JPS6056427B2 - Manufacturing method of photoconductive member - Google Patents

Manufacturing method of photoconductive member

Info

Publication number
JPS6056427B2
JPS6056427B2 JP56033567A JP3356781A JPS6056427B2 JP S6056427 B2 JPS6056427 B2 JP S6056427B2 JP 56033567 A JP56033567 A JP 56033567A JP 3356781 A JP3356781 A JP 3356781A JP S6056427 B2 JPS6056427 B2 JP S6056427B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive
raw material
photoconductive layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56033567A
Other languages
Japanese (ja)
Other versions
JPS57149464A (en
Inventor
勇 清水
恭介 小川
英一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP56033567A priority Critical patent/JPS6056427B2/en
Priority to DE3208494A priority patent/DE3208494C2/en
Publication of JPS57149464A publication Critical patent/JPS57149464A/en
Publication of JPS6056427B2 publication Critical patent/JPS6056427B2/en
Priority to US06/867,624 priority patent/US4721664A/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は、グロー放電などを利用して、光導電層を所
定の支持体上に形成するに有効な光導電部材の製造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a photoconductive member that is effective for forming a photoconductive layer on a predetermined support using glow discharge or the like.

シリコン原子を母体とするアモルファス材料で構成さ
れる光導電層を形成する為の原料物質をガス状態で減圧
にし得る堆積室内に導入しグロー放電によるプラズマ現
象を利用して所定の支持体上に所望の特性を有する光導
電層を形成しようとする場合、殊に、大面積の層の場合
には、全面積に亘つてその層厚並びに、電気的、化学的
、光電的等の物理特性の均一化及び品質の均一化を計り
乍ら、その層形成速度を増大させることは、通常の真空
蒸着法に較べて非常に困難が附纒う。
Raw material for forming a photoconductive layer composed of an amorphous material containing silicon atoms as a matrix is introduced in a gaseous state into a deposition chamber that can be reduced in pressure, and is deposited on a desired support using a plasma phenomenon caused by glow discharge. When trying to form a photoconductive layer having the following characteristics, especially in the case of a large-area layer, it is important to ensure that the layer thickness and physical properties such as electrical, chemical, and photoelectric properties are uniform over the entire area. It is extremely difficult to increase the layer formation rate while achieving uniformity and quality, compared to ordinary vacuum evaporation methods.

例えば、SiF、又はSiH。 For example, SiF or SiH.

とSiF。の混合ガスを放電エネルギーを使つて分解し
支持体上に必要に応じて水素元子を含むハロゲン化アモ
ルファスシリコン(以後、a−Si: (X、H)と記
す)層を形成して、この層の電気物性を利用し様とする
場合、この層の電気特性が層形成時の層堆積速度及び支
持体温度に大きく依存する為、層の全領域における電気
物性の均一化と層品質の向上を計るには、層堆積速度を
低下させ、支持体温度を高める必要がある。 他方、生
産性、量産性の向上を計る点から、層堆積速度の増大さ
せる為に放電パワー及びガス流量を増大させることが考
えられるが、層堆積速度の増大の為に放電パワー及び/
又はガス流量を増すと形成される層は電気的、光学的及
び光導電的特性の低下、及びそれ等の特性の場所依存性
の増大の傾向が顕著てあつて、良品質の層を形成するこ
とが極めて困難であるのが現状である。
and SiF. The mixed gas is decomposed using discharge energy to form a halogenated amorphous silicon (hereinafter a-Si: (X,H)) layer containing hydrogen atoms as necessary on the support. When trying to utilize the electrical properties of a layer, it is necessary to make the electrical properties uniform in the entire area of the layer and improve the layer quality, since the electrical properties of this layer greatly depend on the layer deposition rate and support temperature during layer formation. To measure this, it is necessary to reduce the layer deposition rate and increase the support temperature. On the other hand, from the point of view of improving productivity and mass production, it is conceivable to increase the discharge power and gas flow rate in order to increase the layer deposition rate.
Or, the layer formed when the gas flow rate is increased has a remarkable tendency to decrease the electrical, optical and photoconductive properties, and to increase the location dependence of these properties, forming a layer of good quality. The current situation is that this is extremely difficult.

従つ”て、シリコン原子を母体とするアモルファス材料
て構成される光導電層を有する光導電部材の製造の工業
化を計るには、光感度及び繰返し使用特性及び使用環境
特性に深く関連する層品質の向上と特性上の均一ー様化
を保持して、再現性を含め、て、生産性、量産性の向上
を計る必要がある。 本発明は、上記の諸点に鑑み成さ
れたものであつて、生産的、量産的に極めて優れ、且つ
大面積に亘つて電気的、光学的及び光導的特性、層品質
の点及び層のバルク的緻密さと充填性の点に於いて極め
て良好な光導電層が容易に得ることが出来る光導電部材
の製造法も提案することを目的とする。又、本発明は大
きな面積の層てあつても全面積に亘つて、その物理的特
性及び層厚が実質的に均一であつて、使用環境特性、殊
に多湿高温下に於ける光導電的、電気的特性に優れてい
る層が再現性良く高効率・高速度で経済的に形成され得
る光導電部材の製造法を提案することも目的とする。
Therefore, in order to industrialize the production of photoconductive members having a photoconductive layer made of an amorphous material with silicon atoms as the matrix, layer quality, which is closely related to photosensitivity, repeated use characteristics, and use environment characteristics, must be developed. It is necessary to improve productivity and mass production by maintaining uniformity and variation in characteristics, including reproducibility.The present invention has been made in view of the above points. It is extremely excellent in terms of productivity and mass production, and has excellent photoconductivity over a large area in terms of electrical, optical and photoconductive properties, layer quality, and bulk density and filling properties of the layer. It is an object of the present invention to also propose a method for manufacturing a photoconductive member that can easily obtain a layer.Also, the present invention aims to provide a method for manufacturing a photoconductive member that can easily obtain a layer.Also, even if the layer has a large area, the physical properties and layer thickness can be maintained over the entire area. A photoconductive layer that is substantially uniform and has excellent photoconductive and electrical properties in the usage environment, especially under humid and high temperatures, can be formed economically with high efficiency and high speed with good reproducibility. The purpose is also to propose manufacturing methods for parts.

