JPS6055593B2 - ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法 - Google Patents

ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法

Info

Publication number
JPS6055593B2
JPS6055593B2 JP55055153A JP5515380A JPS6055593B2 JP S6055593 B2 JPS6055593 B2 JP S6055593B2 JP 55055153 A JP55055153 A JP 55055153A JP 5515380 A JP5515380 A JP 5515380A JP S6055593 B2 JPS6055593 B2 JP S6055593B2
Authority
JP
Japan
Prior art keywords
zero
zinc
steel sheet
plating
spangle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55055153A
Other languages
English (en)
Other versions
JPS56152954A (en
Inventor
元 日戸
完五 酒井
勝士 斉藤
辰也 金丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55055153A priority Critical patent/JPS6055593B2/ja
Priority to AU66334/81A priority patent/AU525668B2/en
Priority to DE8181100551T priority patent/DE3172564D1/de
Priority to US06/228,698 priority patent/US4369211A/en
Priority to EP81100551A priority patent/EP0038904B1/en
Priority to CA000369374A priority patent/CA1153941A/en
Priority to BR8101646A priority patent/BR8101646A/pt
Publication of JPS56152954A publication Critical patent/JPS56152954A/ja
Publication of JPS6055593B2 publication Critical patent/JPS6055593B2/ja
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 本発明は均一なゼロスパングル溶融亜鉛合金メッキ鋼板
の製造方法に関するものである。
亜鉛は鉄に対し活性な金属であり且つイオン化した亜鉛
が安定な腐食生成物例えば塩基性炭酸亜鉛を形成し亜鉛
自身の腐食をコントロールすることから鉄鋼製品の防食
メッキとして古くから利用されている。
亜鉛メッキ鋼板の生産量は年間700方をにも及び表面
処理鋼板では第一の生産量である。最近は一層利用分野
が拡大され従来用いられていた使用環境より苛酷な雰囲
気での使用、強度の変形加工或いは耐食性、美観を付与
するため塗装素材として広く利用されるようになつた。
これらの需要に対処するためには従来の亜鉛メッキ組成
では必ずもし満足すべき結果が得られずメッキ成分、メ
ッキ組成、メッキ表面形状の改良が必要である。例えば
耐食性に関しては、自動車のように高濃度の塩化物の雰
囲気での耐久性、海水中、土壌中、高温度多湿な環境等
の使用に関しては現在の亜鉛メッキでは対処することが
困難である。塗装性に関しては塗装外観に悪影響を及ぼ
さないメッキ外観であり、且つリン酸塩、クロメート処
理等の塗装前処理が正常に可能であり、塗装した際には
ブリスター等の発生がなく、塗装後の耐食性が良いこと
が必要である。本来亜鉛は活性な金属であるため、塗膜
下の亜鉛と塗料のラジカル基が反応し金属石鹸によつて
密着性が劣化し易く、又傷部もしくはピンホール等の亜
鉛露出部は亜鉛の腐食が広がり塗膜の二次密着性が劣化
し易い傾向がある。又異種金属との接触によつてカソー
ド部の塗膜は生成するアルカリによつてブリスターを発
生する。以上述べたように亜鉛は塗装素地としては好ま
しい金属とは言えない。
幸いリン酸塩処理、クロメート処理等の化成処理技術に
よつて安定な絶縁性皮膜又は不働態皮膜によつて実用に
耐える素材″としてカラートタン、家庭電気製品に用い
られている。しカルながら本質的に亜鉛は上述した性質
があり、メッキ自身を合金化等によつて塗装下地材料と
しての品質を向上することが望ましい。特に苛酷な腐食
環境のもとでは亜鉛の活性度が強く;不溶性の密な絶縁
性腐食生成物が出来にくいため腐食速度を抑制するよう
な新規の合金組成の要求度が強い。又、加工に関しても
折曲げ、ブレス、ハゼ折り加工等従来の使用より強度の
加工に耐える密着性が要求され、更には、溶接性も優れ
ていなければならない。又長期的な展望では亜鉛の資源
櫃渇に対処するために省亜鉛型の低目付量型高品質の亜
鉛メッキ鋼板の開発が必須である。本発明は上述したよ
