JPS6043858A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6043858A
JPS6043858A JP15264983A JP15264983A JPS6043858A JP S6043858 A JPS6043858 A JP S6043858A JP 15264983 A JP15264983 A JP 15264983A JP 15264983 A JP15264983 A JP 15264983A JP S6043858 A JPS6043858 A JP S6043858A
Authority
JP
Japan
Prior art keywords
film
wiring
layer
high melting
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15264983A
Other languages
Japanese (ja)
Inventor
Takahiko Moriya
守屋 孝彦
Saburo Nakada
中田 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15264983A priority Critical patent/JPS6043858A/en
Publication of JPS6043858A publication Critical patent/JPS6043858A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve electro-migration-resistant characteristics and the reliability of a wiring by completely coating the exposed surface of a wiring pattern consisting of an Al film, an Al alloy film, etc. with a high melting-point metallic thin-film. CONSTITUTION:The ions of an impurity such as arsenic are implanted to a predetermined region in a p type silicon substrate 21 and thermally treated to form an n type diffusion layer 22, and the whole surface is coated with a film such as an SiO2 film or a PSG film as an insulating film 23. A contact hole 24 is bored at the prescribed position of the insulating film 23, Al films 25 are formed, and the Al films 25 are processed to predetermined wiring patterns. Tungsten films 26 are applied only on the exposed surfaces of the Al wiring patterns, and first wiring layers are shaped. An SiO2 film 27 is formed on the first wiring layers as an inter-layer insulating film 27, a through-hole 28 is bored, and second-layer Al wiring patterns are formed. A vapor phase growth film by the fluoride of molybdenum, niobium, tantalum or titanium may be used besides the tungsten film as a high melting-point metallic film.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電極配線層としてアルミニウム(AA )膜
若しくはAAを主成分とする合金膜を用いた半導体装置
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device using an aluminum (AA) film or an alloy film containing AA as a main component as an electrode wiring layer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、半導体装置の電極配線層とし2ては、スパッタリ
ング法により被着したAt膜が広く使われている。第1
図はAt配線を用いた2層配線構造を示す素子断面図で
ある。シリコン基板11中に拡散領域12を設けた後、
絶縁膜13を形成し、コンタクトホール14をあけて第
1層目のAt配線層15を形成する。次いで、層間の絶
縁膜16を堆積させ、スルーホール17をあけて第2層
目のAt配線層18を形成して2層配線構造が構成され
ている。
Conventionally, an At film deposited by a sputtering method has been widely used as the electrode wiring layer 2 of a semiconductor device. 1st
The figure is a cross-sectional view of an element showing a two-layer wiring structure using At wiring. After providing the diffusion region 12 in the silicon substrate 11,
An insulating film 13 is formed, a contact hole 14 is made, and a first At wiring layer 15 is formed. Next, an interlayer insulating film 16 is deposited, and a through hole 17 is formed to form a second At wiring layer 18, thereby forming a two-layer wiring structure.

このよう外構造を得る場合、層間絶縁膜16は通常40
0〔℃〕程度に基板を加熱して気相成長法によシ形成す
る。この際、第1層目のAt配線層15上には局部的に
突起(ヒロック)19を生じ易い。このヒロック19は
、層間絶縁膜16の異常成長を引きおこす要因となシ、
その結果絶縁膜16の機械的強度が弱くなシフラック2
0を生ずる。クラック20は層間絶縁膜16上の第2層
目のAt配線層18と第1層目のAt配線層15との間
の電気的短絡の原因となったシ、クラックを通しての水
の浸入などによるAt配線の腐食を引き起こすため、A
t配線の信頼性を著しく低下させる。
When obtaining such an external structure, the interlayer insulating film 16 usually has a thickness of 40 mm.
The substrate is heated to about 0° C. and formed by vapor phase growth. At this time, protrusions (hillocks) 19 are likely to be locally formed on the first At wiring layer 15. This hillock 19 is a factor that causes abnormal growth of the interlayer insulating film 16.
As a result, the mechanical strength of the insulating film 16 is weak.
yields 0. The crack 20 is caused by an electrical short circuit between the second At wiring layer 18 on the interlayer insulating film 16 and the first At wiring layer 15, or by water intrusion through the crack. Because it causes corrosion of At wiring,
This significantly reduces the reliability of the t-wiring.