本発明の光導電部材の製造法は所望圧に減圧されている
堆積室内に光導電層形成用の原料物質をガス状態で導入
し、該原料物質のガス雰囲気中で放電を生起させること
により、光導電層形成用の支持体上に光導電層を形成す
る光導電部材の製造法に於いて、前記原料物質が一般式
SimHexk(但し、M,kは正整数、′は0又は正
整数′+k=加+2、Xはハロゲン原子を示す)て表わ
される混合物の少なくとも2種で構成され、これ等の前
記堆積室内に導される割合がmが最低次の化合物に対し
て、これよりもmが高次の化合物物が1V01%以上と
なる様に前記堆積室に前記原料物質を導入する事を特徴
とする。この様な特徴を有する本発明の光導電部材の製
造法によれば従来法に較べて著しく高効率・高速度で物
理的特性、光学的特性、電気的特性及び光電的特性に優
れ、層自体が緻密てあつて層充填度が高く、多湿高温下
ての使用環境特性に優れ、然も形成される層の全領域に
おいてそれ等の特性及,び層厚が均一ー様て、且つ大面
積のものが経済的に容易に形成し得るものである。
The method for producing a photoconductive member of the present invention involves introducing a raw material for forming a photoconductive layer in a gaseous state into a deposition chamber that has been reduced to a desired pressure, and causing a discharge in the gas atmosphere of the raw material. In a method for manufacturing a photoconductive member in which a photoconductive layer is formed on a support for forming a photoconductive layer, the raw material has the general formula SimHexk (where M and k are positive integers, and ' is 0 or a positive integer'). +k=+2, X represents a halogen atom), and the ratio of these introduced into the deposition chamber is m higher than that of the compound with the lowest m. The method is characterized in that the raw material is introduced into the deposition chamber so that the content of the higher-order compound is 1V01% or more. The method for producing a photoconductive member of the present invention having such characteristics has significantly higher efficiency and speed than conventional methods, has excellent physical properties, optical properties, electrical properties, and photoelectric properties, and has excellent physical properties, optical properties, electrical properties, and photoelectric properties. The layer is dense and has a high degree of layer filling, and has excellent usage environment characteristics under humid and high temperatures.In addition, these characteristics and layer thickness are uniform over the entire area of the formed layer, and the layer is large in area. This can be economically and easily formed.

殊に、本発明の製造法により得られた光導電部材は、電
子写真用として適用させた場合にその特性を最大限有効
に利用することが出来る。
In particular, when the photoconductive member obtained by the manufacturing method of the present invention is applied to electrophotography, its properties can be utilized to the maximum extent possible.

本発明に於いて、前記一般式〉ImHexkで表わされ
る化合物としては、光導電層形成用の堆積室内に導入さ
れる際には生産上の簡便さと原料の輸送性の点からガス
状態で導入される必要がある為に、常温常圧状態でガス
状の又は少なくとも層形・成条件下に於いて容易にガス
化し得るものが採用される。
In the present invention, when the compound represented by the general formula ImHexk is introduced into the deposition chamber for forming the photoconductive layer, it is introduced in a gaseous state from the viewpoint of ease of production and transportability of raw materials. Therefore, a material that is gaseous at room temperature and pressure, or at least easily gasified under layer forming/forming conditions, is used.

本発明に於ける一般式SlmHeXkで表わされる化合
物は、作成される光導電層を構成する構成原子としての
Si(シリコン)の生成用の原料物質として使用される
In the present invention, the compound represented by the general formula SlmHeXk is used as a raw material for producing Si (silicon) as constituent atoms constituting the photoconductive layer to be produced.

この様な原料物質として、本発明に於いて使用されるの
は、例えばSiX4,Si2X6,Si3X8,SiF
IX3,SiH2X2,SiH3X(XはF,Ce,B
r,l)が挙げられ、具体的にはSiF[4,SiCe
4,SiBr4,S114,S12F6,S12C16
,Si2Br6,Sj21(3,S13F8,S13C
′,SiHF′3,SiHCe3,SiF[Br3,S
iHl3,SiH2F2,SiH2Ce2,SiH3F
,SiH3C′等)のガス状態の又は容易にガス化し得
るものが有効なものとして挙げられる。
Examples of such raw materials used in the present invention include SiX4, Si2X6, Si3X8, and SiF.
IX3, SiH2X2, SiH3X (X is F, Ce, B
r, l), specifically SiF[4, SiCe
4, SiBr4, S114, S12F6, S12C16
, Si2Br6, Sj21 (3, S13F8, S13C
', SiHF'3, SiHCe3, SiF[Br3,S
iHl3, SiH2F2, SiH2Ce2, SiH3F
, SiH3C', etc.) which are in a gaseous state or can be easily gasified are effective examples.

本発明に於いては、前記の一般式て示される化合物の中
より選択された少なくとも2種の化合物のガス雰囲気中
にてグ七一放電を生起させること・により支持体上に光
導電層の形成を行うものてあるが、選択される化合物の
中mが高次の化合物を構成するものとしては、Sj2F
6,sl2ce6,Si2Br6,Si3F3が好まし
いものとして挙げられ、これ等は混合して用いたり、或
いはこれ等の中の”少なくとも1つを主成分となし、こ
れにmが高次の他の化合物を混合してmが高次の化合物
の混合物を構成する事も出来る。
In the present invention, a photoconductive layer is formed on a support by generating a gas discharge in a gas atmosphere of at least two compounds selected from the compounds represented by the above general formula. Among the selected compounds, m constitutes a higher order compound: Sj2F
Preferred examples include 6, sl2ce6, Si2Br6, and Si3F3, and these may be used in combination, or at least one of these may be used as the main component, and other compounds with higher m may be added. They can also be mixed to form a mixture of compounds with higher m.

殊にmが高次の化合物を構成するものとして、Sl2F
6,Si2Ce6,Si2Br6のいずれか一方か又は
両方とするか或いは、これ等のいずれか両方を主成分と
し、mが最低次のの化合物としてSiF4,sjce4
を使用する混合系はより好ましいものである。
In particular, as a compound where m constitutes a higher order, Sl2F
6, one or both of Si2Ce6, Si2Br6, or both of these as a main component, and m is the lowest order as a compound of SiF4, sjce4
A mixed system using the following is more preferable.

本発明に於いては、光導電層形成用の原料物質として、
前記の一般式で示される化合物の中より選択される少な
くとも2種を堆積室内に導入する割合がmが最低次の化
合物に対して、これよりもmが高次の化合物が通常は1
V0e%以上となる様にして構成される混合系のガス雰
囲気中でグ七一放電を生起させるものがあるが、前記の
割合関係は、好適には5V0e%以上、最適には10V
0e%以上とたれるのが望ましいものである。
In the present invention, as a raw material for forming a photoconductive layer,
The ratio of at least two selected from among the compounds represented by the above general formula introduced into the deposition chamber is usually 1 for the compound with m of the lowest order, and the compound with m higher than this.
There are some systems that generate a discharge in a mixed gas atmosphere configured to have a voltage of V0e% or more, but the above ratio relationship is preferably 5V0e% or more, optimally 10V.
It is desirable that the content is 0e% or more.

