JPS6041762Y2 - magnetic levitation vehicle - Google Patents

magnetic levitation vehicle

Info

Publication number
JPS6041762Y2
JPS6041762Y2 JP14839880U JP14839880U JPS6041762Y2 JP S6041762 Y2 JPS6041762 Y2 JP S6041762Y2 JP 14839880 U JP14839880 U JP 14839880U JP 14839880 U JP14839880 U JP 14839880U JP S6041762 Y2 JPS6041762 Y2 JP S6041762Y2
Authority
JP
Japan
Prior art keywords
lim
electromagnet
magnetic
secondary side
magnetic levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14839880U
Other languages
Japanese (ja)
Other versions
JPS5772703U (en
Inventor
昌 山村
孝 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP14839880U priority Critical patent/JPS6041762Y2/en
Publication of JPS5772703U publication Critical patent/JPS5772703U/ja
Application granted granted Critical
Publication of JPS6041762Y2 publication Critical patent/JPS6041762Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
  • Linear Motors (AREA)

Description

【考案の詳細な説明】 本考案は磁気浮上車に関し、特に浮上用電磁石の配設構
造に関する。
[Detailed Description of the Invention] The present invention relates to a magnetic levitation vehicle, and more particularly to an arrangement structure for levitation electromagnets.

地上における高速輸送体として、最近、リニア・モータ
・カーの研究及び開発が進められている。
Recently, research and development of linear motor cars has been progressing as a high-speed ground transportation vehicle.

リニア・モータ・カーにあっては、その走行体は磁気力
によって軌条から浮かされる。
In a linear motor car, the running body is lifted off the track by magnetic force.

この走行体即ち磁気浮上車は推進用リニア・インダクシ
ョン・モータ(以下、Linear Inductio
n Motorの略であるLIMを用いる)により推進
され、浮上した状態で軌条に沿って走行する。
This traveling body, that is, the magnetically levitated vehicle is powered by a propulsion linear induction motor (hereinafter referred to as Linear Induction motor).
It is propelled by a LIM (abbreviation for n Motor) and travels along a rail in a floating state.

LIMの一次側は磁気レールとして走行路上に設置され
、LIMの二次側は磁気浮上車に設置される。
The primary side of the LIM is installed on the running road as a magnetic rail, and the secondary side of the LIM is installed on the magnetically levitated vehicle.

磁気浮上車を浮上させる一方式として、磁気浮上車側に
直流電磁石を説け、軌条と車体間のギャップをギャップ
センサにより検出し、検出量により電磁石の励磁電流を
制御することで車体を適切な8浮上させるようにした方
式がある。
As one method for levitating a magnetically levitated vehicle, a DC electromagnet is installed on the magnetically levitated vehicle side, the gap between the rail and the vehicle body is detected by a gap sensor, and the excitation current of the electromagnet is controlled according to the detected amount, so that the vehicle body can be adjusted to an appropriate level. There is a method that allows it to float.

ところが上述の方式を採用した場合、従来では、推進用
リニア・モータとは別に、浮上のために電磁石に対する
磁路レールを有していた。
However, when the above-mentioned method is adopted, conventionally, apart from the propulsion linear motor, a magnetic path rail for the electromagnet for levitation has been provided.

つまり推進用LIMの一次側である磁気レールと磁気浮
上用磁路レールとの両方の軌条を必要としていた。
In other words, both the magnetic rail, which is the primary side of the propulsion LIM, and the magnetic path rail for magnetic levitation are required.

しかし推進用と磁気浮上用とに別々の軌条を設けること
は材料を多く必要とするのみならず、両軌条を相互に精
度良く施工する必要上建設費の高検を招いている。
However, providing separate rails for propulsion and magnetic levitation not only requires a large amount of material, but also requires high construction costs due to the need to construct both rails with high precision.

そこで、推進用と浮上用の両軌条を共通にするアイデイ
テが提案されている。
Therefore, an IDITE has been proposed that uses the same rails for both propulsion and levitation.

しかし、軌条を単に共用したたけでは条件によっては浮
上の制御が複雑となったり、浮上が不安定になったりす
るという不具合を発見した。
However, they discovered that simply sharing the same rails could make levitation control complicated or unstable depending on the conditions.