一方、半導体集積回路では素子の微細化及び高集積化に
伴ないAt配線幅は2〔μm〕から1〔μm〕へと益々
微細化の方向にある。このよう々微細At配線では必然
的に電流密度が高くなるため、エレクトロマイグレーシ
ョンによる断線が大きな信頼性低下の一因となる。
On the other hand, in semiconductor integrated circuits, the At wiring width is becoming smaller and smaller from 2 [μm] to 1 [μm] as elements become smaller and more highly integrated. Since the current density is inevitably high in such fine At wiring, disconnection due to electromigration becomes a cause of a large decrease in reliability.

At配線のヒロック及びエレクトロマイグレーション防
止対策としては、従来いくつかの方法か提案されている
。例えばAA中に数%のCuを含有させた合金膜によシ
ヒロック及びエレクトロマイグレーションを防止する方
法があるが、この方法はAt配線の微細化に対して十分
でない。
Several methods have been proposed to prevent hillocks and electromigration in At wiring. For example, there is a method of preventing Schichlock and electromigration by using an alloy film containing several percent of Cu in AA, but this method is not sufficient for miniaturization of At wiring.

また、At配線層の中間或いは表面にT i + Cr
、Vなどの金属丑たはそれらの硅化物を設ける方法が提
案されている。この方法はエレクトロマイグレーション
防止の効果はおるが、ヒロック防止の点では、A7配線
の側面が被覆されていないため、At配線の側面にヒロ
ックが発生し、配線間及び配線層間の電気的絶縁性が十
分でない。また、素子の微細化に伴なって、コンタクト
ホール14及びスルーホール17のサイズも微細化する
必要があシ、必然的に急峻な深い穴となるため、スパッ
タリング法によ)被着したAt膜の被覆性が悪くなる。
In addition, Ti + Cr is added in the middle or on the surface of the At wiring layer.
, V, or their silicides have been proposed. Although this method has the effect of preventing electromigration, in terms of hillock prevention, since the sides of the A7 wiring are not coated, hillocks will occur on the sides of the At wiring, and the electrical insulation between wirings and wiring layers will deteriorate. not enough. In addition, with the miniaturization of elements, the size of the contact hole 14 and the through hole 17 must also be miniaturized, which inevitably results in steep and deep holes. coverage becomes poor.

このため、エレクトロマイグレーションによる断線が生
じ易個]、配線の信頼性が著しく低下する等の問題があ
った。
For this reason, there are problems such as wire breakage due to electromigration and wiring reliability being significantly reduced.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、At膜やAt合金膜等からなる配線層
のヒロックの発生を抑制し、剛エレクトロマイグレーシ
ョン特性を向上させると共に微細な接続孔に対しても高
い信頼性を有する配線層を実現し得る半導体装置の製造
方法を提供することにある。
The purpose of the present invention is to suppress the occurrence of hillocks in wiring layers made of At films, At alloy films, etc., to improve rigid electromigration characteristics, and to realize wiring layers that have high reliability even with minute connection holes. An object of the present invention is to provide a method for manufacturing a semiconductor device that can be manufactured by using a semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、配線層の表面を高融点金属によって被
覆することにある。
The gist of the present invention is to coat the surface of the wiring layer with a high melting point metal.