前記の割合関係の上限としては、混合系の原料物質を構
成する化合物の種類によつて所望に従つて適宜最適値が
決定されるものであるが通常の場合99V0e%、好適
には97v0′%とされるのが望ましいものである。
As for the upper limit of the above ratio relationship, the optimal value is determined as desired depending on the type of compound constituting the raw material of the mixed system, but it is usually 99V0e%, preferably 97V0'%. It is desirable that this is the case.

本発明に於いては前記の一般式で表わされる化合物より
選択される2種以上の化合物の各々は堆積室内に導入さ
れる際に、予め前記の割合に混合されて後に堆積室内に
導入されても良いし、又、前記の割合になる様に、各々
が別々に堆積室内に導入されても良い。
In the present invention, when each of two or more compounds selected from the compounds represented by the above general formula is introduced into the deposition chamber, they are mixed in advance in the above ratio and then introduced into the deposition chamber. Alternatively, each may be separately introduced into the deposition chamber so as to maintain the above ratio.

本発明に於いて、前記の一般式で示される化合物より選
択され、2種以上が組合されて使用される具体的な例が
第1表に示される。
In the present invention, Table 1 shows specific examples in which two or more of the compounds represented by the above general formula are used in combination.

第1表に示される組合せ例に於いて、より好ましいのは
組合せ例1〜10であり、殊に組合せ例1〜3,5〜8
の場合には、より顕著な効果が示される。
Among the combination examples shown in Table 1, combination examples 1 to 10 are more preferred, particularly combination examples 1 to 3, and 5 to 8.
In the case of , a more significant effect is shown.

本発明に於いては、原料物質の混合ガス系は光導電層形
成用の堆積室内に於いて、所定の濃度及びガス圧を得る
目的で雰囲気ガス、或いは他の層形成用の原料ガスを混
合して使用しても良い。
In the present invention, the mixed gas system of raw materials is mixed with atmospheric gas or other raw material gases for layer formation in order to obtain a predetermined concentration and gas pressure in a deposition chamber for forming a photoconductive layer. You can use it as well.

本発明に於いて使用される雰囲気ガスとしては、形成さ
れる光導電層に悪影響を及ぼさず、該層を構成する構成
原子の1つとなる原子て構成されているものか又は、全
くイナートなものが採用される。この様な雰囲気ガスと
成り得る物質としては、He,Ne,Ar等の稀ガス、
フッ素、塩素、臭素、ヨウ素のハロゲンガス、BrF,
ceF,ceF3,BrF5,BrF3,IF7,IF
5,ICe,IBr等のガス状の又はガス化し得るハロ
ゲン間化合物、IIF′,HCe,HBr等のハロゲン
化水素ガス及びH2を挙げることが出来る。
The atmospheric gas used in the present invention is one that does not have a negative effect on the photoconductive layer to be formed and is composed of atoms that become one of the constituent atoms of the layer, or one that is completely inert. will be adopted. Substances that can become such atmospheric gases include rare gases such as He, Ne, and Ar;
Fluorine, chlorine, bromine, iodine halogen gas, BrF,
ceF, ceF3, BrF5, BrF3, IF7, IF
5, gaseous or gasifiable interhalogen compounds such as ICe and IBr, hydrogen halide gases such as IIF', HCe and HBr, and H2.

これ等の雰囲気ガスとなる物質の中、殊に稀ガス、H2
等が有効なものとして使用することが出来る。
Among these substances that become atmospheric gases, especially rare gases, H2
etc. can be used as effective ones.

他の層形成用の原料ガスとなるものとしては、形成され
る光導電層の伝導型を支配する不純物原子を構成要素と
して含む物質て、ガス状態の又は容易にガス化し得るも
のが挙げられる。本発明の光導電部材の製造法に於いて
は、同じ特性及び層品質の光導電層を形成する場合には
、従来法に較べて、遥かに高速度で且つ経済的に層形成
出来る上に支持体温度及ひ放電パワーを格段に上げるこ
とが出来る。例えば本発明の目的を達成する特性と層品
質を有する光導電層を得る場合、支持体温度としては、
300℃以上、放電パワノーとしては、100W以上と
することが出来る。次に、本発明の光導電部材の製造法
によつて形成される光導電部材の典型的な例を挙けて、
本発明を更に説明する。第1図は、本発明によつて得ら
れる典型的な光導電部材の構成例を説明する為に模式的
に示した模式的構成図てある。
Examples of other raw material gases for layer formation include substances that are in a gaseous state or can be easily gasified, and that contain impurity atoms as constituent elements that control the conductivity type of the photoconductive layer to be formed. In the method for manufacturing a photoconductive member of the present invention, when forming a photoconductive layer with the same characteristics and layer quality, the layer can be formed at a much higher speed and economically than the conventional method. Support temperature and discharge power can be significantly increased. For example, when obtaining a photoconductive layer having properties and layer quality that achieve the objectives of the present invention, the support temperature may be
The temperature can be set at 300° C. or higher and the discharge power can be set at 100 W or higher. Next, typical examples of photoconductive members formed by the method of manufacturing photoconductive members of the present invention are given.
The present invention will be further explained. FIG. 1 is a schematic structural diagram schematically showing an example of the structure of a typical photoconductive member obtained by the present invention.

第1図に示す光導電部材100は、電子写真用又は撮像
装置用として適用させ得るものてあつて、光導電部材用
としての支持体101の上に、必要に応じて設けられる
中間層102、本発明の製造法に従つて設けられる光導
電層103とで構成される層構造を有している。
A photoconductive member 100 shown in FIG. 1 can be applied to electrophotography or an imaging device, and includes an intermediate layer 102 provided as necessary on a support 101 for the photoconductive member; It has a layered structure composed of a photoconductive layer 103 provided according to the manufacturing method of the present invention.

支持体101としては、導電性でも電気絶縁性であつて
も良い。
The support 101 may be electrically conductive or electrically insulating.

送電性支持体としては、例えば、NiCr,ステンレス
,Af,Br,MO,Au,Ir,Nb,Ta,V,T
i,Pt,Pd等の金属又はこれ等の合金が挙げられる
。電気絶縁性支持体としては、ポリエステル、ポリエチ
レン、ポリカーボネート、セルローズアセテート、ポリ
プロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポ
リスチレン、ポリアミド等の合成樹脂のフィルム又はシ
ート、ガラス、セラミック、紙等が通常使用される。
Examples of the power transmitting support include NiCr, stainless steel, Af, Br, MO, Au, Ir, Nb, Ta, V, T.
Examples include metals such as i, Pt, and Pd, and alloys thereof. As the electrically insulating support, films or sheets of synthetic resins such as polyester, polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyamide, glass, ceramic, paper, etc. are usually used. .

