方法を提供するものである。
[Object of the Invention] The present invention has been made in view of the above-mentioned problems, and provides a pattern forming method using predetermined energy quantum beams or X-rays that does not require a subsequent heat treatment step.

[発明の概要] 本発明の骨子は、所定エネルギーの粒子線若しくはX線
を被処理基体上の粒子線若しくはX線に対する感応膜へ
選択照射し現象することによって前記感応膜のパターン
を形成する際、被処理基体温度を所定温度に加熱保持し
た状態で前記選択照射を行なうようにしたものである。
[Summary of the Invention] The gist of the present invention is to selectively irradiate a particle beam or X-ray of a predetermined energy onto a particle beam- or In this method, the selective irradiation is performed while the temperature of the substrate to be processed is maintained at a predetermined temperature.

[発明の効果] 本発明によれば、工程数を増加することなく、特性の優
れたシリコン等の半導体素子を高エネルギー粒子線、X
線を用いたリングラフィ技術を用いて製造することがで
きる。
[Effects of the Invention] According to the present invention, semiconductor elements such as silicon with excellent characteristics can be processed using high-energy particle beams and X-rays without increasing the number of steps.
It can be manufactured using phosphorography technology using lines.

[発明の実施例] 本発明一実施例として多結晶SiゲートMOSキャパシ
タを製造する場合について図面を用いて説明する。第1
図は、例えば比抵抗0,05Ω・αのSi基体1上K例
えば厚さ〜300Xの8i酸化膜2と例えば厚さ〜5o
oXの燐添加多結晶Si膜3とをこの順に積層形成し、
これを被処理基体4として、前記被処理基体4上に粒子
線感応膜として例えば厚さ〜3000にのネガ型電子ビ
ームレジスト膜5を被着形成した状態の工程断面図であ
る。
[Embodiments of the Invention] A case in which a polycrystalline Si gate MOS capacitor is manufactured as an embodiment of the present invention will be described with reference to the drawings. 1st
The figure shows, for example, an 8i oxide film 2 with a thickness of ~300X on a Si substrate 1 with a specific resistance of 0.05Ω・α, and an oxide film 2 with a thickness of ~50X, for example.
oX phosphorus-doped polycrystalline Si film 3 is laminated in this order,
This is a process sectional view showing a state in which a negative electron beam resist film 5 having a thickness of 3,000 mm or more is deposited on the substrate 4 to be processed as a particle beam sensitive film.

次に第2図に示す様に、前記レジスト膜付被処理基体4
を例えば〜500°0程度に加熱源6を用いて加熱保持
し、この状態でレジスト膜5に例えば20 KeVの電
子ビーム7をゲート電極パターンを得る様に選択照射す
る(照射量〜1oOμCS)。
Next, as shown in FIG. 2, the resist film-coated substrate 4
is heated to, for example, about 500 DEG 0 using a heat source 6, and in this state, the resist film 5 is selectively irradiated with an electron beam 7 of, for example, 20 KeV so as to obtain a gate electrode pattern (dose of 100 .mu.CS).

第3図は、前記選択照射後のレジスト膜を現像し、現像
後のレジスト膜5′をマスクとして下層の燐添加多結晶
84膜、Si酸化膜をエツチング除去した工程状態を示
す。第4図はレジスト膜を除去して得られる。多結晶s
iゲート電極8、ゲート酸化膜9.Si基体1から々る
MOSキャパシタである。
FIG. 3 shows the process state in which the resist film after the selective irradiation is developed and the underlying phosphorous-doped polycrystalline 84 film and Si oxide film are etched away using the developed resist film 5' as a mask. FIG. 4 is obtained by removing the resist film. polycrystalline s
i Gate electrode 8, gate oxide film 9. This is a MOS capacitor formed from a Si substrate 1.

ここではキャパシタの形状は例えば5008mX500
μm とした。
Here, the shape of the capacitor is, for example, 5008m x 500
It was set as μm.

