JPS6057970A - Manufacturer of semiconductor device - Google Patents

Manufacturer of semiconductor device

Info

Publication number
JPS6057970A
JPS6057970A JP16515283A JP16515283A JPS6057970A JP S6057970 A JPS6057970 A JP S6057970A JP 16515283 A JP16515283 A JP 16515283A JP 16515283 A JP16515283 A JP 16515283A JP S6057970 A JPS6057970 A JP S6057970A
Authority
JP
Japan
Prior art keywords
gate electrode
gate
resist
diffusion layer
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16515283A
Other languages
Japanese (ja)
Inventor
Takashi Saigo
西郷 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16515283A priority Critical patent/JPS6057970A/en
Publication of JPS6057970A publication Critical patent/JPS6057970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To obtain an MOS semiconductor device of high reliability enabled to be formed in high density, in high integration and to act at a high speed by a method wherein high concentration diffusion regions are formed by introducing impurities of concentration higher than impurities introduced when a diffusion layer region is to be formed using a gate electrode and a film formed on the side wall thereof as masks. CONSTITUTION:After a gate oxide film 2 and a gate electrode 3 are formed on a P type substrate 1, phosphorus ions are implanted. Then a nitride film 5 is adhered, and when RIE is performed, the nitride film 5 are left on the side walls of the gate electrode 3. Then after a resist 6 is applied, the resist on a source and on the gate in the neighborhood of the source is removed. Then the nitride film 5 of the side wall part is removed using the resist as a mask, and when the resist is removed, the nitride film 5 is left at the gate side wall part of the drain side. Then when arsenic ions are implanted using the gate electrode 3 and the nitride film 5 of the gate side wall part as masks, a high concentration diffusion layer region 7 is formed by selfalignment with the gate electrode 3 on the source side, a low concentration diffusion layer region 4 is formed by selfalignment with the gate electrode 3 on the drain side, and a high concentration diffusion layer region 7 is formed by selfalignment at the position separated from the gate electrode 3.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、MO8型半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method of manufacturing an MO8 type semiconductor device.

〔従来技術とその問題点〕[Prior art and its problems]

従来よシ半導体装置の高密度・高集積・高速化に伴い、
MO8型トランジスタの微細化がなされている。このよ
うな微細MO8型トランジスタでは、特にドレイン近傍
での電界集中によりいわゆるホットエレクトロンが生じ
、基板電流やゲート電流が増大する。これらはトランジ
スタのしきい鎗のシフトや、相補型半導体装置における
ラッチアップ現象を招く恐れがあル、半導体装置の信頼
性を低下させる。
With the increasing density, integration, and speed of conventional semiconductor devices,
MO8 type transistors have been miniaturized. In such a fine MO8 type transistor, so-called hot electrons are generated due to electric field concentration particularly near the drain, and the substrate current and gate current increase. These may cause a shift of the threshold of the transistor or a latch-up phenomenon in the complementary semiconductor device, thereby reducing the reliability of the semiconductor device.

従来、これらの対策としては、トランジスタのソース・
ドレイン近傍を低濃度拡散層とするT、I)■、)(L
ighly Doped Drain)構造や、Gra
dedJune t ion構造のトランジスタが提案
されている。
Conventionally, these countermeasures include
T, I)■,)(L with low concentration diffusion layer near the drain)
(highly Doped Drain) structure, Gra
Transistors with a ded June tion structure have been proposed.

Graded Junction構造のトランジスタは
、従来のトランジスタと比較して上記の欠点は抑制する
ものの、シーートチャネル効果の増大を招く欠虞がある
。LDD構造のトランジスタは」;記の欠点を抑制し、
微細MO8型トランジスタに適するものと言えるが、高
濃度ソース・ドレイン領域とゲート電極の領域とが重々
9合わないオフセットゲート構造となっている為、寄生
抵抗によりトランジスタの駆動能力(fm)が低下する
。%にソース側でのゲート電極とのオフセット構造はド
レイン近傍での電界集中を緩和する事に何ら効果をもた
らさず、駆動能力pmの低下だけをもたらしている。
Although transistors with a graded junction structure suppress the above-mentioned drawbacks compared to conventional transistors, they have the disadvantage of increasing sheet channel effects. The LDD structure transistor suppresses the following drawbacks,
Although it can be said to be suitable for micro MO8 type transistors, it has an offset gate structure in which the highly doped source/drain region and the gate electrode region do not overlap, resulting in a reduction in the driving capability (fm) of the transistor due to parasitic resistance. . %, the offset structure with respect to the gate electrode on the source side has no effect on alleviating the electric field concentration near the drain, and only causes a decrease in the driving capability pm.

