JPS61112501A - Leviation controller of magnetic levitating train - Google Patents

Leviation controller of magnetic levitating train

Info

Publication number
JPS61112501A
JPS61112501A JP23399884A JP23399884A JPS61112501A JP S61112501 A JPS61112501 A JP S61112501A JP 23399884 A JP23399884 A JP 23399884A JP 23399884 A JP23399884 A JP 23399884A JP S61112501 A JPS61112501 A JP S61112501A
Authority
JP
Japan
Prior art keywords
levitation
gap
electromagnet
induction motor
linear induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23399884A
Other languages
Japanese (ja)
Inventor
Yoshihiro Hosoda
細田 義門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP23399884A priority Critical patent/JPS61112501A/en
Publication of JPS61112501A publication Critical patent/JPS61112501A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/04Magnetic suspension or levitation for vehicles
    • B60L13/06Means to sense or control vehicle position or attitude with respect to railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Abstract

PURPOSE:To increase the efficiency and power factor of a linear induction motor by controlling a power source of a leviating electromagnet to generate an action for canceling a vertical force generated from the motor by the electromagnet. CONSTITUTION:A calculator 21 inputs a gap Gb between a levitating electromagnet 3 and iron rails 7, a gap set value Gr and the elevational acceleration Ac of the magnet 3, and controls the exciting current In of the magnet 3 to hold the gap at the set value. The calculator further inputs the primary current Ip of a linear induction motor 5, a power source frequency fv and a slip frequency (f), and controls the exciting current Im of the magnet 3 to cancel a vertical force generated by a linear induction motor S. Thus, the operation with high power factor and high operating frequency can be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、磁力により浮上した車体をリニア  。[Detailed description of the invention] [Industrial application field] This invention makes the car body levitated by magnetic force linear.

インダクションモータにより推進する磁気浮上車の浮上
制御装置に関するものである。
This invention relates to a levitation control device for a magnetic levitation vehicle propelled by an induction motor.

〔従来の技術〕[Conventional technology]

車輪とレールとの間のころがり摩擦によらずに車体を推
進させることのできる磁気浮上車は定常運行ベースで時
速300キロ以上、さらには500キロ以上が可能であ
り、次世代の高速地上輸送手段として実用化に向けての
研究開発が急速に推し進められている。
Magnetic levitation vehicles, which can propel the vehicle body without rolling friction between wheels and rails, can reach speeds of over 300 km/h, or even over 500 km/h in regular operation, making it the next generation of high-speed ground transportation. Research and development toward practical application is progressing rapidly.

磁気浮上車は吸引式のものと反発式のものとがあり、そ
の原理を吸引式磁気浮上車を例にとって説明すると、第
2図に示すように、磁気浮上車の車体1の底板2の下方
には一対の電磁石3,4が車体2の中心線の両側に互い
に同じ距離を隔てて固定され、底板2の中央部下面には
リニアインダクションモータ5が固定されており、地上
に固定された軌道桁6には、上記の電磁石3,4および
リニアインダクションモータ5にそれぞれ対応する位置
に吸引浮上用鉄レール7.8およびリアクションプレー
ト9が固定されていて、電磁石3,4が鉄レール7.8
に及ぼす電磁吸引力の反作用により車体1が浮上した状
態でリニアインダクションモータ5を作動させると、リ
アクションプレート9との磁気反作用によって車体1に
推進力が与えられるようになっている。
There are two types of magnetic levitation vehicles, one is an attraction type and the other is a repulsion type.To explain the principle using an attraction type magnetic levitation vehicle as an example, as shown in FIG. A pair of electromagnets 3 and 4 are fixed on both sides of the center line of the vehicle body 2 at the same distance from each other, and a linear induction motor 5 is fixed on the lower center surface of the bottom plate 2, and a track fixed on the ground is fixed. A suction levitation iron rail 7.8 and a reaction plate 9 are fixed to the girder 6 at positions corresponding to the electromagnets 3, 4 and the linear induction motor 5, respectively.
When the linear induction motor 5 is operated with the vehicle body 1 floating due to the reaction of the electromagnetic attraction force exerted on the vehicle body 1, a propulsion force is applied to the vehicle body 1 due to the magnetic reaction with the reaction plate 9.