これ等の電気絶縁性支持体は、好適には少なくともその
一方の表面を導電処理され、該導電処理された表面側に
他の層が設けられるのが望ましい。例えば、ガラスであ
れば、その表面がNiCr,Al,Cr,MO,Au,
Ir,Nb,Ta,V,Tj,Pt,Pd,ln2O,
,SnO2,ITO(Irl2O3+SnO2)等の薄
膜を設けることによつて導電処理され、或いはポリエス
テルフィルム等の合成樹脂フィルムであれば、NiCr
,Ae,Ag,Pb,Zn,Ni,Au,Cr,MO,
Ir,Nb,Ta,■,Ti,Pt等の金属で真空蒸着
、電子ビーム蒸着、スパッタリング等で処.理し、又は
前記金属でラミネート処理して、その表面か導電処理さ
れる。
Preferably, at least one surface of these electrically insulating supports is conductively treated, and another layer is preferably provided on the conductively treated surface side. For example, if it is glass, its surface may be NiCr, Al, Cr, MO, Au,
Ir, Nb, Ta, V, Tj, Pt, Pd, ln2O,
, SnO2, ITO (Irl2O3+SnO2), etc., or if it is a synthetic resin film such as polyester film, NiCr
, Ae, Ag, Pb, Zn, Ni, Au, Cr, MO,
Metals such as Ir, Nb, Ta, ■, Ti, and Pt are processed by vacuum evaporation, electron beam evaporation, sputtering, etc. or laminated with the above-mentioned metal, and the surface thereof is subjected to conductive treatment.

支持体の形状としては、円筒状、ベルト状、板状等、任
意の形状とし得、所望によつて、その形状は決定される
が、例えば、第1図の光導電部材100を電子写真用像
形!成部材として使用するのであれば連続高速複写の場
合には、無端ベルト状又は円筒状とするのが望ましい。
中間層102は例えばシリコン原子及び炭素原子又は窒
素原子又はハロゲン原子(X)を含む、・非光導電性の
アモルファス材料で構成され、支持体101の側から光
導電層103中へのキャリアの流入を効果的に阻止し且
つ電磁波の照射によつて光導電層103中に生じ、支持
体101の側に向つて移動するフォトキャリアの光導電
層103の側から支持体101の側への通過を容易に許
す機能を有するものてある。
The shape of the support may be any shape, such as a cylinder, a belt, or a plate, and the shape is determined as desired. For example, the photoconductive member 100 in FIG. Statue! If used as a component for continuous high-speed copying, it is desirable to use an endless belt or cylindrical shape.
The intermediate layer 102 is made of a non-photoconductive amorphous material containing, for example, silicon atoms and carbon atoms, nitrogen atoms, or halogen atoms (X), and allows carriers to flow into the photoconductive layer 103 from the support 101 side. and prevents the passage of photocarriers generated in the photoconductive layer 103 and moving toward the support 101 from the side of the photoconductive layer 103 to the side of the support 101 due to the irradiation of electromagnetic waves. Some have the ability to easily forgive.

中間層102を形成するには、光導電層103の形成ま
で連続的に行うことが出来るからグロー放電法が採用さ
れるが、その場合には中間層形成用の原料ガスを、必要
に応じてHe,Ar等の稀釈ガスと所定量の混合比で混
合して、支持体101の設置してある真空堆積用の堆積
室に導入し、導入されたガス雰囲気中でグロー放電を生
起させることでガスプラズマ化して前記支持体101上
に中間層102を形成すれぱ良い。
To form the intermediate layer 102, a glow discharge method is adopted because it can be performed continuously up to the formation of the photoconductive layer 103, but in that case, the raw material gas for forming the intermediate layer may be changed as needed. By mixing it with a diluting gas such as He or Ar at a predetermined mixing ratio and introducing it into a deposition chamber for vacuum deposition in which the support 101 is installed, a glow discharge is generated in the introduced gas atmosphere. The intermediate layer 102 may be formed on the support 101 by converting it into gas plasma.

中間層102形成用の原料ガスに成り得るものとして有
効に使用される出発物質は、SiとHとを門構成原子と
するSiH4,Sl2He,,Si3H8,Si4H,
O,等のシラン(Sllane)類等の水素化硅素、N
を構成原子とする或いはN(5Hとを構成原子とする例
えば窒素(N2),アンモニア(NH3),ヒドラジン
(H2NNH2),アジ化水素(HN3),アジ化アン
モ・ニウム(NH4N3)等のガス状の又はガス化し得
る窒素、窒化物及ひアシ化物等の窒素化合物、CとHを
構成原子とする例えば炭素数1〜5の飽和炭化水素、炭
素数1〜5のエチレン系炭化水素、炭素数2〜4のアセ
チレン系炭化水素等、具体的には、飽和炭化水素として
はメタン(CH4),エタン(C2H6),プロパン(
C3H8),n−ブタン(n一C4HlO),ペンタン
(C5Hl。
Starting materials that can be effectively used as raw material gas for forming the intermediate layer 102 include SiH4, Sl2He, Si3H8, Si4H,
Silicon hydride such as silanes such as O, N
or N (5H) as a constituent atom, such as nitrogen (N2), ammonia (NH3), hydrazine (H2NNH2), hydrogen azide (HN3), ammonium azide (NH4N3), etc. Nitrogen compounds such as nitrogen, nitrides, and acyides that can be or are gasified, saturated hydrocarbons having 1 to 5 carbon atoms, such as saturated hydrocarbons having 1 to 5 carbon atoms, ethylene hydrocarbons having 1 to 5 carbon atoms, and nitrogen compounds having C and H as constituent atoms. Specifically, saturated hydrocarbons such as 2 to 4 acetylenic hydrocarbons include methane (CH4), ethane (C2H6), propane (
C3H8), n-butane (n-C4HlO), pentane (C5Hl.

),エチレン系炭化水素としては、エチレン(C2H4
),プロピレン(C3H6),ブテンー1(C4H8)
,ブテンー2(C4ll8),イソブチレン(C4H8
),ペンテン(C5HlO),アセチレン系炭化水素と
しては、アセチレン(C2H2),メチルアセチレン(
C3H4),ブテン(C4FI6)等、更に、これ等の
他に例えは、酸素(02),オゾン(03),一酸化炭
素(CO),:酸化炭素(CO2),一酸化窒素(NO
),二酸化窒素(NO2),一酸化二窒素(N2O)等
を挙げることが出来る。これらの中間層102形成用の
出発物質は、所定の原子が構成原子として、形成される
中間層102中に含まれる様に、層形成の際に適宜選択
されて使用する。
), ethylene hydrocarbons include ethylene (C2H4
), propylene (C3H6), butene-1 (C4H8)
, butene-2 (C4ll8), isobutylene (C4H8
), pentene (C5HlO), acetylene hydrocarbons include acetylene (C2H2), methylacetylene (
C3H4), butene (C4FI6), etc. In addition to these, examples include oxygen (02), ozone (03), carbon monoxide (CO), carbon oxide (CO2), nitrogen monoxide (NO
), nitrogen dioxide (NO2), dinitrogen monoxide (N2O), etc. These starting materials for forming the intermediate layer 102 are appropriately selected and used during layer formation so that predetermined atoms are included in the formed intermediate layer 102 as constituent atoms.