〔発明の目的〕[Purpose of the invention]

この発明は、上述した従来装置の欠点を改良したもので
、高i度・高集積・高速化が可能で% Lかも信頼性の
高い半導体装置を製造する方法を提供することを目的と
する。
The present invention improves the above-mentioned drawbacks of the conventional device, and aims to provide a method for manufacturing a semiconductor device that can achieve a high degree of integration, high integration, high speed, and is highly reliable in terms of %L.

〔発明の概要〕[Summary of the invention]

この発明は、ゲート電極を形成した後グー)[極と自己
整合的に低濃度不純物を導入して拡散層を形成する工程
、その後ゲート側壁にレジスト以外の絶縁膜又は導電膜
を形成する工程、レジストを塗布した後、パターニング
をした後、ゲート側壁に形成した上記絶縁膜又は導電膜
のうち、ソース・ドレイン領域のうちのいずれか一方だ
けを除去しレジストを除去する工程、その後上記拡散層
領域を形成する際よりも、高濃度の不純物をゲート電極
及びその側壁に形成した膜をマスクとして導入して、冒
濃1B−拡散領域を形成することを特徴とする半導体装
置の製造方法である。
This invention includes a process of forming a diffusion layer by introducing low-concentration impurities in a self-aligned manner with the electrode after forming the gate electrode, and a process of forming an insulating film or a conductive film other than a resist on the side walls of the gate. After applying the resist and patterning, a step of removing only one of the source/drain regions of the insulating film or the conductive film formed on the gate sidewall and removing the resist, and then removing the resist, and then removing the resist. This method of manufacturing a semiconductor device is characterized in that a highly concentrated impurity is introduced using a film formed on the gate electrode and its sidewalls as a mask to form a highly concentrated 1B-diffusion region.

〔発明の効果〕〔Effect of the invention〕

この発明を用いることによシ、ドレイン側での拡散層領
域はゲート近傍は低濃度となシ、従来のL D I)構
造トランジスタと同様ドレイン側での電界集中を緩和す
ることが可能となシ、ホットエレクトロンによるしきい
値のシフトや基板電流・ゲート電流の増加を抑制し、か
つソース側はゲート電極と自己整合的に高濃度拡散層領
域が形成される為、従来のL D D構造のトランジス
タと比較して寄生抵抗は低減でき駆動能力ymの低下が
抑制される。
By using this invention, the diffusion layer region on the drain side has a low concentration near the gate, making it possible to alleviate the electric field concentration on the drain side, similar to the conventional LDI structure transistor. The conventional LDD structure suppresses threshold shift due to hot electrons and increases in substrate current and gate current, and a high concentration diffusion layer region is formed on the source side in self-alignment with the gate electrode. The parasitic resistance can be reduced compared to the transistor shown in FIG.

従って高密度・高集積・高速化が可能でしかも信頼性の
高い半導体装置が可能となる。
Therefore, it is possible to create a highly reliable semiconductor device that is capable of high density, high integration, and high speed.

〔発明の実施例〕[Embodiments of the invention]

発明の実施例として、Nチャネル11v10Sトランジ
スタについて本発明を適用した場合について述べる。オ
ず第1図ロに示すようにP型基板1にゲート酸化膜2、
ゲート電極3を形成した後燐を2×IQ13cm’のド
ーズ量、イオン注入する。第1図すに示すように窒化膜
5を被着してIt、 I E (IJアクティブ・イオ
ン・エツチング)を行ガうとゲート電極3の側壁には窒
化膜5が残る(第1図C)・。
As an embodiment of the invention, a case will be described in which the invention is applied to an N-channel 11v10S transistor. As shown in Figure 1B, a gate oxide film 2 is formed on a P-type substrate 1.
After forming the gate electrode 3, phosphorus ions are implanted at a dose of 2×IQ13 cm'. As shown in Figure 1, when the nitride film 5 is deposited and IJ (IJ active ion etching) is performed, the nitride film 5 remains on the side walls of the gate electrode 3 (Figure 1C).・.