すなわち本発明は、半導体装置の製造方法において、A
tHJ?At合金膜等を所楚の配線パターンに加工した
後、該配線パターンの露出表面にのみ高融点金屑薄膜を
選択気相成長によって形成せしめるようにした方法であ
る。
That is, the present invention provides a method for manufacturing a semiconductor device in which A.
tHJ? In this method, after processing an At alloy film or the like into a predetermined wiring pattern, a high melting point gold scrap thin film is formed only on the exposed surface of the wiring pattern by selective vapor phase growth.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、At膜やAt合金膜等からなる配線パ
ターンの露出表面を高融点金属薄膜で完全に被覆してい
るため、At配線のヒロック発生を完全に抑制し、耐エ
レクトロマイグレーション特性を大幅に向上することが
できる。しかも、高融点金属薄膜を気相成長法によって
形成するため、微細な接続孔のAA配綜上にも一様な厚
さに高融点薄膜を被着することができ、接続部での配線
の信頼性が大幅に改善できる。さらに、高融点金属はA
tに比べて耐食性に優れているため、配線の副食性も改
善できる。したがって、化わ′J性の高い微細なAt配
線を形成することができ、半導体製造技術分野における
有用性は絶大である。
According to the present invention, since the exposed surface of the wiring pattern made of At film, At alloy film, etc. is completely covered with a high melting point metal thin film, the occurrence of hillocks in At wiring is completely suppressed, and the electromigration resistance is improved. can be significantly improved. Moreover, since the high melting point metal thin film is formed by vapor phase growth, it is possible to deposit the high melting point thin film to a uniform thickness even on the AA helix of the minute connection holes, and the wiring at the connection part can be easily formed. Reliability can be significantly improved. Furthermore, the high melting point metal is A
Since it has superior corrosion resistance compared to t, it can also improve the side corrosion of wiring. Therefore, it is possible to form a fine At wire with high warpability, and its usefulness in the field of semiconductor manufacturing technology is enormous.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第2図(a)〜(c)は本発明の一実施例に係わる半導
体装置製造を示す断面図である。先ず、第2(、)に示
す如く、例えはp形シリコン基板21の所定領域に砒素
(As)等の不純物をイオン注入して熱処理を行ないn
型拡散層22を形成した仮、全面に絶縁膜23として例
えば5lo2膜或いはPSG膜(リンシリケートガラス
)を気相成長法力とによシ被着する。続いて、この絶縁
膜23の所定個所に写真食刻法及び反応性イオンエツチ
ング法を用いコンタクトホール24をアケ、At膜(着
しくはAtを主成分とするCu或いはSiとのAt合金
膜)25をスパッタ法によ、90.5〜1.0〔μm〕
の厚□さで形成し、写真食刻法と反応イオンエツチング
法とによりAt膜25を所定の配線パターンに加工する
FIGS. 2(a) to 2(c) are cross-sectional views showing the manufacture of a semiconductor device according to an embodiment of the present invention. First, as shown in the second part (,), for example, an impurity such as arsenic (As) is ion-implanted into a predetermined region of the p-type silicon substrate 21, and heat treatment is performed.
After forming the type diffusion layer 22, an insulating film 23, such as a 5LO2 film or a PSG film (phosphosilicate glass), is deposited on the entire surface by vapor deposition. Subsequently, contact holes 24 are formed in predetermined locations of this insulating film 23 using photolithography and reactive ion etching, and an At film (or an At alloy film with Cu or Si whose main component is At) is formed. 25 by sputtering method, 90.5 to 1.0 [μm]
The At film 25 is formed into a predetermined wiring pattern by photolithography and reactive ion etching.

次いで、第2図(b)に示す如(At配線パターンの露
出表面のみに、例えば六弗化タングステン(W6)ガス
とH2ガスを用いた気相成長法にょ9 タンガスf y
 (W) 膜26 ヲ200〜2000CX:]の厚さ
に被着し、第1の配線層を形成する。この時のW膜26
の被着条件としては基板温度250℃〜400[:u)
、反応炉内の圧力lXl0−2〜760 (Torr 
) 、 WF6ガスの分圧1 x 10−’〜5 x 
10−2(Torr )の範囲が望ましい。また、W膜
26を被着する際の基板温度はこの工程でのAtヒロッ
クの発生を防止するために350C℃)以下が望ましい
。さらに、W膜厚を2oo01:X)以上にすると絶縁
M23の表面にもW粒子が局部的に成長するため、W膜
厚は2000[X)以下が望ましい。
Next, as shown in FIG. 2(b), only the exposed surface of the At wiring pattern is grown using a vapor phase growth method using, for example, tungsten hexafluoride (W6) gas and H2 gas.
(W) Film 26 is deposited to a thickness of 200 to 2000 CX: to form a first wiring layer. At this time, the W film 26
The deposition conditions are a substrate temperature of 250°C to 400°C [:u)
, the pressure in the reactor lXl0-2~760 (Torr
), Partial pressure of WF6 gas 1 x 10-' ~ 5 x
A range of 10-2 (Torr) is desirable. Further, the substrate temperature when depositing the W film 26 is desirably 350° C. or less in order to prevent the occurrence of At hillocks in this step. Furthermore, if the W film thickness is 2oo01:X) or more, W particles will locally grow on the surface of the insulation M23, so the W film thickness is preferably 2000[X) or less.

