JPH0318401B2 - - Google Patents
Info
- Publication number
- JPH0318401B2 JPH0318401B2 JP20709583A JP20709583A JPH0318401B2 JP H0318401 B2 JPH0318401 B2 JP H0318401B2 JP 20709583 A JP20709583 A JP 20709583A JP 20709583 A JP20709583 A JP 20709583A JP H0318401 B2 JPH0318401 B2 JP H0318401B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- electromagnet
- vehicle
- supporting
- traveling direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 106
- 238000005339 levitation Methods 0.000 claims description 14
- 239000011295 pitch Substances 0.000 claims description 5
- 230000004907 flux Effects 0.000 description 26
- 230000006698 induction Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 239000003302 ferromagnetic material Substances 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L13/00—Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
- B60L13/10—Combination of electric propulsion and magnetic suspension or levitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/26—Rail vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
この発明は、軌道に設けた鉄などの強磁性体で
構成された磁気レールと、車上に設けた電磁石の
間に働く電磁吸引力により、車両を支持するとと
もに、左右方向の案内を行うことにより、非接触
で車両を支持案内する吸引形磁気浮上車の浮上装
置に関する。[Detailed Description of the Invention] [Technical Field to which the Invention Pertains] This invention utilizes an electromagnetic attraction force that acts between a magnetic rail made of a ferromagnetic material such as iron provided on a track and an electromagnet provided on a train. The present invention relates to a levitation device for an attraction type magnetic levitation vehicle that supports and guides a vehicle in a non-contact manner by supporting the vehicle and guiding the vehicle in the left and right direction.
第1図は、この種の磁気浮上車の構成の一例を
示す断面図である。第1図は車体1はバネ装置2
を介して台車3に取りつけられており、台車3に
は車両推進用のリニアインダクシヨンモータ電機
子4、車両支持用電磁石5および車両の案内用電
磁石6が配設されており、軌道9の両側面にリニ
アインダクシヨンモータ電機子と対向してリニア
インダクシヨンモータの二次鉄心8aおよび二次
導体8bが取りつけられており、また軌道9の両
側下端面に支持案内兼用磁気レール7がその下面
は支持用電磁石5と、側面は案内用電磁石6と、
対向するように設けられている。このように構成
された車輌は、車両支持用電磁石5および車両の
案内用電磁石6の励磁電流を制御することによつ
て、磁気レール7と前記車両支持用電磁石5およ
び車両の案内用電磁石6との間に働く吸引力によ
り、台車3を軌道9に対し浮上させるとともに左
右の案内を行い、リニアインダクシヨンモータ電
機子4の電流を制御してリニアインダクシヨンモ
ータ電機子4と二次導体8bとの間に働く電磁力
によつて、車両を軌道9に対して推進させる。
FIG. 1 is a sectional view showing an example of the configuration of this type of magnetically levitated vehicle. In Figure 1, a car body 1 is a spring device 2.
A linear induction motor armature 4 for vehicle propulsion, an electromagnet 5 for supporting the vehicle, and an electromagnet 6 for guiding the vehicle are disposed on the trolley 3. Both sides of the track 9 A secondary iron core 8a and a secondary conductor 8b of the linear induction motor are attached to the surface facing the linear induction motor armature, and magnetic rails 7 that also serve as support and guide are attached to the lower end surfaces of both sides of the track 9. A supporting electromagnet 5, a guiding electromagnet 6 on the side,
They are arranged to face each other. In the vehicle configured in this way, the magnetic rail 7, the vehicle support electromagnet 5, and the vehicle guide electromagnet 6 are connected by controlling the excitation currents of the vehicle support electromagnet 5 and the vehicle guide electromagnet 6. The attraction force acting between the two causes the bogie 3 to float on the track 9 and guide it from side to side, and controls the current in the linear induction motor armature 4 to connect the linear induction motor armature 4 and the secondary conductor 8b. The electromagnetic force acting during this period propels the vehicle along the track 9.
