JPS6151414B2 - - Google Patents

Info

Publication number
JPS6151414B2
JPS6151414B2 JP1356379A JP1356379A JPS6151414B2 JP S6151414 B2 JPS6151414 B2 JP S6151414B2 JP 1356379 A JP1356379 A JP 1356379A JP 1356379 A JP1356379 A JP 1356379A JP S6151414 B2 JPS6151414 B2 JP S6151414B2
Authority
JP
Japan
Prior art keywords
electron beam
layer
beam resist
water
conductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1356379A
Other languages
Japanese (ja)
Other versions
JPS55105331A (en
Inventor
Yasuo Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1356379A priority Critical patent/JPS55105331A/en
Publication of JPS55105331A publication Critical patent/JPS55105331A/en
Publication of JPS6151414B2 publication Critical patent/JPS6151414B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、半導体デバイス製造に用いられる所
謂電子線露光技術を電気的絶縁素材上に形成した
電子線レジストに対して適用する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of applying so-called electron beam exposure technology used in semiconductor device manufacturing to an electron beam resist formed on an electrically insulating material.

半導体デバイスもその用途拡大に伴い、より高
機能化、高密度化が要求され、また開発時間の短
期化も要求されている。
With the expansion of applications for semiconductor devices, higher functionality and higher density are required, and shortening of development time is also required.

電子線露光においては、数千Åに絞つた電子線
束(以下電子ビームという。)を計算機により位
置制御して走査し所望の図形を描画するため、従
来の光学的露光方法を比較してはるかに微細なパ
ターンを精度よく形成できること、描画パターン
の修正のおよび変更が容易であること等々の利点
があるため、前記の目的に適していると目されそ
の発展が期待されている。
In electron beam exposure, the position of an electron beam (hereinafter referred to as an electron beam) narrowed down to several thousand angstroms is controlled by a computer and scanned to draw a desired figure, so it is much more efficient than conventional optical exposure methods. Since it has advantages such as being able to form fine patterns with high precision and making it easy to modify and change drawn patterns, it is considered to be suitable for the above purpose and its development is expected.

電子線露光技術を用いた半導体デバイス製造方
法としては、一旦光学露光等に用いられるマスク
を電子線露光技術により製造しこれを用いて半導
体基板にパターンを光学露光方法によつて転写す
る方法と、半導体基板上に直接電子線レジストの
層を形成しこれを直接電子線でパターンを描画す
る方法とがある。本発明は前者に適用し得るもの
であるが勿論マスク製作に限定するものでない。
Methods for manufacturing semiconductor devices using electron beam exposure technology include a method in which a mask used for optical exposure, etc. is first manufactured by electron beam exposure technology, and then a pattern is transferred onto a semiconductor substrate using the optical exposure method; There is a method in which a layer of electron beam resist is directly formed on a semiconductor substrate and a pattern is drawn directly on this layer with electron beams. Although the present invention can be applied to the former, it is of course not limited to mask production.

光学露光用マスク材質としては、酸化クロムや
酸化鉄が可視光を透過する一方レジストを感光す
る紫外光は透過しにくいという便利な性質がある
ため多用されている。この酸化クロムもしくは酸
化鉄の層はガラス基板上に形成されており、この
酸化クロムもしくは酸化鉄の層をパターン化する
ため、これらの層の上に形成した電子線レジスト
の層を電子線描画するわけである。しかしこのと
き、これらの層の絶対厚は極めて薄いこともあつ
てその電気抵抗が高く、基板のガラスを含めて全
体が絶縁性であるため、電子線露光中に電子が累
積化して蓄積され、電子ビームが反撥される結果
正確な描画が行えなくなるという問題がある。ま
た半導体基板に直接描画する場合についても、プ
ロセス工程によつては厚い絶縁膜上に描画する必
要が生じることが多くあり、やはり電子の累積化
の問題がある。本発明はこのような場合にも有効
である。
Chromium oxide and iron oxide are often used as mask materials for optical exposure because they have the advantageous property of transmitting visible light but hardly transmitting ultraviolet light that sensitizes the resist. This chromium oxide or iron oxide layer is formed on a glass substrate, and in order to pattern this chromium oxide or iron oxide layer, a layer of electron beam resist formed on these layers is drawn with an electron beam. That's why. However, at this time, the absolute thickness of these layers is extremely thin, their electrical resistance is high, and the entire structure, including the glass of the substrate, is insulating, so electrons accumulate during electron beam exposure. There is a problem in that accurate drawing cannot be performed as a result of the electron beam being reflected. Furthermore, even in the case of drawing directly on a semiconductor substrate, depending on the process step, it is often necessary to draw on a thick insulating film, and there is still the problem of electron accumulation. The present invention is also effective in such cases.