次にレジスト6を塗布した後、ソースとゲートのソース
近傍のレジストを除去する。次にv、1図dに示すよう
に、レジストをマスクとして側壁部の窒化膜5を除去し
次にレジストを除去する。するとドレイン側のゲート側
壁部分には窒化膜5が残っている。ここでゲート電極3
とゲート側壁部の窒化膜5をマスクとして砒素を5X1
0cm のドーズ量、イオン注入する。すると第1図d
に示すように、ソース側は高濃度・拡散層領域7がゲー
ト電[3と自己整合的に形成され、ドレイン側は低濃度
拡散層領域4がゲート電i#li3と自己整合的に形成
され、高濃度拡散層領域7がゲート電極3と離れた位置
に整合的に形成される。次に第1図eに示すように0V
D8i0,8を被着した後、コンタクト開孔を行ない、
Al配線を行ない、ゲート用1配線9、ソース側配線1
0、ドレイン側配線11を形成する。
Next, after applying a resist 6, the resist near the source and gate is removed. Next, as shown in FIG. 1D, the nitride film 5 on the side wall portion is removed using the resist as a mask, and then the resist is removed. Then, the nitride film 5 remains on the gate sidewall portion on the drain side. Here gate electrode 3
Arsenic was applied 5X1 using the nitride film 5 on the gate sidewall as a mask.
Ions are implanted at a dose of 0 cm2. Then, Figure 1 d
As shown in , on the source side, a highly doped diffusion layer region 7 is formed in self-alignment with the gate electrode [3, and on the drain side, a low concentration diffusion layer region 4 is formed in self-alignment with the gate electrode i#li3. , a high concentration diffusion layer region 7 is formed at a position apart from the gate electrode 3 in an aligned manner. Next, as shown in Figure 1e, 0V
After depositing D8i0,8, contact holes are made,
Perform Al wiring, 1 wiring 9 for gate, 1 wiring for source side.
0, the drain side wiring 11 is formed.

尚、ここではゲート側壁部へ被着した窒化膜5は残った
ままであるが、第1図dにおけるイオン注入を行なった
後、窒化膜5を除去してから0VDSiO,8を被着し
てもよい。
In this case, the nitride film 5 deposited on the gate sidewall remains, but even if the nitride film 5 is removed after the ion implantation shown in FIG. good.

〔発明の他の実施例〕[Other embodiments of the invention]

第1図a−,−eまではゲート側壁部に絶縁膜を用いる
場合を述べたが、導電膜を用いる場合も可能である。第
2図a、bにゲート側壁部に導電膜を用いた場合につい
て示している。第1図ロの後、1000℃ 10′程度
行なった後、多結晶シリコン12を被着し、夏に酸化す
る。その後RIBを行なうと、ゲート電極3の側壁には
多結晶シリコン12と酸化膜13が残る。この後第1図
Cと同様にレジストを塗布し、パターニングを行なった
後、ソース側の多結晶シリコンと酸化膜を除去する。そ
の後レジストを除去し、高濃度の砒素イオン注入を行な
い、高濃度拡散領域7を形成する。あとは第1図eに従
えばよい。
Although the case where an insulating film is used for the gate sidewall portion has been described up to FIGS. 1A and 1E, it is also possible to use a conductive film. FIGS. 2a and 2b show a case in which a conductive film is used on the gate sidewalls. After the process shown in FIG. 1B, polycrystalline silicon 12 is deposited and oxidized in the summer after heating at 1000° C. for about 10'. When RIB is then performed, polycrystalline silicon 12 and oxide film 13 remain on the sidewalls of gate electrode 3. Thereafter, a resist is applied and patterned in the same manner as in FIG. 1C, and then the polycrystalline silicon and oxide film on the source side are removed. Thereafter, the resist is removed and arsenic ions are implanted at a high concentration to form a high concentration diffusion region 7. All you have to do is follow the steps in Figure 1e.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の詳細な説明する断面図
、第2図(a) 、 (b)は他の実施例の断面図であ
る。 図において、 1・・・P型基板、2.13・・・酸化膜、3.12・
・・多結晶シリコン、4・・・低濃度拡散層、5・・・
窒化膜、6・・・レジスト、7・・・高濃度拡散層、8
・・・0VA)Sin。 膜、9,10.11・・・A70 代理人 弁理士 則 近 憲 佑 (他1名)\ \
FIGS. 1(a) to 1(e) are sectional views explaining the present invention in detail, and FIGS. 2(a) and 2(b) are sectional views of other embodiments. In the figure, 1...P type substrate, 2.13... Oxide film, 3.12...
...Polycrystalline silicon, 4...Low concentration diffusion layer, 5...
Nitride film, 6... Resist, 7... High concentration diffusion layer, 8
...0VA) Sin. Membrane, 9, 10.11...A70 Agent Patent attorney Nori Chika Kensuke (1 other person) \ \