この種の浮上装置としては、小型軽量で消費電
力が少ないこと、十分な電磁力および電磁バネ定
数を有し軌道に対する追従性が良いこと、建設コ
スト運転コストが安いことなどが望まれており、
第1図に示すような支持用および案内用電磁石を
進行方向に沿つてN極S極交互に並ぶよう配列し
た凸極形とする方式は、電磁石の漏れ磁束が少な
くできるため、インダクタンスが小さく、電磁石
重量が軽く、したがつて軌道に対する追従性に優
れ、上記の要求に合つた方式である。 This type of levitation device is desired to be small and lightweight, consume little power, have sufficient electromagnetic force and electromagnetic spring constant, and have good trajectory tracking, and have low construction and operating costs.
The system in which supporting and guiding electromagnets are arranged in a convex pole shape with north and south poles arranged alternately along the traveling direction, as shown in Figure 1, can reduce the leakage magnetic flux of the electromagnets, resulting in small inductance. This method satisfies the above requirements because the weight of the electromagnet is light, so it has excellent tracking ability to the trajectory.
第2図は従来方式による浮上装置の例で、うず
電流損の発生を低減するため支持用磁気レール7
aおよび案内用磁気レール7bをそれぞれ強磁性
体板を互いに異なる方向に積層したものを一体化
して構成し、それらを組み合わせて支持案内兼用
磁気レール7としたものである。 Figure 2 shows an example of a conventional levitation device.
The guide magnetic rail 7a and guide magnetic rail 7b are each formed by integrating ferromagnetic plates laminated in different directions, and are combined to form the supporting and guiding magnetic rail 7.
第3図は同じく従来方式による浮上装置の例
で、支持および案内兼用磁気レール7を支持用磁
気レール7aと案内用磁気レール7bを機械的に
まとめて強極性体の線材を互いに絶縁された状態
で一体化したもので構成することにより、支持用
電磁石5による磁界に対しても車両の案内用電磁
石6による磁界に対しても、磁気レール7に発生
するうず電流損を低減しようとするものである。 FIG. 3 shows an example of a conventional floating device, in which the magnetic rail 7 for supporting and guiding is mechanically combined with the magnetic rail 7a for support and the magnetic rail 7b for guiding, and the wires of strong polarity are insulated from each other. By configuring the magnetic rail 7 in an integrated manner, the eddy current loss generated in the magnetic rail 7 is reduced in response to the magnetic field caused by the supporting electromagnet 5 and the magnetic field caused by the vehicle guiding electromagnet 6. be.
車両の速度が遅い場合には磁気レール7に生ず
るうず電流損が小さいので、磁気レール7を積層
構造としたり線材で構成する必要はない。 When the speed of the vehicle is slow, the eddy current loss occurring in the magnetic rail 7 is small, so the magnetic rail 7 does not need to have a laminated structure or be composed of wire rods.
しかし、従来、磁気レール内の磁束分布に特別
の考慮が払われていないため、支持案内兼用磁気
レール7の断面積は支持用磁気レール7aと案内
用磁気レール7bとを単に機械的にまとめただけ
であり、その断面積は兼用しない場合とかわらな
いので、磁気レールコストを低減できない欠点が
あつた。 However, conventionally, no special consideration has been given to the magnetic flux distribution within the magnetic rail, so the cross-sectional area of the magnetic rail 7 that also serves as support and guide is determined by simply mechanically combining the magnetic rail 7a for support and the magnetic rail 7b for guide. However, since the cross-sectional area is the same as in the case where the magnetic rail is not used for both purposes, there is a drawback that the cost of the magnetic rail cannot be reduced.
本発明は前述の状況に鑑みてなされたもので、
支持案内兼用磁気レールの断面積が小さくてすむ
小形軽量かつ安価な吸引形磁気浮上車の浮上装置
を提供することを目的とする。
The present invention was made in view of the above-mentioned situation, and
It is an object of the present invention to provide a levitation device for an attraction type magnetically levitated vehicle that is small, lightweight, and inexpensive and requires only a small cross-sectional area of a magnetic rail serving as a support and guide.