次に、第2図(、)に示す如く第1の配線層上に層間絶
島膜27として例えばプラズマCVD法などによシSi
O□膜22を0.8〜1〔μm〕形成後、写真食刻法と
反応性イオンエツチング法とによシスルーホール28を
設ける。続いて、第1層At配線パターンを形成したの
と同様にして、第2層At配線パターンを形成する。か
くして2層At配線構造が実現されることになる。尚第
2図中29はAt膜30はW膜を示している。
Next, as shown in FIG. 2(a), an interlayer isolated film 27 of Si is formed on the first wiring layer by, for example, plasma CVD.
After forming the O□ film 22 to a thickness of 0.8 to 1 μm, a through-hole 28 is formed by photolithography and reactive ion etching. Subsequently, a second layer At wiring pattern is formed in the same manner as the first layer At wiring pattern was formed. In this way, a two-layer At wiring structure is realized. Note that 29 in FIG. 2 indicates that the At film 30 is a W film.

このようにして得られた2層At配線構造は第1層目の
配線層上にヒロックが生じないため配線層間の電気的絶
縁性は破壊電圧が600〜SOO〔■〕、リーク電流が
I X 10−13(A)以下(20V印加において)
で、従来のものに比して大幅に改善された。また、この
ヒロックの防止によって眉間絶縁膜のクラック等の欠陥
もなくなシ、さらにAtの露出表面全体を完全にW膜で
被覆しているため、配線の腐食などの不良も全くなくな
った。tた、エレクトロマイグレーションにより生ずる
断線不良も大幅に改善され、配線寿命が従来に比べて約
1桁長くなり、i Cptn〕の微細配線幅での信頼性
が飛躍的に向上した。これはAtを・ぐターンユング後
に被覆特性の優れた気相成長法によシAt表面を一様な
厚さのW膜で被覆している効果が、1〔μm〕と言う微
細配線部及び1〔μm口〕の微細コンタクトホール、ス
ルーホール部で顕著に現われることによる。
In the two-layer At wiring structure thus obtained, no hillocks occur on the first wiring layer, so the electrical insulation between the wiring layers has a breakdown voltage of 600~SOO [■] and a leakage current of IX. 10-13(A) or less (at 20V applied)
This is a significant improvement over the previous version. Moreover, by preventing hillocks, there are no defects such as cracks in the glabellar insulating film, and since the entire exposed surface of At is completely covered with the W film, defects such as corrosion of wiring are completely eliminated. In addition, disconnection defects caused by electromigration have been greatly improved, the wiring life has been extended by about an order of magnitude compared to the conventional method, and the reliability of iCptn in fine wiring widths has been dramatically improved. This is due to the fact that the At surface is coated with a W film of uniform thickness by the vapor phase epitaxy method with excellent coating properties after turning the At. This is because it appears conspicuously in fine contact holes and through-holes of 1 [μm diameter].

なお、本発明は上述した実施例に限定されるものではな
い。例えに、上記実施例では2層配線について述べたが
1層配線或いは3層以上の多層配線に適用しても同様な
効果が得られる。
Note that the present invention is not limited to the embodiments described above. For example, in the above embodiment, a two-layer wiring was described, but the same effect can be obtained even if the invention is applied to a single-layer wiring or a multilayer wiring of three or more layers.