本考案はこの不具合を解決して軌条の共用化を可能とし
た磁気浮上車を提供するものである。
The present invention solves this problem and provides a magnetically levitated vehicle that enables shared use of rails.

以下、図面を参照して上記不具合とともに本考案を説明
する。
Hereinafter, the present invention will be explained together with the above-mentioned problems with reference to the drawings.

第1図はリニア・モータ・カーの横断面であり、第2図
は短2次側LIMの例で示す第1図のA−A矢視断面図
であり、第3図は第1図のB−B矢視断面図である。
Fig. 1 is a cross section of the linear motor car, Fig. 2 is a sectional view taken along the line A-A in Fig. 1, showing an example of a short secondary LIM, and Fig. 3 is a cross section of the linear motor car. It is a BB arrow sectional view.

なお、図面中、1はLIMI次側(磁気レール)であり
、断面丁字形状の地上側支持体3の下面に設けた進行方
向に沿う鉄心1a内にLIM1次コイ小コイル1b付け
られている。
In the drawing, 1 is the LIMI next side (magnetic rail), and a LIM primary coil small coil 1b is attached within an iron core 1a provided on the lower surface of the ground support 3 having a T-shaped cross section and extending in the direction of travel.

2はLIM2次側(移動2次側)であり、支持体3を跨
ぐ断面略コ字形状の台枠4の内端部に設けた進行方向に
沿う鉄心2a内にLIM2次コイル2bが取り付けられ
ている。
2 is a LIM secondary side (moving secondary side), and a LIM secondary coil 2b is installed in an iron core 2a along the traveling direction provided at the inner end of an underframe 4 with a substantially U-shaped cross section that straddles the support body 3. ing.

5は電磁石であり、LIM2次側2と進行方向同一直線
上でLIM2次側の両側に位置して前記台枠4に設けら
れている。
Reference numeral 5 denotes an electromagnet, which is provided on the underframe 4 on both sides of the LIM secondary side on the same straight line in the traveling direction as the LIM secondary side 2.

LIM1次側1は電磁石5に対する吸引鉄片の役を果す
The LIM primary side 1 serves as an attraction piece for the electromagnet 5.

電磁石5はLIM2次側2の前後それぞれが1ブロツク
となって直列回路を構威し、励磁電流はブロック毎に別
々に制御される。
The electromagnets 5 constitute one block before and after the LIM secondary side 2, forming a series circuit, and the excitation current is controlled separately for each block.

また電磁石5の極ピッチをLIMI次側1の極ピッチの
172に選ぶことにより、電磁石5によるLIM1次コ
イ小コイル1b電力が発生しないようにしである。
In addition, by selecting the pole pitch of the electromagnet 5 to be 172, which is the pole pitch of the LIMI secondary side 1, it is possible to prevent the electromagnet 5 from generating power in the LIM primary coil small coil 1b.

なお、6は車輛、7は車輛6と台枠4間のクッション、
8は集電装置、9は案内用磁石、10は案内用吸引鉄片
である。
In addition, 6 is a vehicle, 7 is a cushion between the vehicle 6 and the underframe 4,
8 is a current collector, 9 is a guiding magnet, and 10 is a guiding attraction iron piece.

また第2,3図中矢印Cは磁気浮上車の進行方向を示す
Further, arrow C in FIGS. 2 and 3 indicates the traveling direction of the magnetically levitated vehicle.

斯かる磁気浮上車において、浮上は通常と同じく電磁石
5の励磁電流をギャップセンサの検出量に基づいてブロ
ック毎に制御することにより適正な浮上量に保たれる。
In such a magnetic levitation vehicle, the levitation is maintained at an appropriate levitation height by controlling the excitation current of the electromagnet 5 for each block based on the amount detected by the gap sensor, as in the usual case.

また推進も通常と同じくLIM1次側1とLIM2次側
2とからなるLIMの運転制御で行われる。
In addition, propulsion is also performed under the operation control of the LIM, which is composed of the LIM primary side 1 and the LIM secondary side 2, as usual.

ところが、LIMによる進行波起磁力と電磁石5による
吸引起磁力とは相対速度を有するため、前・後者電磁石
ブロックそれぞれにおける内部進行方向の吸引力分布は
時間的変化を生じる。
However, since the traveling wave magnetomotive force caused by the LIM and the attraction magnetomotive force caused by the electromagnet 5 have relative speeds, the attraction force distribution in the internal traveling direction in each of the front and rear electromagnet blocks changes over time.