この発明は、軌道の進行方向に沿つて支持・案
内兼用の磁気レールを設け、車上に極ピツチが等
しくかつ凸極形の支持用および案内用電磁石を、
支持用電磁石の磁極は磁気レールの下面と案内用
電磁石の磁極は磁気レールの側面と対向し、かつ
進行方向に沿つてN,S極が交互に並ぶように車
両の両側に対称に配置し、支持用と案内用の電磁
石の磁極の中心が一致するように配置し、かつ電
磁石の極性が支持用と案内用とで逆極性となるよ
うに励磁することにより、磁気レールの長手方向
の磁束成分を支持系と案内系で互いに打ち消させ
るよう構成した。
This invention provides a magnetic rail for both support and guidance along the traveling direction of the track, and electromagnets for support and guidance with equal pole pitch and convex poles on the train.
The magnetic poles of the supporting electromagnet are arranged symmetrically on both sides of the vehicle so that the magnetic poles of the supporting electromagnet face the lower surface of the magnetic rail, and the magnetic poles of the guiding electromagnet face the side surface of the magnetic rail, and the N and S poles are arranged alternately along the traveling direction. The magnetic flux component in the longitudinal direction of the magnetic rail is The support system and guide system are configured so that they cancel each other out.
以下本発明の実施例を添付図面によつて説明す
る。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
第4図は本発明の実施例の浮上装置の片側分の
断面図、第5図は側面図である。図において、図
示しない軌道の両側に支持・案内兼用の磁気レー
ル7を進行方向に沿つて設け、車上両側に車両長
手方向に沿つて異なる極性の磁極が交互に並びか
つ左右対称となるように凸極形の支持用電磁石5
と凸極形の案内用電磁石6を設ける。そのさい、
支持用電磁石5と案内用電磁石6の極ピツチτを
等しくなるようにとり、支持用電磁石5は磁気レ
ール7の下面に磁極が対向し、案内用電磁石6は
磁気レール7の側面に磁極が対向し、車両長手方
向に関して各々の磁極の中心が支持用電磁石5と
案内用電磁石6とで一致するように台車3に配設
する。この配置で、車両長手方向に対して並列配
置された支持用電磁石5と案内用電磁石6の各磁
極の極性が互いに逆極性となるように励磁する。 FIG. 4 is a sectional view of one side of the flotation device according to the embodiment of the present invention, and FIG. 5 is a side view. In the figure, magnetic rails 7 for supporting and guiding purposes are provided on both sides of the track (not shown) along the traveling direction, so that magnetic poles of different polarities are arranged alternately and symmetrically along the longitudinal direction of the vehicle on both sides of the vehicle. Convex pole support electromagnet 5
and a convex-pole guide electromagnet 6 are provided. At that time,
The pole pitches τ of the supporting electromagnet 5 and the guiding electromagnet 6 are set to be equal, and the supporting electromagnet 5 has a magnetic pole facing the lower surface of the magnetic rail 7, and the guiding electromagnet 6 has a magnetic pole facing the side surface of the magnetic rail 7. The support electromagnet 5 and the guide electromagnet 6 are arranged on the truck 3 so that the centers of their respective magnetic poles coincide with each other in the longitudinal direction of the vehicle. With this arrangement, the supporting electromagnet 5 and the guiding electromagnet 6, which are arranged in parallel with each other in the longitudinal direction of the vehicle, are excited so that the polarities of the magnetic poles thereof are opposite to each other.