本発明の目的は、実効的に絶縁性とみなせる素
材上に形成した電子線レジストを電子線(必ずし
もビーム状であることは要しない。)で感応させ
るに際して、電子の累積化現象を実効的に除き影
響がない程度まで減じることにある。
An object of the present invention is to effectively prevent the accumulation of electrons when sensitizing an electron beam resist formed on a material that can be effectively considered to be insulating with an electron beam (not necessarily in the form of a beam). The goal is to reduce the amount to a point where there is no impact.

上記目的を達成する一つの手段としては電子線
レジスト膜上に電子ビームが貫通可能な程度に薄
い金属膜を堆積することが考えられるが、その金
属膜除去には化学的反応性の強い腐食液を使用す
る必要がありまたしばしば加熱する必要があるた
め電子線レジスト膜への悪影響が大きすぎ事実上
使えない方法であつた。
One way to achieve the above objective is to deposit a metal film on the electron beam resist film that is thin enough to be penetrated by the electron beam, but removing the metal film requires a highly chemically reactive corrosive solution. This method was practically unusable because it had a large negative effect on the electron beam resist film because it required the use of electron beams and often required heating.

そこで、本発明者は、電子線レジスト膜と金属
膜との間に水のごとく電子線レジストに対する影
響のきわめて弱い液薬で容易に溶解できる層を挾
むことを考えた。これにより金属膜は前記試薬中
で中間層に乗つてはくりされてしまうため、金属
腐食液のごとき化学的反応性の強い試薬の使用の
必要性がなくなり、電子線レジスト膜への悪影響
なしに電子の累積化を防ぐことができるようにな
つた。本発明者が選択した前記中間層素材は水溶
性高分子材料であればよい。例えばポリビニルア
ルコール、ポリビニルピロリドン、ポリエチレン
グリコール、等でよい結果を得ている。
Therefore, the inventors of the present invention considered interposing a layer, like water, between the electron beam resist film and the metal film, which can be easily dissolved with a liquid chemical that has a very weak effect on the electron beam resist. As a result, the metal film rides on the intermediate layer in the reagent and is peeled off, eliminating the need to use highly chemically reactive reagents such as metal corrosive solutions, and eliminating the need for adverse effects on the electron beam resist film. It is now possible to prevent the accumulation of electrons. The intermediate layer material selected by the inventors may be any water-soluble polymer material. For example, good results have been obtained with polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, and the like.