うな要求に答えるメッキ組成をベースにし、且つ、塗装
素地として優れたメッキ表面即ち均一で美麗なゼロスパ
ングル亜鉛合金メッキ鋼板を提供するものである。本発
明のメッキ組成はマグネシウムを0.1〜2.0%含む
溶融亜鉛メッキである。マグネシウムによる耐食性向上
効果は第1図に示すように非常に大きく、低目付量型で
且つ苛酷な腐食環境下でも実用可能なメッキ鋼板である
。第1図は無酸化炉に改良したゼンジマープロセスのパ
イロットラインでマグネシウムを加えた調合亜鉛浴(A
lO.2%、PbO.l%)を用い、後述するシールボ
ックスを用い窒素ガスワイピングによつてメッキ量を4
0f′イ、60yIrrt1100yIイに制御して製
造した溶融合金メッキ鋼板を塩水噴霧試験(JISZ2
37l法)によつて評価したものである。X軸はメッキ
量を示し、Y軸はメッキ面で赤錆が面積率で10%発生
する迄の時間を示している。直線Zはマグネシウムを加
えない浴でメッキした性能を示し、MZ−1は0.1%
、MZ−2は0.5%、MZ−3は1.0%、MZ−4
は2.0%マグネシウムを添加した浴からメッキした鋼
板の性能を示す。第1図はいずれも後述する本発明のプ
ロセスで製造したゼロスパングル面である。
マグネシウムニの添加は非常に優れた耐食性を示すが、
製造法は非常に困難である。即ちマグネシウムを添加し
た亜鉛浴組成を用いて製造するプロセスにおいては以下
述べる多くの問題がある。1点はマグネシウムの酸化に
よるド壬ロスの増大である。
2点は、ワイピング時の酸化により、表面が高融点の酸
化マグネシウムに変化し、皮張り現象および皮張り下の
溶融金属の流れにより不均一な縞状の流れ外観となる。
3点はメッキのスパングル形状が細くはなる4が、表面
の酸化マグネシウムにより現在行われているスプレー冷
却法では均一なゼロスパングル面が得られ難い。マグネ
シウムの添加によつてゼロスパングルを得る公知の技術
は鉛、アンチモン、スズ等のスパングルを成長させる金
属を微量に抑えた時に得られ、低品位の不純物濃度の高
い浴では美麗なゼロスパングルは得られ難い。又製品に
よつてはスパングルを必要とするものもあり、スパング
ルの有無を作り分ける浴組成、製造プロセスが必要であ
る。4点はメッキ量の薄目付制御技術が難しいことが挙
げられる。
連続溶融亜鉛メッキの目付制御はロール絞りからガスワ
イピング法に変り品質的に1もラインスピード面でも著
るしく発展した。しかしながら今日の技術水準において
すら連続電気亜鉛メッキ鋼板の目付量範囲3〜40y1
耐(20fIWtが一般的)を連続的に操業することは
難しい。本発明は以上の4点を解決した均一で美麗なゼ
・ロスパングル面を有する高品質の溶融合金亜鉛メッキ
鋼板の製造方法である。本製造方法は、従来の連続式溶
融亜鉛メッキプロセスの全てに適用出来、且つ、プロセ
スを改良する必要のない利点を持つている。即ち、本発
明のプロセスはマグネシウムの微細化効果とミスト急冷
によつてより効果的にゼロスパングル化し、マグネシウ
ムの酸化による様々な障害を酸素濃度制御によつて解決
したものである。酸素濃度を低い状態に抑えることによ
つてゼロスパングル化はより微細化し、且つ、目付制御
が可能となる。以下本発明の製造プロセスについて詳述
する。第2図は従来行われているポット部分を示してい
る。
ストリップ1は還元炉8、ターンダウンロール7、スナ
ウト6を通過して適正温度(通常は浴温)に制御されて
溶融メッキ浴5に入り浴面から出ると直ちにガスワイピ
ング装置4によつて目付量を制御し溶融状態でゼロスパ
ングル装置3で水又は水溶液のミストスプレーで急冷し
てゼロスパングル状に凝固しトップロール2を経て後面
に至るプロセスである。このプロセスに於て単純に5を
マグネシウム添加亜鉛合金浴にすると前述した如く実用
性のある製品および操業が得られない本発明プロセスの
一例を第3図および第4図に示す。
第3図について説明すると第2図のポット部にガスワイ
ピング装置14を内蔵した酸素濃度制御ボックス19(
以下シールボックスと記述)を設け、溶融亜鉛浴15は
マグネシウムを0.1〜2.0%含有している。シール
ボックス中の酸素濃度はガスワイピング装置に用いる不
活性ガス例えば窒素、燃焼廃ガス等によつて希釈され、
5000ppm以下に保たれ浴面およびシールボックス
中の亜鉛(スプラッシュ状の亜鉛、ストリップ表面の亜
鉛)の酸化を防止する。
第1図と異りマグネシウムおよび亜鉛の酸化を制御出来
るためワイピング装置先端のノズル先から出るガ又流速
を上げることが出来低目付量に制御出来る。又、ストリ
ップに付着したメッキはシールボックスを出て始めて酸
化凝固し始めるが完全に凝固表面に覆われるのはシール
ボックス出側から1〜4Tr1,(ストリップスピード
、板厚、目付量によつて異る)の地点であり充分に未凝
固域内でゼロスパングル装置13によつてゼロ化する時
間およびスペースを設けられる。第2図では、ワイピン
グ時にすでに酸化による凝固が開始され多量の酸素のた
めマグネシウムの酸化が急速に進行し、前述した如き不
均一な目付で完全なゼロスパングル面が得られ難い。又
、本発明の場合シールボックス出側で直ちに急冷される
ためメッキ層全体が凝固し前述した流れは発生しない。
第4図は、第3図に加えてストリップの振動を防止する
静圧流体バッド20を設けたものである。