このようにすると、磁束の流れは第5図に示す
ようになり、磁気レール7中における支持用電磁
石5による進行方向(x方向)の磁束成分Bx1と
案内用電磁石による磁束成分Bx2とは互いに打ち
消し合う。 In this way, the flow of magnetic flux becomes as shown in FIG. 5, and the magnetic flux component Bx 1 in the traveling direction (x direction) due to the supporting electromagnet 5 in the magnetic rail 7 and the magnetic flux component Bx 2 due to the guiding electromagnet are cancel each other out.
第6図は進行方向の磁束成分Bx1とBx2の磁気
レール7中の分布を示すグラフで、第5図の磁極
5,6の左端位置を原点0とし進行方向(x方
向)を横軸に、進行方向の磁束成分Bxを縦軸に
とつてある。図の横軸上の0,τ,2τ,3τはN
極,S極の磁極の進行方向の中心位置に相当する
(ただし両端部の磁極についは磁極の端を中心位
置として取扱う)。図から明らかなように磁気レ
ール7を通る進行方向の磁束成分は各磁極の中心
位置で最も小さく、N,S極の中間部で最大にな
るが、支持用電磁石による磁束成分Bx1と案内用
電磁石による磁束成分Bx2が互いに逆極性になる
よう構成したために、両者の和は支持用電磁石の
磁束成分Bx1より小さくなる。したがつて磁気レ
ールの断面積はBx2とBx1の和の磁束を考慮すれ
ばよく、この部分の磁束密度が磁気レール7を構
成する強磁性体の飽和限度内で許容しうる寸法ま
で縮小することができる。ただし、案内用電磁石
6は常時励磁されるとは限らないので、磁気レー
ル7の断面積は支持用電磁石5の進行方向磁束成
分Bx1を基準にして決定される。 Figure 6 is a graph showing the distribution of magnetic flux components Bx 1 and Bx 2 in the magnetic rail 7 in the traveling direction, with the left end position of the magnetic poles 5 and 6 in Figure 5 as the origin 0, and the traveling direction (x direction) as the horizontal axis. , the magnetic flux component Bx in the traveling direction is plotted on the vertical axis. 0, τ, 2τ, 3τ on the horizontal axis of the figure are N
This corresponds to the center position in the direction of movement of the magnetic poles of pole and south pole (however, for magnetic poles at both ends, the ends of the magnetic poles are treated as the center position). As is clear from the figure, the magnetic flux component in the traveling direction passing through the magnetic rail 7 is smallest at the center position of each magnetic pole and largest at the midpoint between the N and S poles, but the magnetic flux component Bx 1 due to the supporting electromagnet and the guiding magnetic flux component Since the magnetic flux components Bx 2 due to the electromagnets are configured to have opposite polarities, the sum of the two is smaller than the magnetic flux component Bx 1 of the supporting electromagnet. Therefore, the cross-sectional area of the magnetic rail can be determined by considering the magnetic flux sum of Bx 2 and Bx 1 , and the magnetic flux density in this area can be reduced to a size that is allowable within the saturation limit of the ferromagnetic material that composes the magnetic rail 7. can do. However, since the guide electromagnet 6 is not always excited, the cross-sectional area of the magnetic rail 7 is determined based on the traveling direction magnetic flux component Bx 1 of the support electromagnet 5.