中間層102を構成する上記以外の物質としては、電気
絶縁性の金属酸化物を挙けることが出来る。
Materials other than those mentioned above constituting the intermediate layer 102 include electrically insulating metal oxides.

中間層102を構成する電気絶縁性の金属酸化物として
は、TlO2,ce2O3,ZrO2,HfO2,Ge
O2,caO,BeO,p2O5,Y2O3,cr2O
3,Ae2O3,MgO,MgO−Al2O3SiO2
・MgO等が好ましいものとして挙げることが出来る。
The electrically insulating metal oxides constituting the intermediate layer 102 include TlO2, ce2O3, ZrO2, HfO2, Ge
O2, caO, BeO, p2O5, Y2O3, cr2O
3, Ae2O3, MgO, MgO-Al2O3SiO2
- MgO etc. can be mentioned as preferred.

これ等は2種以上を併用して中間層102を形成しても
良いものである。を挙げることが出来る。
Two or more of these may be used in combination to form the intermediate layer 102. can be mentioned.

又、更には中間層102は、支持体101としてアルミ
ニウム又はアルミニウム合金を使用し、このアルミニウ
ム支持体又はアルミニウム合金支持体の表面をアルマイ
ト又はベーマイト処理に設けることも出来る。
Further, the intermediate layer 102 can also be formed by using aluminum or an aluminum alloy as the support 101 and subjecting the surface of the aluminum support or aluminum alloy support to alumite or boehmite treatment.

中間層102の層厚としては、通常の場合、30〜10
00A1好適には50〜600Aとされるのが望ましい
ものである。光導電層103は、下記に示す半導体特性
を有し、シリコン原子を母体とし、Xを含み、必要に応
じてHを含むアモルファス材料a−Si: (X,H)
て構成される。
The thickness of the intermediate layer 102 is usually 30 to 10
00A1 is preferably 50 to 600A. The photoconductive layer 103 is an amorphous material a-Si, which has the semiconductor properties shown below, has silicon atoms as its base material, contains X, and optionally contains H: (X,H)
It consists of

1P型a−Si: (H,X)・・・アクセプターのみ
を含むもの。
1P type a-Si: (H,X)... Contains only acceptor.

或いは、ドナーとアクセプターとの両方を含み、アクセ
プターの濃度(Na)が高いもの。5i型a−Si:
(H,X)・・・Na〜Nd〜Oのもの又は、Na〜N
dのもの。
Or one that contains both a donor and an acceptor and has a high acceptor concentration (Na). 5i type a-Si:
(H,X)...Na-Nd-O or Na-N
d's.

光導電層103の層厚としては、読取装置、固定撮像装
置或いは電子写真用像形成部材等の適用するものの目的
に適合させて所望に従つて適宜決定される。
The thickness of the photoconductive layer 103 is appropriately determined as desired in accordance with the purpose of the application, such as a reading device, a fixed imaging device, or an electrophotographic image forming member.

第1図に示される光導電層103の層厚としては、光導
電層103の機能及ひ中間層102の機能が各々有効に
活されている様に中間層102との層厚関係に於いて適
宜所望に従つて決められるものてあり、通常の場合、中
間層102の層厚に対して数百〜数千倍以上の層厚とさ
れるのが好ましいものである。
The layer thickness of the photoconductive layer 103 shown in FIG. The thickness can be determined as appropriate and desired, and in normal cases, it is preferably several hundred to several thousand times or more thicker than the thickness of the intermediate layer 102.

具体的な値としては、通常1〜100μ、好適には2〜
50μの範囲とされるのが望ましい。
The specific value is usually 1 to 100μ, preferably 2 to 100μ.
It is desirable that the thickness be in the range of 50μ.

第1図に示す光導電部材の光導電層中に含有されるXの
量、又はHとXの両者が含有される場合には(H+X)
の量は、通常の場合1〜40at0mjc%、好適には
5〜30at0mic%とされるのが望ましい。
The amount of X contained in the photoconductive layer of the photoconductive member shown in FIG. 1, or (H+X) when both H and X are contained.
It is desirable that the amount of is usually 1 to 40 at 0 mjc%, preferably 5 to 30 at 0 mic %.

光導電層103をn型又はp型とするには、層形成の際
に、n型不純物又は、p型不純物、或いは両不純物を形
成される層中にその量を制御し乍らドーピング几てやる
事によつて成される。
In order to make the photoconductive layer 103 n-type or p-type, doping is performed while controlling the amount of n-type impurity, p-type impurity, or both impurities in the layer during layer formation. It is accomplished by doing.

光導電層中にドーピングされる不純物としては、p型不
純物として、周期律表第■族Aの元素、例えば、B,A
e,Ga,In−Te等が好適なものとして挙げられ、
n型不純物としては、周期律表第Vly<Aの元素、例
えばN,P,AS,Sb,Bl等が好適なものとして挙
げられるが、殊にB,Ga,P,S埒が最適である。本
発明に於いて所望の伝導型を有する為に光導電層103
中にドーピングされる不純物の量は、所望される電気的
・光学的特性に応じて適宜決定されるが、周基律表第■
族Aの不純物の場合3×10−2at0mic%以下の
量範囲でドーピングしてやれば良く、周期律表第■族A
の不純物の場合には5×10−3at0mic%以下の
量範囲でドーピングしてやれば良い。
The impurities doped into the photoconductive layer include elements of group A of the periodic table, such as B and A, as p-type impurities.
Suitable examples include e, Ga, In-Te, etc.
Suitable n-type impurities include elements of Vly<A of the periodic table, such as N, P, AS, Sb, and Bl, with B, Ga, P, and S being particularly suitable. . In the present invention, the photoconductive layer 103 has a desired conductivity type.
The amount of impurities to be doped into the inside is determined as appropriate depending on the desired electrical and optical properties, but it is determined according to the
In the case of group A impurities, it is sufficient to dope in an amount range of 3 x 10-2 at0 mic% or less, and it is suitable for group A of group A of the periodic table.
In the case of impurities, doping may be carried out in an amount range of 5×10 −3 at0 mic % or less.

光導電層103中に不純物をドーピングするには、層形
成の際に不純物導入用の原料物質をガス状態て堆積室中
に光導電層103を形成する主原料物質と共に導入して
やれば良い。
In order to dope an impurity into the photoconductive layer 103, a raw material for impurity introduction may be introduced in a gaseous state into a deposition chamber together with the main raw material for forming the photoconductive layer 103 during layer formation.