上記した形状と同等のMOSキヤ、パシタを損傷の発生
しない従来の光りソグラフィで形成し、これを標準試料
として、損傷有無の判定材料となるフラットバンド電圧
vFBのずれを上記実施例のMOSキャパシタについて
調べたところ、ずれ量は測定の誤差範囲内で無視できる
ものであった。一方、レジスト膜付被処理基体を加熱せ
ずに、20KeV。
MOS capacitors and pacitors having the same shape as those described above are formed using conventional optical lithography that does not cause damage, and using this as a standard sample, the deviation of the flat band voltage vFB, which is a material for determining the presence or absence of damage, is measured for the MOS capacitor of the above example. Upon investigation, the amount of deviation was found to be negligible within the measurement error range. On the other hand, 20 KeV was applied without heating the resist film-coated substrate.

100μC/7の電子ビーム選択照射によって形成した
上記した形状と同等のMOSキャパシタについて、前記
標準試料に対するVFBのずれ量をめたところ約1゜5
■であった。乙のことから本発明の方法によるMOS素
子の形成では、高エネルギー電子ビーム照射に因る損傷
発生を著しく抑制できることが分かる。
For a MOS capacitor with the same shape as above, which was formed by selective irradiation with a 100μC/7 electron beam, the amount of deviation in VFB from the standard sample was calculated to be approximately 1°5.
■It was. From the above, it can be seen that in forming a MOS device by the method of the present invention, damage caused by high-energy electron beam irradiation can be significantly suppressed.

上記実施例ではMOSキャパシタを形成する場合の本発
明の適用例について述べたが、本発明はMOS)ランジ
スタやバイポーラ素子、配ffIP!?(7)所定パタ
ーンを形成する場合にも適用できる。又電子ビームの他
、高エネルギーイオンビーム、X線等を用いるパターン
形成の際にも損傷低減のために本発明は適用できる。又
、上記実施例では加熱保持温度を〜500℃としたが、
この値に限定されるものではなく、粒子線、X線のエネ
ルギー量、照射量、被処理基体材料、粒子線・X線感応
材料等に依及して選択されるべきであることは言うまで
もない。又、パターン形成のための具体的装置である電
子線描画装置、イオンビーム描画装置、X線露光装置等
において、加熱方法や加熱源は上記粒子線、X線の被処
理基体への照射を実質的に妨げない方法若しくは配置で
あったら如何なるものでもよい。感応材料としては耐熱
性を有し、粒子線、X線照射に対して程良い感度を有し
ているものならば何でもよいが、一般には、本発明の効
果を引き\出すための加熱温度範囲300〜800℃で
感応特性を示すもの、具体的には銀(Ag)の・・ロゲ
ン化物、ヒ素(AS)−セレ= +7 ム(Se)、ヒ
素(As) −イオウ(S)、e (Ag)−セレニウ
ム(8e) 、ゲルマニウム(Ge)−セレニウム(S
e)系のカルコゲナイドガラス材料、それに酸化アルミ
ニウム(Aff1203) 、 酸化タンタル(Taz
Os)等の無機材料が好適である。
In the above embodiment, an example of application of the present invention to the case of forming a MOS capacitor was described, but the present invention also applies to MOS transistors, bipolar elements, distribution IP devices, etc. ? (7) It can also be applied when forming a predetermined pattern. Furthermore, the present invention can be applied to reduce damage when forming patterns using high-energy ion beams, X-rays, etc. in addition to electron beams. In addition, in the above example, the heating holding temperature was ~500°C,
It goes without saying that the value is not limited to this value and should be selected depending on the energy amount of the particle beam or X-ray, the irradiation amount, the substrate material to be treated, the particle beam/X-ray sensitive material, etc. . In addition, in specific devices for pattern formation, such as electron beam lithography equipment, ion beam lithography equipment, and Any method or arrangement may be used as long as it does not interfere with the environment. Any sensitive material may be used as long as it has heat resistance and appropriate sensitivity to particle beam and Things that exhibit sensitive characteristics at 300 to 800°C, specifically silver (Ag)... rogenide, arsenic (AS) - selenium (Se), arsenic (As) - sulfur (S), e ( Ag)-Selenium (8e), Germanium (Ge)-Selenium (S
e) type chalcogenide glass material, aluminum oxide (Aff1203), tantalum oxide (Taz
Inorganic materials such as Os) are suitable.