第7図は進行方向に垂直な方向の磁束成分の進
行方向に関する分布の様子を第6図と同様に表わ
したグラフである。図において、支持用電磁石5
による磁束成分Bz1と案内用電磁石6による磁束
成分By2とは磁極が逆極性に励磁されているため
に逆方向になつている。しかし電磁石が直角方向
に配置されているために両磁束は完全には打ち消
し合わずBz1とBy2の和はBz1と等しいかあるいは
やや大きい値になる。ただしS極、N極に対向す
る部分の磁気レール7内において進行方向に垂直
に磁気レール内に入つた磁束は進行方向に向きを
変えるので第6図のように互いに打ち消す効果が
発生すること、電磁石と磁気レールの間の間隙の
磁束密度が磁性体の飽和磁束密度より小さいため
磁気レール7の進行方向に垂直な磁界成分が強極
性体の飽和値よりかなり小さいこと、および案内
用電磁石6に働く電磁力は支持用電磁石5に働く
電磁力より小さくて済むのが普通であることなど
を考慮すると、一般に、磁気レール7の進行方向
に直角な断面方向の磁束密度は、支持と案内に磁
気レール7を兼用しても、磁気レールを構成する
強磁性体の飽和限界値を越えない。したがつて、
第2図における支持用磁気レール7aを案内用磁
気レール7bと兼用しても、支持案内兼用磁気レ
ール7の断面積は支持用磁気レール7aより増す
必要はない。すなわち、本発明を実施すれば支持
用に必要な磁気レール断面積で案内用も兼用が可
能となるので、案内用磁気レール分のコストは不
要となる。 FIG. 7 is a graph similar to FIG. 6, showing the distribution of magnetic flux components in the direction perpendicular to the traveling direction with respect to the traveling direction. In the figure, supporting electromagnet 5
The magnetic flux component Bz 1 caused by the guide electromagnet 6 and the magnetic flux component By 2 caused by the guiding electromagnet 6 are in opposite directions because the magnetic poles are excited with opposite polarities. However, since the electromagnets are arranged at right angles, the two magnetic fluxes do not completely cancel each other out, and the sum of Bz 1 and By 2 becomes equal to or slightly larger than Bz 1 . However, the magnetic flux that enters the magnetic rail 7 perpendicular to the traveling direction in the portion facing the S and N poles changes direction in the traveling direction, so that the effect of canceling each other occurs as shown in Fig. 6. Since the magnetic flux density in the gap between the electromagnet and the magnetic rail is smaller than the saturation magnetic flux density of the magnetic material, the magnetic field component perpendicular to the traveling direction of the magnetic rail 7 is considerably smaller than the saturation value of the strongly polarized material. Considering that the electromagnetic force acting on the supporting electromagnet 5 is usually smaller than the electromagnetic force acting on the supporting electromagnet 5, the magnetic flux density in the cross-sectional direction perpendicular to the direction of movement of the magnetic rail 7 is generally Even if the rail 7 is also used, the saturation limit value of the ferromagnetic material constituting the magnetic rail will not be exceeded. Therefore,
Even if the support magnetic rail 7a in FIG. 2 is also used as the guide magnetic rail 7b, the cross-sectional area of the support and guide magnetic rail 7 does not need to be larger than that of the support magnetic rail 7a. That is, if the present invention is implemented, the cross-sectional area of the magnetic rail required for support can also be used for guiding, so the cost for the guiding magnetic rail becomes unnecessary.
微小変位に対する左右方向の追従性を向上させ
るため、左右両側の案内用電磁石6にある一定の
平均電流を常時流すような制御を行えば、磁気レ
ール7部分で必要となる起磁力を減少させる効果
が増し、支持用電磁石の励磁電力を減少させるこ
ともできる。 In order to improve the ability to follow minute displacements in the left and right directions, if a certain average current is constantly passed through the guide electromagnets 6 on both the left and right sides, this will have the effect of reducing the magnetomotive force required in the magnetic rail 7 section. It is also possible to reduce the excitation power of the supporting electromagnet.
本発明によれば、吸引形磁気浮上車の浮上装置
を、支持用電磁石および案内用電磁石を極ピツチ
の等しい凸極形とし、磁気レールを支持案内に兼
用する構成として、支持および案内用電磁石の磁
極の中心を一致させ、かつ極性が互いに逆極性に
なるよう励磁制御することにより、案内用磁気レ
ールが不要となるため、軌道部分のコストが低減
できる。また、磁気レールの断面積が小さくなる
車上部分の浮上装置も小型にできるため、台車が
軽量かつ安価にでき、軌道への追従性が向上し、
かつ、乗り心地、走行安定性を向上させることが
できる。
According to the present invention, in the levitation device of an attraction type magnetic levitation vehicle, the supporting electromagnets and the guiding electromagnets are of convex pole shape with equal pole pitch, and the magnetic rail is also used for supporting and guiding. By controlling the excitation so that the centers of the magnetic poles coincide and the polarities are opposite to each other, there is no need for a guiding magnetic rail, so the cost of the track portion can be reduced. In addition, because the cross-sectional area of the magnetic rail is small, the levitation device on the vehicle can be made smaller, making the bogie lighter and cheaper, improving its ability to follow the track,
Moreover, ride comfort and running stability can be improved.