また、配線材料はAtに限るものではなく、Atを主成
分とするAt合金展であってもよい。また、上記実施例
では高融点金属膜としてWF6ガスによるW膜の気相成
長を用いた場合について説明したが、モリブデン(Mo
)、ニオブ(Nb)、タンタル(Ta)或いはチタン(
Ti)の弗化物による気相成長膜を用いても同様の効果
が得られる。
Further, the wiring material is not limited to At, and may be an At alloy containing At as a main component. Further, in the above embodiment, a case was explained in which vapor phase growth of a W film using WF6 gas was used as a high melting point metal film, but molybdenum (Mo
), niobium (Nb), tantalum (Ta) or titanium (
A similar effect can be obtained by using a vapor-phase grown film of Ti fluoride.

さらに、これらの金属の塩化物を利用してもよい。その
他、本発明の要旨を逸脱しない範囲で、種々変形して実
施することができる。
Furthermore, chlorides of these metals may also be used. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の製造方法による素子構造を示す断面図、
第2図(a)〜(c)は本発明の一実施例を説明するた
めの工程断面図である。 11.21・・シリコン基板、12.22・・・拡散層
、13.23・・・絶縁膜、14.24・・・コンタク
トホール、15.18.25.29・・・At膜、16
゜27・・・層間111!!緑膜、17.28・・・ス
ルーホール、26.30・・・W膜。
FIG. 1 is a cross-sectional view showing the device structure according to the conventional manufacturing method.
FIGS. 2(a) to 2(c) are process cross-sectional views for explaining one embodiment of the present invention. 11.21...Silicon substrate, 12.22...Diffusion layer, 13.23...Insulating film, 14.24...Contact hole, 15.18.25.29...At film, 16
゜27...Interlayer 111! ! green membrane, 17.28... through hole, 26.30... W membrane.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム膜若しくはアルミニウムを主成分と
する合金膜からなる配線層を有する半導体装置の製造方
法において、前記配線層の表面を選択気相成長法によっ
て形成した高、融点金属薄膜で完全に被覆したことを特
徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device having a wiring layer made of an aluminum film or an alloy film mainly composed of aluminum, the surface of the wiring layer is completely covered with a high melting point metal thin film formed by selective vapor deposition. A method for manufacturing a semiconductor device, characterized in that:
(2) 前記高融点金属膜として、W、 Mo、Nb、
Ta或いはTii用いることを特徴とする特許請求の範
囲第1項記載の半導体装置の製造方法。
(2) As the high melting point metal film, W, Mo, Nb,
The method for manufacturing a semiconductor device according to claim 1, characterized in that Ta or Tii is used.
JP15264983A 1983-08-22 1983-08-22 Manufacture of semiconductor device Pending JPS6043858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15264983A JPS6043858A (en) 1983-08-22 1983-08-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15264983A JPS6043858A (en) 1983-08-22 1983-08-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6043858A true JPS6043858A (en) 1985-03-08

Family

ID=15545032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15264983A Pending JPS6043858A (en) 1983-08-22 1983-08-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6043858A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290153A (en) * 1986-06-06 1987-12-17 Yokogawa Hewlett Packard Ltd Manufacture of multilevel metallic integrated circuit
JPS62291948A (en) * 1986-06-12 1987-12-18 Matsushita Electric Ind Co Ltd Metal thin film miring and manufacture thereof
JPS63133648A (en) * 1986-11-10 1988-06-06 エイ・ティ・アンド・ティ・コーポレーション Tungsten covering
JPS63185045A (en) * 1987-01-28 1988-07-30 Mitsui Mining & Smelting Co Ltd Conductive film circuit
JPS63318139A (en) * 1987-06-19 1988-12-27 Matsushita Electric Ind Co Ltd Metallic thin film wiring
JPS648645A (en) * 1987-06-30 1989-01-12 Nec Corp Semiconductor integrated circuit
JPS6451445A (en) * 1987-08-21 1989-02-27 Toyo Boseki Porous polyester chip
JPH01501985A (en) * 1986-07-31 1989-07-06 アメリカン テレフォン アンド テレグラフ カムパニー Semiconductor devices with improved metallization
JPH0235753A (en) * 1988-07-26 1990-02-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02168651A (en) * 1988-12-21 1990-06-28 Nec Yamagata Ltd Manufacture of semiconductor device
JPH02184824A (en) * 1989-01-10 1990-07-19 Fujitsu Ltd Thin-film transistor matrix
JPH02312236A (en) * 1989-05-26 1990-12-27 Matsushita Electric Ind Co Ltd Semiconductor device
JPH0372318A (en) * 1989-08-11 1991-03-27 Sharp Corp Active matrix display device
JP2009224485A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Diode and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467766A (en) * 1977-11-10 1979-05-31 Toshiba Corp Semiconductor device
JPS5979550A (en) * 1982-10-29 1984-05-08 Hitachi Ltd Manufacture of wiring structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5467766A (en) * 1977-11-10 1979-05-31 Toshiba Corp Semiconductor device
JPS5979550A (en) * 1982-10-29 1984-05-08 Hitachi Ltd Manufacture of wiring structure