この発明は絶縁性マスク基板または電子線が貫
通できない程度に厚い絶縁膜を有する半導体基板
等の実効的に絶縁性であるような基板の上に形成
された電子線レジスト層の上に水溶性高分子材料
として例えば平均重合度500程度のポリビニルア
ルコールを0.05〜0.3μm厚に回転塗布し、該ポ
リビニルアルコール層上に市販の銀ペーストを酢
酸エチルで希釈したものを回転塗布するかもしく
は膜厚0.05〜0.1μm程度のアルミニウム層を真
空蒸着法等により堆積するなどして導電層とな
し、この導電層を接地ないし正の電圧で数ボルト
程度を印加した状態で、例えば加速電圧10〜
25keVの電子ビームでパターン描画して導電層お
よび水溶性高分子を貫いて下の電子線レジストを
感心させ、その後、全体を15〜40℃の水溶液に浸
漬し、ポリビニルアルコール層を溶解除去すると
同時に該層上の金属層を剥離し、ついで既に感心
されている電子線レジストを現象する露光技術で
ある。
This invention applies a water-soluble high-resist layer to an electron beam resist layer formed on a substrate that is effectively insulating, such as an insulating mask substrate or a semiconductor substrate having an insulating film so thick that electron beams cannot penetrate. As a molecular material, for example, polyvinyl alcohol with an average degree of polymerization of about 500 is spin coated to a thickness of 0.05 to 0.3 μm, and a commercially available silver paste diluted with ethyl acetate is spin coated on the polyvinyl alcohol layer, or a film thickness of 0.05 to 0.3 μm is spin coated. A conductive layer is formed by depositing an aluminum layer of about 0.1 μm by vacuum evaporation, etc., and this conductive layer is grounded or applied with a positive voltage of several volts, for example, at an accelerating voltage of 10 to
A pattern is drawn with a 25keV electron beam to penetrate the conductive layer and water-soluble polymer to impress the underlying electron beam resist, and then the whole is immersed in an aqueous solution at 15 to 40℃ to dissolve and remove the polyvinyl alcohol layer. It is an exposure technique that strips off the metal layer on the layer and then develops the electron beam resist that has already been exposed.

本発明の技術を用いることにより、以下の効果
を得ることができる。
By using the technology of the present invention, the following effects can be obtained.

先ず第1の効果として、電気的導通をとるため
の金属層はレジストパターン現象前に中間層とし
ての水溶性高分子膜層と一緒に一括除去されるた
め、現象工程へ悪影響を与えたり現象工程により
露出した基板面を汚染するということがなくな
り、金属汚染に関してきわめて注意を払う必要の
ある半導体製造プロセスへの適合性もよくなり、
絶縁膜上への電子線露光が実用上可能となつた。
The first effect is that the metal layer for electrical conduction is removed all at once together with the water-soluble polymer film layer as an intermediate layer before resist patterning, which may adversely affect the patterning process or This eliminates contamination of exposed substrate surfaces and improves compatibility with semiconductor manufacturing processes that require extreme caution regarding metal contamination.
Electron beam exposure on insulating films has become practically possible.

第2の効果として、中間層としての水溶性高分
子膜は後に一括除去してしまうため、レジスト層
上に直接金属層を堆積する場合に比べ金属層堆積
工程の下地への影響を考慮する必要が少なくな
り、該膜の堆積方法の範囲が拡がつた。例えば導
電層構成材料として有機溶剤を含んだ銀粒子ペー
スト、いわゆる銀ペーストを用いる場合、レジス
ト層直接塗布の場合「カブレ」と呼ばれる表面の
荒れを生じやすかつたが、本方法では中間層が水
溶性であるため有機溶剤による「カブレ」をおこ
しにくいこと、また多少おこしたとしても後に一
括除去してしまうため真空蒸着法やスパツタリン
グ法等に比べて簡便に金属層を形成できる塗布法
も採用できるようになつた。
The second effect is that since the water-soluble polymer film as an intermediate layer is removed all at once, it is necessary to consider the effect on the underlying metal layer deposition process compared to when depositing a metal layer directly on the resist layer. The range of methods for depositing the film has been expanded. For example, when a silver particle paste containing an organic solvent (so-called silver paste) is used as a material for forming a conductive layer, when directly applying a resist layer, surface roughness called "fogging" tends to occur, but with this method, the intermediate layer is water-soluble. It is less likely to cause "blurring" due to organic solvents, and even if some rashing occurs, it can be removed all at once, making it possible to use coating methods that can form metal layers more easily than vacuum evaporation methods, sputtering methods, etc. It became like that.

以下、本発明の実施の一例を図面を参照して説
明する。
Hereinafter, an example of implementation of the present invention will be described with reference to the drawings.