この様な不純物導入用の原料物質としては、常温常圧て
ガス状態の又は、少なくとも層形成条件下で容易にガス
化し得るものが採用される。その様な不純物導入用の出
発物質として具体的には、PH3,P2H4,PF3,
PF5,PC′3,ASH3,ASF3,ASF5,A
SCe3,SbH3,SbF5,BiH3,BF3,B
Ce3,BBr3,B21−16,B4H10,j八H
99B5Hll9B6HlO9B6Hl29AfC′3
9等を挙げることが出来る。
As the raw material for introducing such impurities, those that are in a gaseous state at room temperature and pressure, or that can be easily gasified at least under layer-forming conditions, are employed. Specifically, starting materials for introducing such impurities include PH3, P2H4, PF3,
PF5, PC'3, ASH3, ASF3, ASF5, A
SCe3, SbH3, SbF5, BiH3, BF3, B
Ce3,BBr3,B21-16,B4H10,j8H
99B5Hll9B6HlO9B6Hl29AfC'3
I can name 9 etc.

実施例1完全にシールドされたクリーンルーム中に設置
された第2図に示す装置を用い、以下の如き操作によつ
て電子写真用像形成部材を作成した。
Example 1 Using the apparatus shown in FIG. 2 installed in a completely shielded clean room, an electrophotographic image forming member was prepared by the following operations.

表面が清浄された0.5w!n厚10CWi角のモリブ
デン(基板)202を堆積室201内の所定位置にある
固定部材203に堅固に固定した。ターゲット205,
206は多結晶高純度シリコン(99.999ノ%)を
高純度グラファイト(99.999%)上に設置したも
のである。基板202は、固定部材203内の加熱ヒー
ター204によつて±0.5℃の精度で加熱される。温
度は、熱電対(アルメルークロメル)によつて基板裏面
を直接測定されるようになされた。次いで系内の全バル
ブが閉じられていることを確認してからメインバルブ2
31を全関して一旦5×10−7t0rr程度まで真空
にされ(このとき、系の全バルブは閉じられている)、
補助バルブ229および流出バルブ224,225,2
28が開かれフローメーター237,238,241内
が十分に脱気された後、流出バルブ224,225,2
28と補助バルブ229が閉じられた。
0.5w with clean surface! A molybdenum (substrate) 202 with a thickness of n and 10 CWi square was firmly fixed to a fixing member 203 at a predetermined position in the deposition chamber 201 . target 205,
206 is a structure in which polycrystalline high purity silicon (99.999%) is placed on high purity graphite (99.999%). The substrate 202 is heated with an accuracy of ±0.5° C. by a heater 204 inside the fixing member 203. Temperature was measured directly on the backside of the substrate by a thermocouple (Almeru Cromel). Next, after confirming that all valves in the system are closed, close main valve 2.
31 was once evacuated to about 5 x 10-7 t0rr (at this time, all valves in the system were closed),
Auxiliary valve 229 and outflow valves 224, 225, 2
28 is opened and the flow meters 237, 238, 241 are sufficiently degassed, the outflow valves 224, 225, 2 are opened.
28 and auxiliary valve 229 were closed.

Ar(純度99.999%)ガスボンベ213のバルブ
218を開け、出口圧力計236の読みが1k9/CI
Lになる様に調整された後、流入バルブ223が開けら
れ、続いて流出バルブ228が徐々に開けられ、Arガ
スを室201内に流入させた。ピラニーゲージ242の
指示が5刈0−4t0rrになるまで、流出バルブ22
8が徐々に開けられ、このの状態で流量が安定してから
、メインバルブ231が徐徐に閉じられ、室内圧が1×
10−2t0rrになるまで開口が絞られた。シャッタ
ー208を開として、フローメータ241が安定するの
を確認してから、高周波電源243を0N状態にし、タ
ーゲット205,206および固定部材203間に13
.56MHz,100Wの交流電力が入力された。この
条件で安定した放電を続ける様にマッチングを取りなが
ら層を形成した。この様にして1分間放電を続けて10
0A厚の中間層を形成した。その後高周波電源243を
0FF状態にし、放電を一旦中止させた。引き続いて流
出バルブ228、流入バルブ223を閉じ、メインバル
ブ231を全関して室201内のガスを抜き、5×10
−7t0rrまで真空にした。その後ヒータ204の−
入力電圧を上昇させ、基板温度を検知しながら入力電圧
を変化させ、400゜Cの一定値になるまで安定させた
。その後、補助バルブ229、次いで流出バルブ228
を全関し、フローメーター241内も十分.脱気真空状
態にされた。
Open the valve 218 of the Ar (99.999% purity) gas cylinder 213, and the outlet pressure gauge 236 reads 1k9/CI.
After adjusting to L, the inflow valve 223 was opened, and then the outflow valve 228 was gradually opened to allow Ar gas to flow into the chamber 201. The outflow valve 22 is closed until the reading on the Pirani gauge 242 becomes 5-0-4t0rr.
8 is gradually opened, and after the flow rate is stabilized in this state, the main valve 231 is gradually closed, and the indoor pressure is reduced to 1×.
The aperture was narrowed down to 10-2t0rr. After opening the shutter 208 and confirming that the flow meter 241 is stable, the high frequency power source 243 is turned on and the 13
.. AC power of 56 MHz and 100 W was input. Under these conditions, the layers were formed while making matching so that stable discharge could continue. Continue discharging in this way for 1 minute and
An intermediate layer having a thickness of 0A was formed. Thereafter, the high frequency power supply 243 was turned off, and the discharge was temporarily stopped. Subsequently, the outflow valve 228 and inflow valve 223 are closed, and the main valve 231 is completely closed to remove the gas from the chamber 201.
Vacuum was applied to -7t0rr. After that, the heater 204 -
The input voltage was increased, and the input voltage was varied while detecting the substrate temperature until it stabilized at a constant value of 400°C. Then the auxiliary valve 229 and then the outflow valve 228
Regarding everything, the inside of the flow meter 241 is also well maintained. A degassed vacuum was applied.