このような磁気浮上車においては、電磁石3,4と鉄レ
ール7.8との間のギャップ10.11が小さくなるほ
どこの間に働く吸引力が強(なり、放置しておけば、電
磁石3,4と鉄レール7.8とが吸着してしまうため、
ギャップ10.11の大きさおよび車体1(電磁石3,
4)の上下動の加速度を検出し、その検出信号にもとず
き第3図1こ示すような基本構成の制御回路によって電
磁石3,4の電流を制御することにより浮上刃を制御し
て、ギャップ10.11を一定に保つことが行なわれて
いる。なお、電磁石3および4の制御は全く同様に行な
われるので、以下、電磁石3の系統の制御を中心として
説明する。
In such a magnetically levitated vehicle, the smaller the gap 10.11 between the electromagnets 3, 4 and the iron rail 7.8, the stronger the attraction force acting between them. and iron rail 7.8 will stick together,
The size of the gap 10.11 and the car body 1 (electromagnet 3,
4) The floating blade is controlled by detecting the acceleration of the vertical movement and controlling the current of the electromagnets 3 and 4 by a control circuit having the basic configuration as shown in Fig. 3 based on the detection signal. , the gap 10.11 is kept constant. Since the electromagnets 3 and 4 are controlled in exactly the same way, the control of the electromagnet 3 system will be mainly described below.

第3図の回路において、上記の車体1を浮上させる電磁
石3の励磁電流Im、すなわち電源装置12の出力は演
算回路13より供給される制御電圧VCによって制御さ
れる。演算回路13は、積分器、加算器、半転増幅器等
の演算素子よりなり、所望のギャップ値が設定されたギ
ャップ設定器14の出力を基準入力とし、電磁石3と共
に上下動する加速度計15および前記ギャップ10の大
きさを検出するギャップセンサ16の出力をフィード7
寸ツク入力として制御電圧VCを加減することにより、
ギャップ10をギャップ設定器14に設定された大きさ
に保つよう動作する。
In the circuit shown in FIG. 3, the excitation current Im of the electromagnet 3 that levitates the vehicle body 1, that is, the output of the power supply device 12, is controlled by the control voltage VC supplied from the arithmetic circuit 13. The arithmetic circuit 13 is made up of arithmetic elements such as an integrator, an adder, and a half-rotation amplifier, and uses the output of a gap setter 14 in which a desired gap value is set as a reference input, and an accelerometer 15 that moves up and down together with the electromagnet 3. Feed 7 the output of the gap sensor 16 that detects the size of the gap 10
By adjusting the control voltage VC as a short input,
It operates to maintain the gap 10 at the size set by the gap setting device 14.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の磁気浮上車においては、リニアイン
ダクションモータ5は推進力だけでなく矢印A(第2図
)で示す方向の垂直力も発生する。
In the conventional magnetic levitation vehicle as described above, the linear induction motor 5 generates not only a propulsive force but also a vertical force in the direction indicated by arrow A (FIG. 2).

この力は浮上系、すなわち電磁石3.今によら発生する
浮上刃に対して上記のような制御回路では制御をまかな
い切れないほどの大きな外乱として作用するため、リニ
アモータ5は垂直力がゼロとなるような定スリツプ周波
数で運転されており、その結果、効率や力率の大きい運
転周波数を用いることができず、推進系の効率や力率が
相当犠牲にされている。
This force is generated by the levitation system, namely the electromagnet 3. The floating blades that are occurring now act as a large disturbance that cannot be controlled by the control circuit described above, so the linear motor 5 is operated at a constant slip frequency such that the vertical force is zero. As a result, it is not possible to use operating frequencies with high efficiency and power factor, and the efficiency and power factor of the propulsion system are considerably sacrificed.