この場合、LIMと電磁石5との極ピツチ比を2:1と
しであるので、電磁石5の1極当りの吸引力は平均値の
他に時間変化をする成分が発生する。
In this case, since the pole pitch ratio between the LIM and the electromagnet 5 is set to 2:1, the attractive force per pole of the electromagnet 5 has a time-varying component in addition to the average value.

但しこの成分は時間平均をとれば零である。However, this component is zero when averaged over time.

したがって、極対数が奇数の場合には、時間変化する成
分が残り、この成分はすべりの関数となるためこれを除
去する制御が必要となって制御の複雑さや不安定さの原
因となるのである。
Therefore, when the number of pole pairs is odd, a time-varying component remains, and since this component is a function of slip, control is required to remove it, causing control complexity and instability. .

しかし、前・後者ブロックにおける電磁石の極対数を偶
数に選定すると、ブロック内の時間変化成分は相殺され
て零となるため、奇数の場合のような不具合は発生しな
い。
However, if the number of pole pairs of the electromagnets in the former and latter blocks is selected to be an even number, the time-varying components within the block are canceled out and become zero, so the problem that occurs when the number is odd does not occur.

したがって、本考案に図示した実施例では、LIM2次
側2の前後それぞれにN極性電磁石とS極性電磁石とを
2個づつ配設して、各ブロック内の電磁石5の極対数を
2としである。
Therefore, in the embodiment illustrated in the present invention, two N-polarity electromagnets and two S-polarity electromagnets are arranged at the front and rear of the LIM secondary side 2, and the number of pole pairs of the electromagnets 5 in each block is set to 2. .

なお、LIMと電磁石5の極ピツチ比は2:1の他、偶
数;1であれば良ことは原理的に明白である。
Note that it is clear in principle that the pole pitch ratio between the LIM and the electromagnet 5 should be 2:1 or even an even number; 1.

上述した定性的な説明を補足するために、第2図を参照
して数式による説明を以下に述べる。
To supplement the above qualitative explanation, a mathematical explanation will be given below with reference to FIG. 2.

まず、LIM2次側を座標基準とする。First, the LIM secondary side is used as a coordinate reference.

LIMの極ピッチをτ2とすることにより、座標軸X上
に、境界点−”TAL、−rp / 2、デp (2p
−172)及び”ropを設定する。
By setting the polar pitch of LIM to τ2, the boundary point −”TAL, −rp/2, dep (2p
-172) and "rop".

(イ) LIMによる起磁力’LIMは次式(1)で
与えられる。
(a) Magnetomotive force due to LIM 'LIM is given by the following equation (1).

fuM= (UI U2) ALlcos (v−ξ
)rp + (U3−U4) AL2cos (−π−ξ−p ψ) −(1) 但し、−xTAIL<XテハU1=−XT
AIL< xではU1=O XTOP<XではU2=1 XTOF<XではU2=O r p/2< XではU3=1 一τp/2<XではU3=0 rp(2p−責)<xではU4=1 rp(2p→くXではU4=0 また、ALIはLIM1次側の起磁力振幅、AL2はL
IM2次側の起磁力振幅、 pはLIM2次側の極対数、 ξはLIM2次側座標原点とLIMI次側起磁力最大値
点との位相差(時間とすべりの 関数)、 φはLIM1次側起磁力からのLIMZ側起磁力の位相
遅れ角、 である。
fuM= (UI U2) ALLcos (v−ξ
)rp + (U3-U4) AL2cos (-π-ξ-p ψ) -(1) However, -xTAIL<XTEHAU1=-XT
For AIL< x, U1=O. For XTOP<X, U2=1. For XTOF<X, U2=O. U4=1 rp (U4=0 in 2p→kuX Also, ALI is the magnetomotive force amplitude on the primary side of LIM, and AL2 is L
Magnetomotive force amplitude on the IM secondary side, p is the number of pole pairs on the LIM secondary side, ξ is the phase difference (function of time and slip) between the LIM secondary side coordinate origin and the LIMI secondary side magnetomotive force maximum value point, φ is the LIM primary side The phase delay angle of the LIMZ side magnetomotive force from the magnetomotive force is:

(ロ)同様の条件において、電磁石による起磁力fMは
次式(2)で与えられる。
(b) Under similar conditions, the magnetomotive force fM due to the electromagnet is given by the following equation (2).

fM” (UI U3) AM−1□跨玉1fp
π + (U4−U2) AMs+n” x’rop ”
W ”’(2)rp 但し、AMは電磁石の起磁力振幅である。
fM” (UI U3) AM-1 □ Straddle ball 1fp
π + (U4-U2) AMs+n"x'rop"
W ''' (2) rp However, AM is the magnetomotive force amplitude of the electromagnet.