Claims (1)

【特許請求の範囲】[Claims] ゲート電極形成後、ゲート電極と自己整合的に低濃度不
純物を導入して低濃度拡散層を形成する工程、その後ゲ
ート側壁にレジスト以外の絶縁膜又は導電膜を形成する
工程、レジストを塗布しゲート側壁に形成した前記絶縁
膜又は導電膜のソース・ドレイン側のいずれか一方だけ
を露出するよウニパターニングし、レジストをマスクと
してゲート側壁に形成した絶縁膜又は導電膜を除去した
後、レジストを除去する工程、前記低濃度拡散層を形成
する際よりも高濃度の不純物をゲート電極及びその側壁
に形成した膜をマスクとして導入することによシ高濃度
拡散層を形成する工程を具備することを特徴とする半導
体装置の製造方法。
After forming the gate electrode, there is a step of introducing low concentration impurities in self-alignment with the gate electrode to form a low concentration diffusion layer, then a step of forming an insulating film or a conductive film other than resist on the side walls of the gate, and a step of applying resist and forming the gate. Unipatterning is performed to expose only either the source/drain side of the insulating film or conductive film formed on the sidewall, and after removing the insulating film or conductive film formed on the gate sidewall using the resist as a mask, the resist is removed. and a step of forming a high concentration diffusion layer by introducing impurities at a higher concentration than when forming the low concentration diffusion layer using a film formed on the gate electrode and its sidewall as a mask. A method for manufacturing a featured semiconductor device.
JP16515283A 1983-09-09 1983-09-09 Manufacturer of semiconductor device Pending JPS6057970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16515283A JPS6057970A (en) 1983-09-09 1983-09-09 Manufacturer of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16515283A JPS6057970A (en) 1983-09-09 1983-09-09 Manufacturer of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6057970A true JPS6057970A (en) 1985-04-03

Family

ID=15806859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16515283A Pending JPS6057970A (en) 1983-09-09 1983-09-09 Manufacturer of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6057970A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633462A (en) * 1986-06-24 1988-01-08 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS633462A (en) * 1986-06-24 1988-01-08 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US4342149A (en) Method of making very short channel length MNOS and MOS devices by double implantation of one conductivity type subsequent to other type implantation
JP3077630B2 (en) Semiconductor device and manufacturing method thereof
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPH06326122A (en) Mos semiconductor device and its manufacture
JP2730535B2 (en) Method for manufacturing semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPS6057970A (en) Manufacturer of semiconductor device
JPH10163338A (en) Semiconductor device and its manufacturing method
JPH0738095A (en) Semiconductor device and its manufacturing method
JP3038740B2 (en) Method for manufacturing semiconductor device
JP3132455B2 (en) Method for manufacturing semiconductor device
JPS6057971A (en) Manufacture of semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH08213601A (en) Semiconductor device and its manufacturing method
JPH06196495A (en) Semiconductor device, complementary semiconductor device, and manufacture thereof
JPS6057969A (en) Semiconductor device and manufacture thereof
JPS6156448A (en) Manufacture of complementary semiconductor device
JPH0341773A (en) Semiconductor device and manufacture thereof
JP3347650B2 (en) Semiconductor device and manufacturing method thereof
JPS63129664A (en) Manufacture of semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device
JPS63164458A (en) Manufacture of bi-cmos element
JPH02155239A (en) Manufacture of semiconductor device