第1図〜第5図の5つの図は転写ヤスクの製造
に本発明を適用した一例についてその工程順に示
したものである。
The five figures of FIGS. 1 to 5 show an example of the application of the present invention to the production of a transfer yask in the order of steps.

第1図において、101は厚さ0.2〜〜5mmの
ガラスないし石英の基板、102は紫外光を基板
の1/5以下しか透過しない遮光層、例えば、700Å
〜2000Å厚さのポリシリコン膜、クロム酸化膜等
である。遮光層は一般に行われているようにスパ
ツタリング法、蒸着法等で堆積したものでよい。
該膜上に、膜厚約0.1〜2μmの電子線レジスト
を塗布し103とする。ついで約80℃〜100℃で
15分間程度乾燥後、厚さ500Å〜2000Å程度の水
溶性高分子材料からなる層104を回転塗布す
る。例えば平均重合度500程度のポリビニルアル
コールを約1〜5g/100mlの濃度にした水溶液が
使い易い。該水溶性高分子膜上に酢酸エチルで希
釈した銀ペーストを厚さ250Å〜750Å程度回転塗
布して導電層105とする。この状態を示したの
が第2図である。
In FIG. 1, 101 is a glass or quartz substrate with a thickness of 0.2 to 5 mm, and 102 is a light shielding layer that transmits less than 1/5 of the ultraviolet light of the substrate, for example, 700 Å thick.
~2000 Å thick polysilicon film, chromium oxide film, etc. The light shielding layer may be deposited by a commonly used sputtering method, vapor deposition method, or the like.
An electron beam resist 103 having a thickness of about 0.1 to 2 μm is coated on the film. Then at about 80℃~100℃
After drying for about 15 minutes, a layer 104 made of a water-soluble polymer material having a thickness of about 500 Å to 2000 Å is spin-coated. For example, an aqueous solution of polyvinyl alcohol with an average degree of polymerization of about 500 at a concentration of about 1 to 5 g/100 ml is easy to use. Silver paste diluted with ethyl acetate is spin-coated onto the water-soluble polymer film to a thickness of about 250 Å to 750 Å to form a conductive layer 105 . FIG. 2 shows this state.

なお、導電層としては蒸着法により堆積した
250Å〜1000Å程度のA膜を用いてもよい。導
電層は蒸着法による方が膜厚を制御しやすいし、
材料面でも選択範囲が広く、電子の貫通しやすい
軽元素、例えばA等を用いることができるし、
同一膜厚では回転塗布によるものよりも二桁以上
導電層に優れた導電層が得られる利点がある。
Note that the conductive layer was deposited by vapor deposition.
An A film having a thickness of about 250 Å to 1000 Å may be used. It is easier to control the thickness of the conductive layer by vapor deposition,
In terms of materials, there is a wide selection range, and light elements such as A, which are easily penetrated by electrons, can be used.
At the same film thickness, there is an advantage that a conductive layer that is two orders of magnitude more superior to that obtained by spin coating can be obtained.

しかし反面、大型の真空装置を必要とする点で
回転塗布法に比べ生産性では幾分劣る。現在、実
用的に用いられている5×10-4Q/cm2〜5×
10-7Q/cm2程度の感度を有する電子線レジストを
用いLSIの標準的パターンを用いて露光面積が全
体の25%程度となるように露光したところ、導電
層の抵抗として10MΩ/cm2以下であれば0.2μ以
上の高精度パターンが得られたので簡便な塗布法
の方が使用しやすいとも云える。
However, on the other hand, it is somewhat inferior in productivity compared to the spin coating method in that it requires a large vacuum device. 5×10 -4 Q/cm 2 to 5× currently in practical use
When an electron beam resist with a sensitivity of about 10 -7 Q/cm 2 was exposed using a standard LSI pattern so that the exposed area was about 25% of the total, the resistance of the conductive layer was 10 MΩ/cm 2 If it is below, a highly accurate pattern of 0.2μ or more was obtained, so it can be said that a simple coating method is easier to use.