(ハ)そこで、上記2つの起磁力ft、XMとfvから
空隙における磁束密度分布b(X)を求める。
(c) Therefore, the magnetic flux density distribution b(X) in the air gap is determined from the above two magnetomotive forces ft, XM and fv.

この空隙磁束密度b(X)は両舷磁力を合威し、これと
ギャップパーミアンスの積として与えられるが、簡単の
ためギャップパーミアンス不整を無視すると、b (X
)は次式(3)で与えられる。
This air gap magnetic flux density b (
) is given by the following equation (3).

b(X)= (U、−U3) (B、、。b(X)=(U,-U3)(B,,.

。跨五肚πτp 十Bし、。. straddle five stomachs πτp Ten B.

os(−π−ξ)) ’rp +(U4−U2) (BM、in”’ xTOj。os(−π−ξ)) 'rp +(U4-U2) (BM, in”’ xTOj.

’rp +BL1oos(−π−ξ)) デp + (U3−U4) (Bl、tcos (−一ξ)f
p 十BL2co5(=−ミー9)) ・・・(
3)fp 但し、BMは電磁石起磁力による磁束密度の振幅、 BL□はLIM 1次側起磁力による磁束密度の振幅、 Bi、2はLIM2次側起磁力による磁束密度の振幅、 である。
'rp +BL1oos (-π-ξ)) dep + (U3-U4) (Bl,tcos (-1ξ)f
p 10BL2co5(=-me9)) ...(
3) fp However, BM is the amplitude of the magnetic flux density due to the electromagnet magnetomotive force, BL□ is the amplitude of the magnetic flux density due to the LIM primary side magnetomotive force, and Bi, 2 is the amplitude of the magnetic flux density due to the LIM secondary side magnetomotive force.

に)次に電磁石による吸引力FMを求める。) Next, find the attraction force FM by the electromagnet.

これはギャップ部の磁気エネルギをギャップ長方向に偏
微分して得られるが、ギャップパーミアンス不整を無視
していること、及び(3)式の右辺第3項は通常考える
LIMのギャップ磁束密度分布で次式(4)のように表
わすことができるため、吸引力FMは次式(5)で与え
られる。
This is obtained by partially differentiating the magnetic energy in the gap in the gap length direction, but it ignores the gap permeance irregularity, and the third term on the right side of equation (3) is the gap magnetic flux density distribution of the LIM that is usually considered. Since it can be expressed as the following equation (4), the attraction force FM is given by the following equation (5).

bg” (U3−U4) Bgcos (−一ψ)
・・・(4)fp 但し、bgはギャップ磁束密度、 bgはその振幅、 φは位相差、 である。
bg” (U3-U4) Bgcos (-1ψ)
...(4) fp However, bg is the gap magnetic flux density, bg is its amplitude, and φ is the phase difference.

XTALL十P’γ2 FM=−f(BMsIn跨上畠π+BL□。XTALL10P’γ2 FM=-f(BMsInstraddle π+BL□.

os (−−Po fp
7pξ))2dx TAI L XTOP 十f (BMs、n2x−X、、、π +BLICO
8(−一μOfp γpξ)
)2dX XTOP P’ r p ・
・・(5)但し、P′はlブロックにおける電磁石の極
対数である。
os (--Po fp
7pξ)) 2dx TAI L XTOP 10f (BMs, n2x-X,,,π +BLICO
8 (-1μOfp γpξ)
)2dX XTOP P' r p ・
...(5) However, P' is the number of pole pairs of the electromagnet in the l block.

(ホ)ここで、kを正整数(1,2,3・・・)として
P′=2にとP′≠2にの場合について(5)式を計算
すると、 P′=2にの場合: FM=2P′γpL (BM2 +ZBLt”)/Po
・・・(6)P′≠2にの場合: FM=2P’7pL (BM” +BL1” ) /μ
(e) Here, if k is a positive integer (1, 2, 3...) and calculate formula (5) for the cases of P'=2 and P'≠2, then in the case of P'=2 : FM=2P′γpL (BM2 +ZBLt”)/Po
...(6) When P'≠2: FM=2P'7pL (BM" + BL1") /μ
.