補助バルブ229、流出バルブ228を閉じた後、B2
H6を10v′01ppm含むSl2F6ガス(以後B
2H6/Sl2F6と略す。純度99.999%)ボン
ベ209のバルブ214、SiF4ガス(純度99.9
99%)ボンベ210のバルブ215を開・け、出口圧
ゲージ232、233の圧を1k9/c!tに調整し、
流入バルブ219、220、223を徐々に開けてフロ
ーメーター237、238、241内へB2H6/Sj
2F6ガス、SiF4ガス、、−Arガスを各々流入さ
せた。引続いて、流出バルブ224、225、228を
徐々に開け、次いで補助バルブ229を徐々に開けた。
このときB2H6/Si2F6ガス流量とSiF4ガス
流量とArガス流量との比が30:1:69になるよう
に流入バルブ219、220、223を調整した。次に
ピラニーゲージ242の読みを注視しながら補助バルブ
229の開口を調整し、室201内が1刈0−2t0r
rになるまで補助バルブ229を開けた。室201内圧
が安定lしてから、メインバルブ231を徐々に閉じ、
ピラニーゲージ242の指示が0.2t0rrになるま
で開口を絞つた、ガス流入が安定し内圧が安定するのを
確認しシャッター208(電極を兼ねる。)を閉とし続
いて高周波電源243のスイッチを・0N状態にして、
電極203、シャッター208間に13.56MHzの
高周波電力を投入し室201内にグロー放電を発生させ
、150Wの入力電力とした。グロー放電を1時間持続
させて光導電層を形成した後、加熱ヒーター204をC
FF状態に゛し、高周波電源243も0FF状態とし、
基板温度が100゜Cになるのを持つてから流出バルブ
22牡225、228及び流入バルブ219、220、
223を閉じ、メインバルブ231を全開にして室20
1を10−5t0rr以下にした後、メインバルブ23
1を閉じ室201内をリークバルブ230によつて大気
圧として基板を取り出した。この場合、形成された層の
全厚は約20μであつた。こうして得られた像形成部材
を、帯電露光実験装置に設置し、16.0K■て0.2
sec間コロナ帯電を行い、直ちに光像を照射した。光
像は、タングステンランプ光源を用い、1.5eUX.
SeCの光量を透過型のテストチャートを通して照射さ
せた。その後直ちに、○荷電性の現像剤(トナーとキャ
リアーを含む)を部材表面にカスケードすることによつ
て、部材表面上に良好なトナー画像を得た。
After closing the auxiliary valve 229 and the outflow valve 228, B2
Sl2F6 gas containing 10v'01ppm of H6 (hereinafter referred to as B
It is abbreviated as 2H6/Sl2F6. (purity 99.999%) valve 214 of cylinder 209, SiF4 gas (purity 99.9%)
99%) Open the valve 215 of the cylinder 210 and set the pressure of the outlet pressure gauges 232 and 233 to 1k9/c! Adjust to t,
Gradually open the inflow valves 219, 220, 223 and inject B2H6/Sj into the flow meters 237, 238, 241.
2F6 gas, SiF4 gas, and -Ar gas were respectively introduced. Subsequently, the outflow valves 224, 225, 228 were gradually opened, and then the auxiliary valve 229 was gradually opened.
At this time, the inflow valves 219, 220, and 223 were adjusted so that the ratio of the B2H6/Si2F6 gas flow rate, the SiF4 gas flow rate, and the Ar gas flow rate was 30:1:69. Next, while watching the reading on the Pirani gauge 242, adjust the opening of the auxiliary valve 229 so that the inside of the chamber 201 is 0-2t0r.
The auxiliary valve 229 was opened until r. After the internal pressure of the chamber 201 becomes stable, the main valve 231 is gradually closed.
The opening was narrowed until the reading on the Pirani gauge 242 reached 0.2t0rr. After confirming that the gas inflow was stable and the internal pressure was stable, the shutter 208 (which also served as an electrode) was closed, and then the high-frequency power supply 243 switch was turned on. Set it to 0N state,
High frequency power of 13.56 MHz was applied between the electrode 203 and the shutter 208 to generate glow discharge in the chamber 201, resulting in an input power of 150 W. After continuing the glow discharge for one hour to form a photoconductive layer, the heating heater 204 is turned to C.
The high frequency power supply 243 is also set to 0FF state,
After the substrate temperature reaches 100°C, the outflow valves 22 225, 228 and the inflow valves 219, 220,
223 and fully open the main valve 231 to open the chamber 20.
1 to below 10-5t0rr, the main valve 23
1 was closed, the inside of the chamber 201 was brought to atmospheric pressure by the leak valve 230, and the substrate was taken out. In this case, the total thickness of the layer formed was approximately 20 microns. The image forming member thus obtained was placed in a charging exposure experiment apparatus, and was heated to 0.2
Corona charging was performed for sec, and a light image was immediately irradiated. The optical image was created using a tungsten lamp light source at 1.5eUX.
A light amount of SeC was irradiated through a transmission type test chart. Immediately thereafter, a good toner image was obtained on the surface of the member by cascading a developer (containing toner and carrier) with a chargeability of ◯ on the surface of the member.

部材上のトナー画像を、15.0K■のコロナ帯電で転
写紙上に転写した所、解像力に優れ、階調再現性のよい
鮮明な高濃度の画像が得られた。次に上記像形成部材に
就て、帯電露光実験装置でE5.5Kvで0.2sec
間のコロナ帯電を行い、直ちに1.5eUX−SeCの
光量で画像露光を行い、その後直ちに4荷電性の現像剤
を部材表面にカスケードし、次に転写紙上に転写・定着
したところ極めて鮮明な画像が得られた。この結果と先
の結果から、本実施例で得られた電子写真用像形成部材
は、帯電極性に対する依存性がなく両極性像形成部材の
特性を具備していることが判つた。
When the toner image on the member was transferred onto transfer paper by corona charging at 15.0 K, a clear, high-density image with excellent resolution and good gradation reproducibility was obtained. Next, the above-mentioned image forming member was exposed to light for 0.2 sec at E5.5 Kv using a charging exposure experiment device.
Immediately after performing corona charging between was gotten. From this result and the previous results, it was found that the electrophotographic image forming member obtained in this example had no dependence on charging polarity and had the characteristics of a bipolar image forming member.

実施例2 実施例1と同様の操作、条件にてモリブデン基板上に中
間層を形成した後、第2表に示す如くガスの種類、流量
相対値で、実施例1と同様の操作、条件にて中間層上に
光導電層を形成した。
Example 2 After forming an intermediate layer on a molybdenum substrate under the same operations and conditions as in Example 1, the intermediate layer was formed on a molybdenum substrate under the same operations and conditions as in Example 1, using the gas types and relative flow rates as shown in Table 2. A photoconductive layer was formed on the intermediate layer.

このよにして得られた像形成部材を使用して実施例1と
同様にトナー像を形成したところ試料Aは05.5KV
のコロナ帯電、次いて画像露光、1荷電性トナーの組み
合わせの方が、良好なトナー像が得られた。一方試料B
は、逆に46.0KVのコロナ帯電、次いで画像露光、
θ荷電性トナーの組合わせの方が良好なトナー像が得ら
れた。
When a toner image was formed using the image forming member thus obtained in the same manner as in Example 1, sample A had a voltage of 05.5 KV.
A better toner image was obtained with the combination of corona charging, image exposure, and 1-chargeable toner. On the other hand, sample B
Conversely, 46.0KV corona charging, then image exposure,
A better toner image was obtained with the combination of θ-chargeable toners.