この発明は上記のような事情に鑑みなされたもので、そ
の目的は、従来に較べて著しく高い効率および力率が得
られる運転周波数でのリニアインダクションモータの運
転を可能にする磁気浮上車の浮上制御装置を提供するこ
とにある。
This invention was made in view of the above-mentioned circumstances, and its purpose is to levitate a magnetically levitated vehicle that enables the operation of a linear induction motor at an operating frequency that provides significantly higher efficiency and power factor than in the past. The purpose is to provide a control device.

〔問題点を解決するための手段〕[Means for solving problems]

上記の問題点を解決するために、この発明は、磁気浮上
車の車体側に備えられた浮上用電磁石と軌道側に備えら
れた浮上用レール手段との間の所望のギャップ値が設定
されたギャップ設定器の出力を基準入力とし、上記ギャ
ップを検出するギャップセンサの出力および上記浮上用
電磁石の上下動の加速度を検出する加速度計の出力をフ
ィードバック入力として所定の演算を行ない、上記ギャ
ップをギャップ設定器の設定値に保つよう上記浮上用電
磁石の電源装置を制御するための制御電圧を供給する演
算回路を備えた磁気浮上車の浮上制御装置において、推
進用のリニアインダクションモータが発生する垂直磁力
を決定するパラメータを検出し、上記演算回路に入力す
る手段を備えた磁気浮上車の浮上制御装置を提供するも
のである。
In order to solve the above-mentioned problems, the present invention provides a system in which a desired gap value is set between the levitation electromagnet provided on the vehicle body side of the magnetic levitation vehicle and the levitation rail means provided on the track side. Using the output of the gap setting device as a reference input, and using the output of the gap sensor that detects the gap and the output of the accelerometer that detects the vertical acceleration of the levitation electromagnet as feedback input, a predetermined calculation is performed to set the gap as a gap. In a levitation control device for a magnetic levitation vehicle equipped with an arithmetic circuit that supplies a control voltage to control the power supply device of the levitation electromagnet to maintain the setting value of the setting device, the vertical magnetic force generated by the linear induction motor for propulsion The object of the present invention is to provide a levitation control device for a magnetic levitation vehicle, comprising means for detecting parameters for determining the parameters and inputting them to the arithmetic circuit.

〔作 用〕 上記の構成を有するこの発明の磁気浮上車の浮上制御装
置においては、リニアインダクションモータの1次電流
、運転周波数、スリップ周波数等の垂直力を決定するパ
ラメータの変化を検出して浮上系の制御装置の演算回路
に入力し、リニアインダクションモータの入力が垂直力
を発生する状態になると同時にその垂直力を相殺する作
用を浮土用電磁石より生じさせるよう演算回路の出力に
よって浮上用電磁石の電源装置を制御するようになって
いる。たとえば、第2図において、リニアインダクショ
ンモータ5の入力がモータ5から車体1を降下させるよ
うな垂直力が発生する状態になると、演算回路はそのよ
うな垂直力を決定するリニアインダクションモータ5の
1次電流、運転周波数、スリップ周波数等のパラメータ
にもとずいて浮上用電磁石3,4の吸引力を強めるよう
な制御電圧を電磁石の電源装置に供給するので、車体1
は降下せず、ギャップ10.11は一定に保たれる。
[Function] The levitation control device for a magnetic levitation vehicle of the present invention having the above-described configuration detects changes in parameters that determine the vertical force such as the primary current, operating frequency, and slip frequency of the linear induction motor, and performs levitation. The input is input to the arithmetic circuit of the system control device, and at the same time when the input of the linear induction motor becomes a state in which a vertical force is generated, the output of the arithmetic circuit causes the floating electromagnet to generate an action that cancels out the vertical force. It is designed to control the power supply. For example, in FIG. 2, when the input to the linear induction motor 5 generates a vertical force that causes the motor 5 to lower the vehicle body 1, the arithmetic circuit determines the input power of the linear induction motor 5 to determine such vertical force. Since a control voltage is supplied to the electromagnet power supply device to strengthen the attraction force of the levitation electromagnets 3 and 4 based on parameters such as secondary current, operating frequency, and slip frequency, the vehicle body 1
does not drop and the gap 10.11 remains constant.