ストリップの振動を防ぐことによつてワイピング装置1
4の先端のワイピングノズルをストリップに近接化する
ことが出来第3図よソー層低目付量型の溶融合金メッキ
鋼板を得ることが出来る。静圧流体バッドは、浴面から
トップロール12間に必要に応じ設置することが出来る
。シールボックス内の酸素濃度は5000ppm以下に
する。5000ppm以上では従来の大気中の如き欠陥
が現れる。
理想範囲は、500ppm以下に抑える。シールボック
スの構造は公開特許S−65138号等に記載されたも
の等を採用出来る。ワイピングガスは常温もしくはホッ
トガスを用いることが可能でホットガスの方が未凝固域
が広がるためゼロスパングル装置の設置域が広がる利点
がある。又、第4図の静圧流体バッドはストリップに対
向して対の形で設置し、静圧域が得られるような形状で
あればよい。バッドの形状の一例を第5図に示す。第5
図の21はストリップである。22は静圧流体バッドで
23はノズル板を示しガスは、矢印の方向に進みストリ
ップ21とノズル板23間で静圧Pを生じストリップの
振動を抑える以下メッキ浴組成について述べる。
本発明の組成はマグネシウムを重量で0.1〜2.0%
含有するメッキ浴に限る。第1図から明らかな如く、耐
食性の点で0.1%未満および20%超の添加はマグネ
シウムのメリットがない。
又、2.0%超はメッキ表面の変色、粘性アップ等の欠
陥が出、好ましくない。亜鉛、マグネシウム以外の第三
成分以下は特に限定する必要はない。高純度から低品位
もしくは合金メッキ浴まで本発明の製造方法によつて均
一なゼロスパングルを有する高品質の溶融合金メッキ鋼
板を得ることが可能である。以下本発明の実施例を述べ
る。
実施例1 第1表に示す浴組成を用いて無酸化炉(空燃比0.96
.炉温900′C)、還元炉(AXガス、炉温900℃
)、浴温45(代)のプロセスで亜鉛メッキ鋼板を製造
した。
浴面から第3図に示すシールボックスを用い(浴面近傍
酸素濃度は20ppm)窒素ガスワイピング(ノズルス
リット0.6W1,I7n1ノズル間隙20WL1Tr
t,、ワイピング圧力0.6kgIcI11ガス温度3
00〜35(代))で目付量を約90〜120y1イ(
片面)に制御しシールボックス出側で日本ランズバーグ
社の静電スプレー(REXGUN)を用い静電をかけず
に1%リン酸塩の水溶液をスプレーした(エアー圧力は
1.0k91a11ガン1ケ当りの吐出量は30m1/
分で行つた。得られたメッキ鋼板の耐食性(塩水噴霧試
験)、密着加工性(ボールインパクトニポンチ径6.5
TrL17TLφ、手打式)ゼロスパング・ル外観(実
体顕微鏡評価)の結果を第1表に示した。尚鋼板は0.
34mImのアルミキルド冷延板を用い、ラインスピー
ドは20TrL/分で行つた。
実施例2第4図に第5図の静圧流体バッド(スリット2
顛、角度45図、スリット長さ400×300Wi.、
ガス量10Nd/分、P=4hH20)をストリップに
対向して、15?に近接し、ワイピング装置のノズル(
スリット0.27H11.、角度30の1ノズル間10
!!Rll.)でガス圧力0.eK1.0S2.0k9
1CIiでワイピングを行つた。
シールボックス内の酸素濃度は5〜10ppmでガス窒
素を用いた。メッキ組成はMgO.5%添加した調合亜
鉛■号浴でラインスピードは100TrL/分で行いそ
の他の条件は実施例1に準じた。メッキ量は前述のガス
圧力の順に90、50、30f1a1!であつた。メッ
キ外観はいずれもスパングル径が約100pで均一なゼ
ロ外観であつた。又、密着性、耐食性も実施例1のNO
.3試料に略一致した結果を示した。尚、ミストスプレ
ーしないものはスパングル径10TrL′m程度のノル
マルスパングル形状が得られた。実施例3 実施例1で得られたNO.l(比較材)、NO.3(本
発明)、NO.6(本発明)についてカラー塗装ライン
を通板し、性能を調べた。
前処理はリン酸亜鉛系で付着量が0.5〜0.7y1W
t1塗装はプライマー(エポキシ系5μ)、上塗(アク
リル系5μ)いずれも焼付タイプで行つた。塩水噴霧で
はスクラツチ部分からの剥離巾が30叫間でNO.lが
3?、NO.3及びNO.6は1〜2Tn,1Tn,で
あつた。
又密着性はカラー鋼板テスト法(JISG33l2)に
準じいずれも問題ない品質を示した。実施例4 実施例1のNO.3について、ワイピングガスの温度を
常温の窒素を用いて製造し、スパングル径・約1001
AWLの均一なゼロスパングル外観を得た。
【図面の簡単な説明】
第1図は、本発明により製造したゼロスパングル溶融合
金メッキ鋼板(MZ−1、MZ−2)の塩水噴霧試験に
よるメッキ量と赤錆発生時間の結果である。 (Zは比較材である。)第2図は従来法によるゼロスパ
ングル亜鉛メッキ鋼板の製造プロセスを示す。第3図、
第4図は本発明の製造プロセスであり、第3図はワイピ
ング装置4を内蔵したシールボックス9を配し、第4図
は更に静圧流体バッド10を配している。第5図は静圧
流体バッドの一例を示しストリップ1と静圧流体バッド
2の前面のノズル板3間にガス流体が保持され静圧Pを
形成しストリップの振動を防止する。図中の1はストリ
ップ、2はトップロール、3はゼロスパングル装置、4
はガスワイピング装置、5はメッキ浴、6はスナウト、
7はターンダウンロール、8は還元炉である。