−治〔□(cosす72XTAILπ−ξ) −cos
γp XTAIL (ξ)) fp 十cos (P’π十ξ) −cosξ +! (cos (恐もヱπ−ξ) 3 fp −6゜5(2XTOP−y′γpr−e)’rP +cosξ−cos (P’7+ξ)) /p、 o
・・・(7)但し、Lはギャップ長、 U0は真空の透磁率、 である。
-ji〔□(cossu72XTAILπ-ξ) -cos
γp XTAIL (ξ)) fp ten cos (P'π ten ξ) −cosξ +! (cos (terribly ヱπ-ξ) 3 fp -6゜5 (2XTOP-y'γpr-e)'rP +cosξ-cos (P'7+ξ)) /p, o
...(7) However, L is the gap length, and U0 is the magnetic permeability of vacuum.

(へ)(6)式及び(7)式を考察するに(6)式には
ξが含まれないが、(7)式にはξが残る。
(v) Considering equations (6) and (7), ξ is not included in equation (6), but ξ remains in equation (7).

ξは前述の如く時間とすべりの関数であるから、ξが存
在すると前後の電磁石ブロック部でアンバランスな振動
性電磁吸引力が働くことになる。
Since ξ is a function of time and slip as described above, if ξ exists, an unbalanced oscillatory electromagnetic attraction force will act on the front and rear electromagnet blocks.

一方、P′=2にすなわち各電磁石ブロックの極対数が
偶数であれば電磁吸引力にはξの項が含まれないため、
振動性の吸引力は発生しない。
On the other hand, if P' = 2, that is, the number of pole pairs of each electromagnet block is an even number, the electromagnetic attractive force does not include the term ξ, so
No vibratory suction force is generated.

以上説明したように本考案によれば、推進用と浮上用の
両軌条を共用しても電磁吸引力は振動性成分をもたない
ので、電磁石の励磁電流制御により適切な浮上量を得る
に際し、その制御は簡単でありまた安定である。
As explained above, according to the present invention, even if both propulsion and levitation rails are shared, the electromagnetic attraction force does not have an oscillatory component, so when obtaining an appropriate levitation height by controlling the excitation current of the electromagnet, , its control is simple and stable.

したがって軌条を共用してリニア・モータ・カーの軌条
を少ない材料と安価な建設費で作ることが可能となった
Therefore, by sharing the same rails, it became possible to create rails for linear motor cars using fewer materials and at lower construction costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案に関し、第1図は磁気浮上車の横断面図、
第2図は第1図のA−A矢視断面図、第3図は第1図の
B−B矢視断面図である。 図面中、1は推進用リニア・インダクション・モータの
1次側、1aはその鉄心、1bは1次コイル、2は推進
用リニア・インダクション・モー夕の2次側、2aはそ
の鉄心、2bは2次コイル、3は支持体、4は台枠、5
は電磁石、6は車輛、 7はクッション、 8は集電装置、 9は案内用 磁石、 10は案内用吸引鉄片である。
The drawings relate to the present invention; Figure 1 is a cross-sectional view of the magnetic levitation vehicle;
2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is a sectional view taken along the line BB in FIG. 1. In the drawing, 1 is the primary side of the propulsion linear induction motor, 1a is its iron core, 1b is the primary coil, 2 is the secondary side of the propulsion linear induction motor, 2a is its iron core, and 2b is the Secondary coil, 3 is a support, 4 is an underframe, 5
is an electromagnet, 6 is a vehicle, 7 is a cushion, 8 is a current collector, 9 is a guiding magnet, and 10 is a guiding attraction iron piece.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 鉄心を有し推進用進行波磁束を生ぜしめるリニア・イン
ダクション・モータの1次側を吸引用鉄心として共用し
、該リニア・インダクション・モータの2次側が設置さ
れる移動体部分の前記2次側と進行方向同一線上に、前
記吸引用鉄心との間で磁気吸引力を生ぜしめて移動体を
浮上させる電磁石を備えた磁気浮上車において、前記電
磁石は直列回路をなす複数の電磁石からなるブロックと
して構成され、電磁石の極ピッチはリニア・インダクシ
ョン・モータの極ピッチの個数分の1の長さであり、ブ
ロック内における電磁石の極対数は偶数であることを特
徴とする磁気浮上車。
The primary side of a linear induction motor that has an iron core and generates traveling wave magnetic flux for propulsion is also used as a suction iron core, and the secondary side of the moving body part where the secondary side of the linear induction motor is installed. In the magnetic levitation vehicle, the magnetic levitation vehicle is provided with an electromagnet disposed on the same line in the traveling direction and that causes a magnetic attraction force to be generated between the attraction core and the moving body to levitate the moving body, the electromagnet being configured as a block consisting of a plurality of electromagnets forming a series circuit. A magnetic levitation vehicle characterized in that the pole pitch of the electromagnets is a length divided by the number of pole pitches of the linear induction motor, and the number of pole pairs of the electromagnets in the block is an even number.
JP14839880U 1980-10-20 1980-10-20 magnetic levitation vehicle Expired JPS6041762Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14839880U JPS6041762Y2 (en) 1980-10-20 1980-10-20 magnetic levitation vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14839880U JPS6041762Y2 (en) 1980-10-20 1980-10-20 magnetic levitation vehicle