このように、従来は、リニアインダクションモータから
発生させると、ギャップセンサ16 %tbの出力を急
激に変化させる大きな外乱として作用していた垂直力の
決定パラメータを浮上制御系の制御入力として取込むこ
とにより、リニアインダクションモータが発生する垂直
力およびその変化を浮上系で迅速かつ円滑に補償するこ
とができるため、リニアインダクションモータの効率お
よび力率ができる限り高くなるような運転周波数の使用
が可能になる。
In this way, the parameter determining the vertical force, which conventionally acted as a large disturbance that caused a sudden change in the output of the gap sensor 16%tb when generated from the linear induction motor, can be taken in as a control input for the levitation control system. This allows the normal forces generated by the linear induction motor and their changes to be compensated quickly and smoothly in the floating system, making it possible to use operating frequencies that give the linear induction motor the highest possible efficiency and power factor. Become.

〔実施例〕〔Example〕

以下、この発明による磁気浮上車の浮上制御装置の一実
施例について第1図および第4図を参照しつつ詳細に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a levitation control device for a magnetic levitation vehicle according to the present invention will be described in detail below with reference to FIGS. 1 and 4.

図示実施例の磁気浮上車の浮上制御装置において、演算
回路21にはギャップ設定器22に設定された浮上用電
磁石3と鉄レール7との間のギャップ10〔第2図参照
〕の所望のギャップ値Grが入力される一方、浮上用電
磁石3の上下動の加速度を検出する加速度計15からの
加速度信号ACおよび電磁石3と鉄レール7との間のギ
ャップの大きさを検出するギャップセンサ16から出力
されるギャップ信号Gbがフィードバック入力されてい
る。さらに、演算回路21にはリニアインダクションモ
ータ5の入力系統23に設けられた変流器CT+および
Cr2よりそれぞれ電流−電圧(A/V )変換器24
、周波数−電圧(F/v)変換器25を介してリニアモ
ータ5の一次電流信号1pおよび電源周波数または運転
周波数信号frが入力されるとともに、スリップ周波数
検出回路26よりスリップ周波数信号Δfが入力されて
いる。このスリップ周波数信号Δfはスリップ周波数検
出回路26において下記のようにして得ることができる
In the levitation control device for the magnetic levitation vehicle of the illustrated embodiment, the arithmetic circuit 21 calculates the desired gap of the gap 10 (see FIG. 2) between the levitation electromagnet 3 and the iron rail 7, which is set in the gap setting device 22. While the value Gr is input, an acceleration signal AC from an accelerometer 15 that detects the vertical acceleration of the levitation electromagnet 3 and a gap sensor 16 that detects the size of the gap between the electromagnet 3 and the iron rail 7 are input. The output gap signal Gb is fed back. Furthermore, the arithmetic circuit 21 is connected to current-voltage (A/V) converters 24 from current transformers CT+ and Cr2 provided in the input system 23 of the linear induction motor 5, respectively.
, a primary current signal 1p and a power supply frequency or operating frequency signal fr of the linear motor 5 are inputted via a frequency-voltage (F/v) converter 25, and a slip frequency signal Δf is inputted from a slip frequency detection circuit 26. ing. This slip frequency signal Δf can be obtained in the slip frequency detection circuit 26 as follows.