電子線露光の加速電圧としては10KeV〜25KeV
が用いられるが、最も低い加速電圧である10KeV
でも貫通深さがAで約10000Å、銀で約3300Å
あるので、本発明による導電層の存在がパターン
描画に与える影響はきわめて小さい。
Acceleration voltage for electron beam exposure is 10KeV to 25KeV
is used, but the lowest acceleration voltage is 10KeV.
However, the penetration depth is about 10,000 Å for A and about 3,300 Å for silver.
Therefore, the presence of the conductive layer according to the present invention has a very small influence on pattern drawing.

第2図の構造のものに対して電子線露光を施し
た後、全体を150℃〜40℃程度の水に浸漬し、水
溶性高分子材料であるポリビニルアルコール層1
04を溶解除去すると同時に該層上の導電層10
5をも一緒に剥離する。したがつてポリビニルア
ルコール層への水の浸入が行い易いように適当に
撹拌したり水をある程度加温するなどした方が具
合がよい。こうして充分水洗して導電層をとり除
いた状態が第3図である。この状態では電子線レ
ジスト層103は電子線に部分的に感応しパター
ンを潜像として保持している。従つてこの後現像
液にて電子線レジストを処理し所望のレジストパ
ターン106を得る。この状態が第4図である。
After exposing the structure shown in Figure 2 to electron beams, the entire body is immersed in water at a temperature of about 150°C to 40°C, and the polyvinyl alcohol layer 1, which is a water-soluble polymer material, is
04 is dissolved and removed, and at the same time the conductive layer 10 on the layer is removed.
5 is also peeled off. Therefore, it is better to appropriately stir or heat the water to a certain extent so that water can easily penetrate into the polyvinyl alcohol layer. FIG. 3 shows the state in which the conductive layer has been removed by thorough washing with water. In this state, the electron beam resist layer 103 is partially sensitive to the electron beam and retains the pattern as a latent image. Therefore, the electron beam resist is then treated with a developer to obtain a desired resist pattern 106. This state is shown in FIG.

以後は湿式エツチング、乾式エツチング等に通
常用いられている蝕刻技術により遮光層を選択加
工した後、不要であるならばパターン化した電子
線レジストをとり除けば第5図に示す転写マスク
が得られる。
Thereafter, the light-shielding layer is selectively processed by etching techniques commonly used in wet etching, dry etching, etc., and if unnecessary, the patterned electron beam resist is removed to obtain the transfer mask shown in Figure 5. .