実施例3 実施例1と同様の操作、条件にてモリブデン基板上に中
間層を形成した後、第3表に示す如くガスの種類(必要
に応じて第2図のボンベ数を増加して)流量相対値て実
施例1と同様の操作、条件にて中間層上に光導電層を形
成した。
Example 3 After forming an intermediate layer on a molybdenum substrate using the same operations and conditions as in Example 1, the types of gases were changed as shown in Table 3 (by increasing the number of cylinders in Figure 2 as necessary). A photoconductive layer was formed on the intermediate layer under the same operation and conditions as in Example 1 with respect to the relative flow rate.

このようにして得られた像形成部材を生産性(堆積速度
)、特性(高温高湿中ての画質、くり返し動作)の両面
から検討した結果、本発明の目的を達成するには、混合
原料ガスのうち前記一般式て表わされる化合物のnが最
低次の化合物に対してこれより高次の化合物が1■o1
%含まれるようにして光導電層を形成する必要があるこ
とが判つた。
As a result of examining the image forming member obtained in this way from the viewpoint of productivity (deposition rate) and characteristics (image quality in high temperature and high humidity, repeated operation), it was found that in order to achieve the object of the present invention, it is necessary to use a mixed raw material. Among the gases, the compound represented by the above general formula has the lowest n, and the higher-order compound is 1■o1
It has been found that it is necessary to form the photoconductive layer so that the content is %.

【図面の簡単な説明】 第1図は本発明の製造法で作成される光導電部材の1実
施態様例の層構造を説明する為の模式的構成図、第2図
は本発明の製造法を具現化する為の装置の一例を示す模
式的説明図である。 100・・・光導電部材、101・・・支持体、102
・・・障壁層、103・・・非晶質層。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a schematic diagram for explaining the layer structure of one embodiment of a photoconductive member produced by the manufacturing method of the present invention, and FIG. FIG. 2 is a schematic explanatory diagram showing an example of a device for realizing the. 100... Photoconductive member, 101... Support, 102
... Barrier layer, 103 ... Amorphous layer.

Claims (1)

【特許請求の範囲】[Claims] 1 所望圧に減圧されている堆積室内に光導電層形成用
の原料物質をガス状態で導入し、該原料物質のガス雰囲
気中で放電を生起させることにより、光導電層形成用の
支持体上に光導電層を形成する光導電部材の製造法にお
いて、前記原料物質が一般式SimHlXk(但し、m
、kは正整数、lは0又は正整数で、l+k=2m+2
、Xはハロゲン原子を示す)で表わされる化合物の少な
くとも2種で構成され、これ等の前記堆積室内に導入さ
れる割合がmが最低次の化合物に対して、これよりもm
が高次の化合物が1vol%以上となる様に前記堆積室
に前記原料物質を導入する事を特徴とする光導電部材の
製造法。
1. A raw material for forming a photoconductive layer is introduced in a gaseous state into a deposition chamber that is reduced to a desired pressure, and a discharge is generated in the gas atmosphere of the raw material, thereby forming a layer on a support for forming a photoconductive layer. In the method for manufacturing a photoconductive member in which a photoconductive layer is formed on a substrate, the raw material has the general formula SimHlXk (where m
, k is a positive integer, l is 0 or a positive integer, and l+k=2m+2
, X represents a halogen atom), and the proportion of these compounds introduced into the deposition chamber is m higher than that of the compound with the lowest m
A method for producing a photoconductive member, characterized in that the raw material is introduced into the deposition chamber so that the content of the higher-order compound is 1 vol % or more.
JP56033567A 1981-03-09 1981-03-09 Manufacturing method of photoconductive member Expired JPS6056427B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP56033567A JPS6056427B2 (en) 1981-03-09 1981-03-09 Manufacturing method of photoconductive member
DE3208494A DE3208494C2 (en) 1981-03-09 1982-03-09 Process for producing a photoconductive element
US06/867,624 US4721664A (en) 1981-03-09 1986-05-27 Silicon film deposition from mixture of silanes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56033567A JPS6056427B2 (en) 1981-03-09 1981-03-09 Manufacturing method of photoconductive member

Publications (2)

Publication Number Publication Date
JPS57149464A JPS57149464A (en) 1982-09-16
JPS6056427B2 true JPS6056427B2 (en) 1985-12-10

Family

ID=12390116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56033567A Expired JPS6056427B2 (en) 1981-03-09 1981-03-09 Manufacturing method of photoconductive member

Country Status (1)

Country Link
JP (1) JPS6056427B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150712A (en) * 1984-08-11 1986-03-13 Hitachi Zosen Corp Automatic feeding device of remote-control type recipro cutting machine
JPS62165813U (en) * 1985-11-06 1987-10-21
JPH026983Y2 (en) * 1985-09-20 1990-02-20
JPH0217771Y2 (en) * 1986-01-23 1990-05-18
JPH0217772Y2 (en) * 1986-01-23 1990-05-18
JPH0440816Y2 (en) * 1985-09-20 1992-09-25

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6150712A (en) * 1984-08-11 1986-03-13 Hitachi Zosen Corp Automatic feeding device of remote-control type recipro cutting machine
JPH026983Y2 (en) * 1985-09-20 1990-02-20
JPH0440816Y2 (en) * 1985-09-20 1992-09-25
JPS62165813U (en) * 1985-11-06 1987-10-21
JPH0217771Y2 (en) * 1986-01-23 1990-05-18
JPH0217772Y2 (en) * 1986-01-23 1990-05-18

Also Published As

Publication number Publication date
JPS57149464A (en) 1982-09-16

Similar Documents

Publication Publication Date Title
US4405656A (en) Process for producing photoconductive member
GB2099600A (en) Photoconductive member
JPS6410069B2 (en)
JPS59119359A (en) Photoconductive material
JPS628781B2 (en)
JPS6056427B2 (en) Manufacturing method of photoconductive member
JPS649625B2 (en)
JPS6247303B2 (en)
JPS6348057B2 (en)
JPS6410068B2 (en)
JPS6341059B2 (en)
JPH0150905B2 (en)
JPS6331552B2 (en)
JPS6331553B2 (en)
JPS6325069B2 (en)
JPH0380307B2 (en)
JPS6050871B2 (en) Manufacturing method of photoconductive member
JPS6410066B2 (en)
JPS6410067B2 (en)
JPS6341060B2 (en)
JPS6331554B2 (en)
JPS6233305B2 (en)
JPS6335979B2 (en)
JP3412957B2 (en) Method for manufacturing light receiving member
JPS6345582B2 (en)