磁気浮上車の軌道沿いには交叉型誘導無線々路27が布
設されており、磁気浮上車の車上アンテナ28は誘導無
線々路27から電磁誘導結合によりパルス列等の信号を
受信し、速度検出回路29に供給する。速度検出回路2
9は、車上アンテナ28から供給される信号を磁気浮上
車の速度を表わす速度信号■に変換し、スリップ周波数
検出回路26に供給する。スリップ周波数検出回路26
には上記のF/v変換器25から出力される運転周波数
信号frも入力されており、スリップ周波数検出回路2
6は速度信号■から次式■によって走行周波数f■を求
め、この走行周波数fvと上記運転周波数信号frとか
ら次式■によってスリップ周波数(ただしくはりニアイ
ンダクションモータのポールピッチである。) Δf==fr−fv・・・・・・・・・・・・・・・・
・・・・・・・・■演算回路21はギャップ設定器22
により設定により電磁石電源装置12の制御電圧vcを
加減し、これによって浮上用電磁石3と鉄レール7との
間のギャップを上記設定値Grに保つよう電磁石3の励
磁電流Im を制御するとともに、上記−次電流信号I
p、運転周波数信号frおよびスリップ周波数信号Δ〔
を入力して、リニアインダクションモータ5より垂直力
が発生する状態になると、これらの入力により所定の演
算を行なって、その垂直力を相殺するよう補償された制
御電圧■(を電磁石電源装置12に供給する。従って、
リニアインダクションモータ5から垂直力が発生しても
、上記ギャップは変化せず、上記設定値Grに保たれる
A cross-type guided radio channel 27 is laid along the track of the magnetically levitated vehicle, and the on-board antenna 28 of the magnetically levitated vehicle receives signals such as pulse trains from the guided radio channel 27 by electromagnetic induction coupling, and detects speed. Supplied to circuit 29. Speed detection circuit 2
9 converts the signal supplied from the on-vehicle antenna 28 into a speed signal (2) representing the speed of the magnetically levitated vehicle, and supplies it to the slip frequency detection circuit 26. Slip frequency detection circuit 26
The operating frequency signal fr output from the F/v converter 25 is also input to the slip frequency detection circuit 2.
6 calculates the running frequency f■ from the speed signal ■ using the following formula (■), and calculates the slip frequency (this is actually the pole pitch of the near induction motor) using the following formula (■) from this traveling frequency fv and the above-mentioned operating frequency signal fr.Δf= =fr−fv・・・・・・・・・・・・・・・
...... ■The arithmetic circuit 21 is the gap setting device 22
The control voltage vc of the electromagnet power supply device 12 is adjusted according to the setting, thereby controlling the excitation current Im of the electromagnet 3 so as to maintain the gap between the levitation electromagnet 3 and the iron rail 7 at the above set value Gr, and -Next current signal I
p, operating frequency signal fr and slip frequency signal Δ[
When a vertical force is generated from the linear induction motor 5 by inputting , a predetermined calculation is performed based on these inputs, and a compensated control voltage supply.Therefore,
Even if a vertical force is generated from the linear induction motor 5, the gap does not change and is maintained at the set value Gr.

上記のような機能を有する演算回路21としては、たと
えは第4図に示すような構成の回路を用いることができ
る。第4図において、ギャップセンサ16からのギャッ
プ信号Gbは符号反転回路30を介して加算器31に入
力され、設定ギャップ値Grとの偏差Δc=cr−Gb
が計算される。この偏差信号ΔGはそれぞれ係数に+、
に2およびに3を設定するためのポテンショメータから
なる係数器32.33および34と微分器35および積
分器36からなる比例積分微分(PID)動作回路によ
り比例入力P、微分人力りおよび積分人力Iとして出力
加算器37に供給される。また、加速度計15からの加
速度信号ACも係数に4が設定された係数器38を介し
て出力加算器37に入力される。
As the arithmetic circuit 21 having the above-mentioned functions, for example, a circuit having a configuration as shown in FIG. 4 can be used. In FIG. 4, the gap signal Gb from the gap sensor 16 is input to the adder 31 via the sign inversion circuit 30, and the deviation from the set gap value Gr is Δc=cr−Gb.
is calculated. This deviation signal ΔG has a coefficient of +,
A proportional-integral-derivative (PID) operation circuit consisting of coefficient multipliers 32, 33 and 34 consisting of potentiometers for setting 2 and 3, a differentiator 35 and an integrator 36 allows proportional input P, differential input power and integral input power I The signal is supplied to the output adder 37 as a signal. Furthermore, the acceleration signal AC from the accelerometer 15 is also input to the output adder 37 via a coefficient multiplier 38 whose coefficient is set to 4.