以上、説明を明瞭にするため、本発明を光学露
光用マスクに適用した例を選んで説明したが、本
発明の適用範囲は何も光学露光用マスクに限られ
るものではない。下地を構成する絶縁性基板もま
たガラスやサフアイア等に限られるわけではな
い。他の素材、例えば半導体基板でも有効である
し、又水溶性高分子としてはポリビニルアルコー
ル以外にもポリエチレングリコール、ポリビニル
ピロリドン等も用いることができるのは当然なこ
とである。
For clarity of explanation, the present invention has been explained by selecting an example in which it is applied to an optical exposure mask, but the scope of application of the present invention is not limited to optical exposure masks. The insulating substrate constituting the base is also not limited to glass, sapphire, or the like. It goes without saying that other materials such as semiconductor substrates are also effective, and as water-soluble polymers other than polyvinyl alcohol, polyethylene glycol, polyvinylpyrrolidone, etc. can also be used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図に至る5つの図は本発明を光学
露光用マスクの製造に適用した一実施例につい
て、その製造の工程の順をおつて示した図面であ
る。 図中、101はガラス又は石英等の絶縁性透明
基板を、102はポリシリコン等からなる遮光層
を、103は電子線レジストの層を、104は水
溶性高分子材料からなる層を、105はAもし
くは銀等からなる導電層を、106は得られた電
子線レジストの電気を、それぞれ示す。
The five figures from FIG. 1 to FIG. 5 are drawings showing the order of manufacturing steps in an embodiment in which the present invention is applied to the manufacturing of an optical exposure mask. In the figure, 101 is an insulating transparent substrate such as glass or quartz, 102 is a light shielding layer made of polysilicon, etc., 103 is a layer of electron beam resist, 104 is a layer made of water-soluble polymer material, and 105 is a layer made of water-soluble polymer material. A or a conductive layer made of silver or the like is shown, and 106 shows the electricity of the obtained electron beam resist, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 電気的絶縁素材上に形成した電子線レジスト
をパターン化するに、該電子線レジスト上に水溶
性高分子材料からなる層を形成し、更にこの水溶
性高分子材料からなる層の上に充分に電子線が透
過し得る厚さの導電層を形成し、この導電層およ
び水溶性高分子材料からなる層を通して電子線レ
ジストを感応させ、しかる後水溶性高分子材料か
らなる層を溶解除去すると共に前記導電層をリフ
トオフし、その後電子線レジストを現象処理する
ことを特徴とした、電気絶縁素材上に電子線レジ
ストパターンを形成する方法。
1. To pattern an electron beam resist formed on an electrically insulating material, a layer made of a water-soluble polymer material is formed on the electron beam resist, and a sufficient amount of A conductive layer having a thickness that allows electron beams to pass through is formed, an electron beam resist is sensitized through this conductive layer and a layer made of a water-soluble polymer material, and then the layer made of a water-soluble polymer material is dissolved and removed. A method for forming an electron beam resist pattern on an electrically insulating material, characterized in that the conductive layer is lifted off at the same time, and then the electron beam resist is processed.
JP1356379A 1979-02-08 1979-02-08 Method for forming electronic-beam resist pattern on electrical insulating material Granted JPS55105331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1356379A JPS55105331A (en) 1979-02-08 1979-02-08 Method for forming electronic-beam resist pattern on electrical insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1356379A JPS55105331A (en) 1979-02-08 1979-02-08 Method for forming electronic-beam resist pattern on electrical insulating material

Publications (2)

Publication Number Publication Date
JPS55105331A JPS55105331A (en) 1980-08-12
JPS6151414B2 true JPS6151414B2 (en) 1986-11-08

Family

ID=11836632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1356379A Granted JPS55105331A (en) 1979-02-08 1979-02-08 Method for forming electronic-beam resist pattern on electrical insulating material

Country Status (1)

Country Link
JP (1) JPS55105331A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0715868B2 (en) * 1983-09-30 1995-02-22 株式会社東芝 Pattern formation method
CN111320164A (en) * 2020-02-28 2020-06-23 南方科技大学 Preparation method of suspended graphene structure, suspended graphene structure obtained by preparation method and application of suspended graphene structure

Also Published As

Publication number Publication date
JPS55105331A (en) 1980-08-12

Similar Documents

Publication Publication Date Title
US3508982A (en) Method of making an ultra-violet selective template
KR100298609B1 (en) Method for manufacturing photo mask having phase shift layer
JP2883798B2 (en) Semiconductor device patterning method
JPS5851412B2 (en) Microfabrication method for semiconductor devices
JPH035573B2 (en)
US5139922A (en) Method of making resist pattern
JPH1197328A (en) Method for forming resist pattern
JPH0466345B2 (en)
JPS6151414B2 (en)
EP0030604A2 (en) Photoresist image hardening process
JPS6340306B2 (en)
JPH0795509B2 (en) Method of forming resist pattern
US3951659A (en) Method for resist coating of a glass substrate
US3701659A (en) Photolithographic masks of semiconductor material
JPS6024933B2 (en) Electron sensitive inorganic resist
JP2580681B2 (en) Method for manufacturing semiconductor device
JPH0542810B2 (en)
JPH02156244A (en) Pattern forming method
JPS6152567B2 (en)
JPS63254728A (en) Forming method for resist pattern
JPS6040184B2 (en) Manufacturing method of semiconductor device
JPH11204414A (en) Pattern formation method
JPS6411938B2 (en)
JPH04304452A (en) Photomask provided with phase shift layer and its production
JPS6259950A (en) Ionizing radiation sensitive positive type resist