Claims (1)

    【特許請求の範囲】
  1. 1 マグネシウムを0.1〜2.0%含有する連続溶融
    亜鉛合金メッキ鋼板の製造方法において、浴面および浴
    面より出た合金メッキ被膜の未凝固域を酸素濃度500
    0ppm以下に制御したシールボックスで囲み、シール
    ボックスから出た鋼板に付着した合金メッキ被膜が未凝
    固の位置で水又は水溶液のミストにより強制冷却するこ
    とを特徴とするゼロスパングル溶融亜鉛合金メッキ鋼板
    の製造方法。
JP55055153A 1980-04-25 1980-04-25 ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法 Expired JPS6055593B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP55055153A JPS6055593B2 (ja) 1980-04-25 1980-04-25 ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法
AU66334/81A AU525668B2 (en) 1980-04-25 1981-01-20 Hot dip galvanizing steel strip with zinc based alloys
DE8181100551T DE3172564D1 (en) 1980-04-25 1981-01-26 Process for producing a hot dip galvanized steel strip
US06/228,698 US4369211A (en) 1980-04-25 1981-01-26 Process for producing a hot dip galvanized steel strip
EP81100551A EP0038904B1 (en) 1980-04-25 1981-01-26 Process for producing a hot dip galvanized steel strip
CA000369374A CA1153941A (en) 1980-04-25 1981-01-27 Process for producing a hot dip galvanized steel strip
BR8101646A BR8101646A (pt) 1980-04-25 1981-03-19 Processo para producao de uma tira de aco galvanizada por imersao a quente