その他、本発明の方法はその主旨を逸脱しない範囲で種
々変形応用できるθ
In addition, the method of the present invention can be modified and applied in various ways without departing from the spirit thereof.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の一実施例を説明するための工
程断面図である。図において、1・・81基体、 2・
・・3 i02膜、3・・多結晶8i膜、4・・被処理
基体、5.5′・・レジスト膜、 6・・・加熱源、7
・・・電子ビーム、8・・・ゲート電極、9・・・ゲー
ト酸化膜。
1 to 4 are process sectional views for explaining one embodiment of the present invention. In the figure, 1...81 substrates, 2...
...3 i02 film, 3...polycrystalline 8i film, 4...substrate to be processed, 5.5'...resist film, 6...heat source, 7
...Electron beam, 8...Gate electrode, 9...Gate oxide film.

Claims (3)

【特許請求の範囲】[Claims] (1)所定エネルギーの粒子線若しくはX線を被処理基
体上の粒子線若しくはX線に対する感応膜へ選択照射し
現像することによって前記感応膜のパターンを形成する
方法において、前記所定エネルギーの粒子線若しくはX
線の前記被処理基体上の前記感応膜への選択照射は前記
被処理基体を所定温度に加熱保持した状態で行なうこと
を特徴とするパターン形成方法。
(1) In a method of forming a pattern on the sensitive film by selectively irradiating a particle beam or X-rays of a predetermined energy onto a sensitive film for particle beams or X-rays on a substrate to be processed and developing it, the particle beams of a predetermined energy or X
A pattern forming method characterized in that selective irradiation of the sensitive film on the substrate to be processed with a line is performed while the substrate to be processed is heated and maintained at a predetermined temperature.
(2)上記感応膜は、銀のハロゲン化物、カルコゲナイ
ドガラス、M2O3若しくはTa 205より選ばれた
材料からなることを特徴とする特許請求の範囲第1項記
載のパターン形成方法。
(2) The pattern forming method according to claim 1, wherein the sensitive film is made of a material selected from silver halide, chalcogenide glass, M2O3, or Ta 205.
(3)所定エネルギーの粒子線若しくはX線の照射時に
おける被処理基体の加熱保持温度は300〜soo’o
の範囲にあることを特徴とする特許請求の範囲第1項に
記載したパターン形成方法。
(3) The heating and holding temperature of the substrate to be treated during irradiation with particle beams or X-rays of a predetermined energy is 300 to soo'o
The pattern forming method according to claim 1, wherein the pattern forming method is within the range of .
JP58166468A 1983-09-12 1983-09-12 Pattern formation Pending JPS6058623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58166468A JPS6058623A (en) 1983-09-12 1983-09-12 Pattern formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58166468A JPS6058623A (en) 1983-09-12 1983-09-12 Pattern formation

Publications (1)

Publication Number Publication Date
JPS6058623A true JPS6058623A (en) 1985-04-04

Family

ID=15831952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58166468A Pending JPS6058623A (en) 1983-09-12 1983-09-12 Pattern formation

Country Status (1)

Country Link
JP (1) JPS6058623A (en)

Similar Documents

Publication Publication Date Title
KR930000293B1 (en) Fine pattern forming method
JPH0122728B2 (en)
EP0399837B1 (en) Method of optimizing photoresist contrast
JPS6147641A (en) Formation of resist pattern
JPS6058623A (en) Pattern formation
JPH0740543B2 (en) Method for manufacturing semiconductor device
JPS60196941A (en) Electron beam exposure
JPS6137774B2 (en)
JP3395102B2 (en) Stencil mask for electron beam drawing
JPS59132124A (en) Manufacture of semiconductor device
JPH0527413A (en) Photomask for exposing device
JPS6074521A (en) Pattern forming process
JP2612976B2 (en) Method for measuring thickness of silylated resist layer
JPS6386434A (en) Formation of resist pattern
JPS61110427A (en) Formation of pattern
JPH04333219A (en) Multilayer resist pattern forming method
KR920002025B1 (en) Photo-resister hardening method using ultraviolet rays
JPS5934632A (en) Manufacture of x-ray mask
JPS59177930A (en) Pattern formation of semiconductor device
JPS58162847A (en) X-ray topography
JPS6151414B2 (en)
JPS5884429A (en) Pattern formation
JPS6236828A (en) Method for selective etching
JPS61129645A (en) Formation of electron beam resist pattern
JPH05304066A (en) Manufacture of semiconductor device