他方、−次電流信号Ipは掛算器からなる2乗回路39
により2乗され、掛算器40に入力されて、スリップ周
波数信号Δfの反転信号とあらかじめ設定されたリニア
インダクションモータ5の垂直磁力がゼロになるスリッ
プ周波数Δfo を加算器41で加算して得られるスリ
ップ周波数偏差信号Δfo−Δfと掛は合わされる。掛
算器4oの出力■退(Δfo−Δf )は係数ks、k
K定するための係数器42.43および微分器44より
なる比例微分(PD )動作回路により比例式カメ、微
分入力りとして加算器45に供給される。また、前述の
運転周波数信号frも係数に7を設定するための係数器
46を介して加算器45に入力され、上記掛算器40の
出力1 這<、Δfo−Δf)にもとず(比例入力P′
および微分人力りと共に加算される。なお、この実施例
において上記信号1p(Δfo−Δf)およびfrを制
御入力として用いるのは、電磁学的に、リニアインダク
ションモータが及ぼす垂直磁力は1次電流1pの2乗お
よび垂直磁力がゼロとなるスリップ周波数Δf。
On the other hand, the negative current signal Ip is output by a squaring circuit 39 consisting of a multiplier.
The slip is squared and input to the multiplier 40, and the slip obtained by adding the inverted signal of the slip frequency signal Δf and the preset slip frequency Δfo at which the vertical magnetic force of the linear induction motor 5 becomes zero at the adder 41. The frequency deviation signal Δfo−Δf and the multiplication are combined. The output of the multiplier 4o (∆fo - ∆f) is the coefficient ks, k
A proportional differential (PD) operating circuit comprising coefficient multipliers 42 and 43 for determining K and a differentiator 44 supplies the proportional differential input to an adder 45 as a differential input. In addition, the aforementioned operating frequency signal fr is also input to the adder 45 via the coefficient multiplier 46 for setting the coefficient to 7, and based on the output of the multiplier 40 (1 hi <, Δfo - Δf) (proportional Input P'
and are added together with differential labor. In this embodiment, the signals 1p (Δfo - Δf) and fr are used as control inputs because, electromagnetically, the vertical magnetic force exerted by the linear induction motor is the square of the primary current 1p and the vertical magnetic force is zero. The slip frequency Δf.

と実際のスリップ周波数Δfの偏差Δfo−Δf に比
例し、さらに運転周波数にも比例Tるからであり、これ
らの信号の信号値を浮上用電磁石3の制御に加味するこ
とにより、リニアインダクションモータ5の垂直磁力を
浮上系において補償するためである。
This is because T is proportional to the deviation Δfo−Δf of the actual slip frequency Δf, and is also proportional to the operating frequency.By taking the signal values of these signals into consideration in the control of the levitation electromagnet 3, the linear induction motor 5 This is to compensate for the vertical magnetic force in the levitation system.

上記加算器45の出力は、出力加算器3了において、ギ
ャップ信号Gbの偏差信号ΔGにもとず(P。
The output of the adder 45 is determined by the output adder 3 based on the deviation signal ΔG of the gap signal Gb (P).

D、Iの各信号および加速度信号に4A(と共に加算さ
れ、制御電圧vcとして電磁石電源装置12に入力され
る。従って、制御電圧vcはギャップ10の大きさおよ
び車体1の上下動の加速度の他、リニアインダクション
モータ5が及ぼす垂直磁力のパラメータである1次電流
、運転周波数およびスリップ周波数に応動して浮上用電
磁石3の励磁電流を増減させるので、リニアインダクシ
ョンモータ5から垂直磁力が発生する状態になると同時
に、浮上用電磁石3の出力がこの垂直磁力を相殺するよ
うに調節される。このようにして、リニアインダクショ
ンモータ5から垂直磁力が発生しても車体1は軌道に対
して一定の高さに保たれるので、リニアインダクション
モータ5の運転における効率および力率を高くすること
ができる。なお、上記係数klないしに8はそれぞれの
入力の制御電圧vcに対する効き具合を調節するのに用
いられる。
4A (along with the D and I signals and the acceleration signal) is input to the electromagnet power supply 12 as the control voltage vc. Therefore, the control voltage vc is calculated based on the magnitude of the gap 10 and the acceleration of the vertical movement of the vehicle body 1. , the excitation current of the levitation electromagnet 3 is increased or decreased in response to the primary current, operating frequency, and slip frequency, which are the parameters of the vertical magnetic force exerted by the linear induction motor 5, so that the vertical magnetic force is generated from the linear induction motor 5. At the same time, the output of the levitation electromagnet 3 is adjusted so as to cancel out this vertical magnetic force.In this way, even if a vertical magnetic force is generated from the linear induction motor 5, the vehicle body 1 remains at a constant height with respect to the track. Therefore, the efficiency and power factor in the operation of the linear induction motor 5 can be increased.The coefficients kl to 8 are used to adjust the effect of each input on the control voltage vc. .