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55055153A JPS6055593B2 (ja) 1980-04-25 1980-04-25 ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法

Publications (2)

Publication Number Publication Date
JPS56152954A JPS56152954A (en) 1981-11-26
JPS6055593B2 true JPS6055593B2 (ja) 1985-12-05

Family

ID=12990799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55055153A Expired JPS6055593B2 (ja) 1980-04-25 1980-04-25 ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法

Country Status (1)

Country Link
JP (1) JPS6055593B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3888784B2 (ja) * 1998-09-21 2007-03-07 日新製鋼株式会社 溶融Zn基めっき鋼板のエッジしわ防止法

Also Published As

Publication number Publication date
JPS56152954A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US4369211A (en) Process for producing a hot dip galvanized steel strip
JP5669824B2 (ja) 改善された外観を有する被覆金属バンドを製造する方法
US3962501A (en) Method for coating of corrosion-resistant molten alloy
JP2777571B2 (ja) アルミニウム−亜鉛−シリコン合金めっき被覆物及びその製造方法
JPS6330984B2 (ja)
JPH0324255A (ja) 溶融亜鉛めっき熱延鋼板の製造方法
JPS6055593B2 (ja) ゼロスパングル溶融亜鉛合金メツキ鋼板の製造方法
JPH0533312B2 (ja)
JP3888784B2 (ja) 溶融Zn基めっき鋼板のエッジしわ防止法
JPH11343559A (ja) 耐クラック性及び耐食性に優れた溶融Al−Zn系合金めっき鋼板
JP2001355051A (ja) 耐食性に優れた溶融Zn−Sn系めっき鋼板
JPH04160142A (ja) 溶融亜鉛系めっき鋼板とその製造方法
JPH0293053A (ja) 高耐蝕性溶融Zn−Mg系合金めっき鋼板の製造方法
JP3106635B2 (ja) プレス成形性およびスポット溶接性に優れた合金化溶融亜鉛メッキ鋼板の製造方法
JP3291111B2 (ja) Zn拡散層を有する溶融Al系めっき鋼板の製造方法
JPS5970753A (ja) 耐食性鋼板の製造方法
JP2841898B2 (ja) 表面平滑性に優れた合金化溶融亜鉛めっき鋼板
JP3302881B2 (ja) 優れた塗装後外観を与える溶融亜鉛系めっき鋼板
KR960011012B1 (ko) 광택성이 우수한 제로 스팡글(zero-spangle) 용융 아연도금강판 제조방법
CA1065204A (en) Zinc-aluminum eutectic alloy coating process and article
JP2001020049A (ja) 未塗装ならびに塗装後の耐食性に優れた溶融Zn−Al−Mgめっき鋼材およびその製造方法
JP3330333B2 (ja) 表面外観の良好な溶融Zn系めっき鋼板
JPS6348945B2 (ja)
JP3095935B2 (ja) 溶融Znメッキ方法
JPH042758A (ja) プレス成形性及び塗装耐食性に優れた溶融系合金亜鉛めっき鋼板の製造方法