Publications (2)

Publication Number Publication Date
JPS5772703U JPS5772703U (en) 1982-05-04
JPS6041762Y2 true JPS6041762Y2 (en) 1985-12-19

Family

ID=29507839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14839880U Expired JPS6041762Y2 (en) 1980-10-20 1980-10-20 magnetic levitation vehicle

Country Status (1)

Country Link
JP (1) JPS6041762Y2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5272404B2 (en) * 2007-12-27 2013-08-28 株式会社安川電機 Magnetic levitation propulsion device
TWI432370B (en) * 2009-10-28 2014-04-01 Sfa Engineering Corp Transferring system for magnetic levitation
KR101256190B1 (en) * 2009-10-28 2013-04-19 주식회사 에스에프에이 Transferring system for magnetic levitation
KR101256191B1 (en) * 2009-10-28 2013-04-19 주식회사 에스에프에이 Transferring system for magnetic levitation
KR101256189B1 (en) * 2009-10-28 2013-04-19 주식회사 에스에프에이 Transferring system for magnetic levitation

Also Published As

Publication number Publication date
JPS5772703U (en) 1982-05-04

Similar Documents

Publication Publication Date Title
US4793263A (en) Integrated linear synchronous unipolar motor with controlled permanent magnet bias
US8505463B2 (en) Wheel-type ultra high speed railway system
CN106012716B (en) Symmetrical permanent magnet suspension system and permanent magnetic levitation train rail system
US4273054A (en) Vehicle vibration damping method in the induced repulsion type magnetically suspended railway vehicle
CN106828184A (en) The high temperature superconductor magnetic levitation vehicle that slotless permanent magnetic linear synchronous motor drives
JPS6041762Y2 (en) magnetic levitation vehicle
US3890906A (en) Linear synchronous motor for magnetically levitated vehicle
JPH07193914A (en) Synchronous linear motor car
JP2010252413A (en) Magnetic levitation mobile system
JPH09261804A (en) Magnetic levitation system
KR102173035B1 (en) Transfortation system
TWI238134B (en) Linear motion mechanism via electromagnetic suspension technique
EP0222938A1 (en) Rail for use in magnetic propulsive levitation apparatus
JP2978415B2 (en) Superconducting magnetic levitation type magnetic body mixed concrete for railway
JPH0757042B2 (en) Floating carrier
JPH01298902A (en) Levitating, guiding and driving device for guided repulsion magnetic levitation railway
JPS62210807A (en) Magnet levitation magnet core of attracting type
JPH0318401B2 (en)
JPS6188707A (en) Magnetic attraction levitating conveyor
JPH0442214Y2 (en)
JP3854281B2 (en) Magnetic induction levitation mechanism
JPS61112501A (en) Leviation controller of magnetic levitating train
JPH10191508A (en) Magnetic levitation electric rolling stock
JPH06327103A (en) Magnetic levitation railroad
Li et al. Analysis of Electromagnetic Characteristics and Optimization Research of Long Stator Linear Synchronous Motor on the Maglev Train