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290153A (en) * 1986-06-06 1987-12-17 Yokogawa Hewlett Packard Ltd Manufacture of multilevel metallic integrated circuit
JPS62291948A (en) * 1986-06-12 1987-12-18 Matsushita Electric Ind Co Ltd Metal thin film miring and manufacture thereof
JPH01501985A (en) * 1986-07-31 1989-07-06 アメリカン テレフォン アンド テレグラフ カムパニー Semiconductor devices with improved metallization
JPS63133648A (en) * 1986-11-10 1988-06-06 エイ・ティ・アンド・ティ・コーポレーション Tungsten covering
JPS63185045A (en) * 1987-01-28 1988-07-30 Mitsui Mining & Smelting Co Ltd Conductive film circuit
JPS63318139A (en) * 1987-06-19 1988-12-27 Matsushita Electric Ind Co Ltd Metallic thin film wiring
JPS648645A (en) * 1987-06-30 1989-01-12 Nec Corp Semiconductor integrated circuit
JPS6451445A (en) * 1987-08-21 1989-02-27 Toyo Boseki Porous polyester chip
JPH0235753A (en) * 1988-07-26 1990-02-06 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH02168651A (en) * 1988-12-21 1990-06-28 Nec Yamagata Ltd Manufacture of semiconductor device
JPH02184824A (en) * 1989-01-10 1990-07-19 Fujitsu Ltd Thin-film transistor matrix
JPH02312236A (en) * 1989-05-26 1990-12-27 Matsushita Electric Ind Co Ltd Semiconductor device
JPH0372318A (en) * 1989-08-11 1991-03-27 Sharp Corp Active matrix display device
JP2009224485A (en) * 2008-03-14 2009-10-01 Toyota Central R&D Labs Inc Diode and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5963827A (en) Method for producing via contacts in a semiconductor device
KR910002455B1 (en) Semiconductor device
US4937652A (en) Semiconductor device and method of manufacturing the same
JPH03119727A (en) Semiconductor device and its manufacture
JPS6043858A (en) Manufacture of semiconductor device
JPH0653163A (en) Integrated-circuit barrier structure and its manufacture
US5911857A (en) Method for forming metal wiring of semiconductor devices
US4975389A (en) Aluminum metallization for semiconductor devices
JPH06181212A (en) Manufacture of semiconductor device
US5243221A (en) Aluminum metallization doped with iron and copper to prevent electromigration
EP0275299A1 (en) Semiconductor devices having improved metallization
JPH0228253B2 (en)
JPH0212859A (en) Formation of multilayer interconnection
JP2997371B2 (en) Integrated circuit device
US4992152A (en) Reducing hillocking in aluminum layers formed on substrates
KR100256271B1 (en) Metal wiring method of semiconductor device
JPS60262443A (en) Forming method of multilayer interconnection
KR950005259B1 (en) Fabricating method of semiconductor device
JP3109269B2 (en) Method for manufacturing semiconductor device
JPH0594990A (en) Manufacture of multilayer interconnection
KR0150989B1 (en) Formation wiring method for semiconductor device
JPH07201779A (en) Electrode wiring and its formation
JP2674473B2 (en) Wiring structure
KR100240268B1 (en) Method for forming metal wiring in semiconductor device
JPH04324636A (en) Semiconductor device and its manufacture