第1図は磁気浮上車の断面図、第2図および第
3図は従来の浮上装置の要部の断面図、第4図お
よび第5図は本発明の実施例のそれぞれ断面図お
よび側面図、第6図および第7図は磁気レールを
通る磁束の進行方向分布を示すグラフである。
図において、1;車体、2;バネ、3;台車、
5;支持用電磁石、6;案内用電磁石、7;支持
案内用磁気レール、7a;支持用磁気レール、7
b;案内用磁気レール、9;軌道、τ;極ピツ
チ、x;進行方向、Bx1,Bx2;進行方向磁束成
分である。
FIG. 1 is a sectional view of a magnetic levitation vehicle, FIGS. 2 and 3 are sectional views of main parts of a conventional levitation device, and FIGS. 4 and 5 are sectional views and side views of an embodiment of the present invention, respectively. , FIG. 6, and FIG. 7 are graphs showing the distribution of the magnetic flux passing through the magnetic rail in the traveling direction. In the figure, 1: car body, 2: spring, 3: trolley,
5; Electromagnet for support, 6; Electromagnet for guide, 7; Magnetic rail for support and guide, 7a; Magnetic rail for support, 7
b: Guide magnetic rail, 9: Track, τ: Pole pitch, x: Traveling direction, Bx 1 , Bx 2 : Traveling direction magnetic flux components.
Claims (1)
付けられた左右1対の磁気レールの下面にそれぞ
れ対向しかつ進行方向に沿つて異なる極性の磁極
が交互に並ぶよう車両の台車に左右対称に設けら
れた突極形支持用電磁石と、前記1対の磁気レー
ルの側面にそれぞれ対向しかつ前記左右対称に設
けられた支持用電磁石と対をなすよう車両の台車
に取り付けられた突極形案内用電磁石とを備えた
車両において、前記支持用電磁石と案内用電磁石
との極ピツチが等しくかつ磁極の進行方向の中心
位置が互いに一致するよう形成され、この中心位
置が一致した磁極が互いに逆極性になるよう励磁
されることを特徴とする吸引形磁気浮上車の浮上
装置。 2 特許請求の範囲第1項記載の装置において、
左右の案内用電磁石に相等しい直流バイアス電流
を流すことを特徴とする吸引形磁気浮上車の浮上
装置。[Scope of Claims] 1. The vehicle is constructed such that magnetic poles of different polarities are arranged alternately along the traveling direction of the track, facing the lower surfaces of a pair of left and right magnetic rails installed in parallel with each other along the traveling direction of the track. salient pole support electromagnets provided symmetrically on the bogie, and supporting electromagnets provided symmetrically and facing each other on the side surfaces of the pair of magnetic rails, which are attached to the bogie of the vehicle so as to form a pair; In a vehicle equipped with a salient pole guiding electromagnet, the supporting electromagnet and the guiding electromagnet are formed so that their pole pitches are equal and the center positions of the magnetic poles in the traveling direction coincide with each other, and the center positions of the supporting electromagnet and the guiding electromagnet coincide with each other. A levitation device for an attraction type magnetic levitation vehicle, characterized in that the magnetic poles are excited to have opposite polarities. 2. In the device according to claim 1,
A levitation device for an attraction type magnetic levitation vehicle, characterized in that equal direct current bias currents are passed through the left and right guide electromagnets.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20709583A JPS6098803A (en) | 1983-11-04 | 1983-11-04 | Levitating device of attraction type magnetic levitation vehicle |
EP84113222A EP0144000B1 (en) | 1983-11-04 | 1984-11-02 | Floating apparatus for attractive magnetic floater |
DE8484113222T DE3484844D1 (en) | 1983-11-04 | 1984-11-02 | FLOATING DEVICE FOR FLOATING VEHICLE WITH MAGNETIC ATTRACTION. |
CA000466901A CA1243085A (en) | 1983-11-04 | 1984-11-02 | Floating apparatus for attractive magnetic floater |
US06/667,626 US4646651A (en) | 1983-11-04 | 1984-11-02 | Floating apparatus for attractive magnetic floater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20709583A JPS6098803A (en) | 1983-11-04 | 1983-11-04 | Levitating device of attraction type magnetic levitation vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6098803A JPS6098803A (en) | 1985-06-01 |