〔発明の効果〕〔Effect of the invention〕

以上、詳細に説明したように、この発明による磁気浮上
車の浮上制御装置によれば、従来のようにリニアインダ
クションモータの垂直磁力をゼロに抑える必要がな(、
力率や効率が著しく高い運転周波数での運転が可能とな
る。
As explained in detail above, according to the levitation control device for a magnetically levitated vehicle according to the present invention, there is no need to suppress the vertical magnetic force of the linear induction motor to zero as in the conventional case.
It becomes possible to operate at an operating frequency with extremely high power factor and efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明による磁気浮上車の浮上制御装置の一
実施例のブロック図、第2図は吸引式磁気浮上車の一例
の構造を示す概略横断面図、第3図は従来の磁気浮上車
の浮上制御装置の一例の構成を示すブロック図、第4図
はこの発明の上記実施例に用いられる演算回路の一例の
ブロック回路図である。 1・・・車体、3,4・・・浮上用電磁石、5・・・リ
ニアインダクションモータ、7.8・・・鉄レール、9
・・・リアクションプレート、io、il・・・ギャッ
プ、12・・・電磁石電源装置、15・・・加速度計、
16・・・ギャップセンサ、21・・・演算回路、22
・・・ギャップ設定器、26・・・スリ・ツブ周波数検
出回路、27・・・交叉型誘導無線々路、29・・・速
度検出回路。
Fig. 1 is a block diagram of an embodiment of a levitation control device for a magnetic levitation vehicle according to the present invention, Fig. 2 is a schematic cross-sectional view showing the structure of an example of an attraction type magnetic levitation vehicle, and Fig. 3 is a conventional magnetic levitation vehicle. FIG. 4 is a block diagram showing the configuration of an example of a vehicle levitation control device. FIG. 4 is a block circuit diagram of an example of an arithmetic circuit used in the above embodiment of the present invention. 1... Vehicle body, 3, 4... Levitating electromagnet, 5... Linear induction motor, 7.8... Iron rail, 9
... reaction plate, io, il... gap, 12... electromagnetic power supply device, 15... accelerometer,
16... Gap sensor, 21... Arithmetic circuit, 22
. . . Gap setting device, 26 . . . Slip/tub frequency detection circuit, 27 . . .

Claims (3)