JPH0318401B2 true JPH0318401B2 (en) | 1991-03-12 |
Family
ID=16534112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20709583A Granted JPS6098803A (en) | 1983-11-04 | 1983-11-04 | Levitating device of attraction type magnetic levitation vehicle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6098803A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108045265B (en) * | 2018-01-10 | 2023-06-20 | 西南交通大学 | Forced centering suspension frame of maglev train and track structure thereof |
-
1983
- 1983-11-04 JP JP20709583A patent/JPS6098803A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6098803A (en) | 1985-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4913059A (en) | Levitation, propulsion and guidance mechanism for inductive repulsion-type magnetically levitated railway | |
US4646651A (en) | Floating apparatus for attractive magnetic floater | |
US3845720A (en) | Magnetic-levitation vehicle with auxiliary magnetic support at track-branch locations | |
US5722326A (en) | Magnetic levitation system for moving objects | |
CN111373097B (en) | Permanent magnetic suspension train adopting passive low-frequency electromagnetic stabilization | |
CN106926743A (en) | Eddy current retarder and magnetically supported vehicle | |
JPH01177805A (en) | Attraction type magnetic levitation vehicle | |
JP3815870B2 (en) | Magnetic levitation railway propulsion / levitation / guide ground coil, magnetic levitation railway propulsion / levitation / guide ground coil connection method, magnetic levitation railway support / guide structure, magnetic levitation railway support / Guiding structure construction method, magnetic levitation railway propulsion / levitation / guide device, magnetic levitation railway propulsion / levitation / guide method, magnetic levitation railway system, magnetic levitation railway current collection system, and magnetic levitation Current collection method | |
JPH0318401B2 (en) | ||
EP0222938A1 (en) | Rail for use in magnetic propulsive levitation apparatus | |
JPS6041762Y2 (en) | magnetic levitation vehicle | |
KR20180115834A (en) | Pxropulsion, levitation and guidance allinone system | |
JPH0669246B2 (en) | Levitating, guiding and propulsion combination device for induction repulsion type magnetic levitation railway | |
JP2008253126A (en) | Magnetic levitation mechanism | |
EP0224617A1 (en) | Rail for use in magnetic propulsive levitation apparatus | |
KR100278700B1 (en) | Eddy Current Braking System Using Permanent Magnet | |
JPS61108002U (en) | ||
JPS60229664A (en) | Magnetic levitating propulsion apparatus of attraction type magnetic levitation type railway | |
JP2978415B2 (en) | Superconducting magnetic levitation type magnetic body mixed concrete for railway | |
JPS5886808A (en) | Supporter for attracting force type magnetic levitating car | |
JPH0919005A (en) | Attraction type magnetic levitation vehicle | |
JPS60229604A (en) | Magnetic rail of attracting type magnetic levitating train | |
JPH02146908A (en) | Connection of guide/magnetic levitation coil | |
JPS58133103A (en) | Track coil for magnetically floated train | |
KR20220167606A (en) | Null-flux levitation apparatus for magnetic levitation vehicle and system |