【特許請求の範囲】[Claims] (1)磁気浮上車の車体側に備えられた浮上用電磁石と
軌道側に備えられた浮上用レール手段との間の所望のギ
ャップ値が設定されたギャップ設定器の出力を基準入力
とし、上記ギャップを検出するギャップセンサの出力お
よび上記浮上用電磁石の上下動の加速度を検出する加速
度計の出力をフィードバック入力として所定の演算を行
ない、上記ギャップをギャップ設定器の設定値に保つよ
う上記浮上用電磁石の電源装置を制御するための制御電
圧を供給する演算回路を備えた磁気浮上車の浮上制御装
置において、推進用のリニアインダクションモータが及
ぼす垂直磁力を決定するパラメータを検出し、上記演算
回路に入力する手段を備えたことを特徴とする磁気浮上
車の浮上制御装置。
(1) The output of the gap setting device in which the desired gap value between the levitation electromagnet provided on the body side of the magnetic levitation vehicle and the levitation rail means provided on the track side is set is used as the reference input, and the above The output of the gap sensor that detects the gap and the output of the accelerometer that detects the vertical acceleration of the levitation electromagnet are used as feedback inputs to perform a predetermined calculation, and the levitation electromagnet maintains the gap at the set value of the gap setting device. In a magnetic levitation vehicle levitation control device that is equipped with an arithmetic circuit that supplies a control voltage to control an electromagnet power supply device, a parameter that determines the vertical magnetic force exerted by a linear induction motor for propulsion is detected, and the above arithmetic circuit is A levitation control device for a magnetic levitation vehicle, comprising a means for inputting information.
(2)前記パラメータがリニアインダクションモータの
1次電流、運転周波数およびスリップ周波数である特許
請求の範囲第1項記載の磁気浮上車の浮上制御装置。
(2) The levitation control device for a magnetic levitation vehicle according to claim 1, wherein the parameters are a primary current, an operating frequency, and a slip frequency of a linear induction motor.
(3)前記スリップ周波数を誘導無線により得られる速
度信号にもとずき検出する手段を備えた特許請求の範囲
第2項記載の磁気浮上車の浮上制御装置。
(3) The levitation control device for a magnetic levitation vehicle according to claim 2, further comprising means for detecting the slip frequency based on a speed signal obtained by a guided radio.
JP23399884A 1984-11-02 1984-11-02 Leviation controller of magnetic levitating train Pending JPS61112501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23399884A JPS61112501A (en) 1984-11-02 1984-11-02 Leviation controller of magnetic levitating train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23399884A JPS61112501A (en) 1984-11-02 1984-11-02 Leviation controller of magnetic levitating train

Publications (1)

Publication Number Publication Date
JPS61112501A true JPS61112501A (en) 1986-05-30

Family

ID=16963947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23399884A Pending JPS61112501A (en) 1984-11-02 1984-11-02 Leviation controller of magnetic levitating train

Country Status (1)

Country Link
JP (1) JPS61112501A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487744A1 (en) * 1990-06-20 1992-06-03 Kabushiki Kaisha Yaskawa Denki Underwater linear transport system
US6802719B2 (en) * 2000-09-09 2004-10-12 Zetex Plc Implantation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0487744A1 (en) * 1990-06-20 1992-06-03 Kabushiki Kaisha Yaskawa Denki Underwater linear transport system
US6802719B2 (en) * 2000-09-09 2004-10-12 Zetex Plc Implantation method

Similar Documents

Publication Publication Date Title
US4793263A (en) Integrated linear synchronous unipolar motor with controlled permanent magnet bias
US10689227B2 (en) Electric linear motor
US11801756B2 (en) Permanent magnet electrodynamic suspension system and guidance method therefor
CN109159672B (en) Method and device for correcting lateral deviation of permanent magnet set in magnetic suspension traffic equipment
CN107249926B (en) Levitation control system for a transport system
CN106586777A (en) Non-traction type inclined elevator and control method thereof
JPH09252504A (en) Magnetic levitation transfer device
JPS61112501A (en) Leviation controller of magnetic levitating train
JPH01255404A (en) Electromagnet device for levitation
Glatzel et al. The development of the magnetically suspended transportation system in the federal republic of germany
KR101329363B1 (en) Estimanted position apparatus of magnetic levitation train for phase control in propelled invertor of the train based by ls-lsm
JPH0783525B2 (en) Air gap control device for linear motor magnetic levitation vehicle
JP3092723B2 (en) Underwater linear transportation system
JPH0757042B2 (en) Floating carrier
JP3072297B2 (en) Propulsion method of tracked vehicle by synchronous linear motor
JPH08163712A (en) Magnetically levitated conveyor
JP2010124555A (en) Electric bogie
JPS62171403A (en) Conveying equipment utilizing linear motor
CN108540037B (en) Linear induction motor normal force detection and control method and system
JP2915564B2 (en) Magnetic suction guide device
JPH01206802A (en) Superconductor magnetic levitation transportation system
EP0487744A1 (en) Underwater linear transport system
Holt et al. New Developments in Magnetic Suspension and Propulsion for Transportation
JPS61231806A (en) Magnetic levitation controlling method
WO2010058454A1 (en) Magnetic vehicular transportation system