JP5272404B2 - Magnetic levitation propulsion device - Google Patents

Magnetic levitation propulsion device Download PDF

Info

Publication number
JP5272404B2
JP5272404B2 JP2007336298A JP2007336298A JP5272404B2 JP 5272404 B2 JP5272404 B2 JP 5272404B2 JP 2007336298 A JP2007336298 A JP 2007336298A JP 2007336298 A JP2007336298 A JP 2007336298A JP 5272404 B2 JP5272404 B2 JP 5272404B2
Authority
JP
Japan
Prior art keywords
coil
permanent magnet
mover
propulsion
levitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007336298A
Other languages
Japanese (ja)
Other versions
JP2009159753A (en
JP2009159753A5 (en
Inventor
文農 張
裕司 中村
崇 萬羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2007336298A priority Critical patent/JP5272404B2/en
Publication of JP2009159753A publication Critical patent/JP2009159753A/en
Publication of JP2009159753A5 publication Critical patent/JP2009159753A5/ja
Application granted granted Critical
Publication of JP5272404B2 publication Critical patent/JP5272404B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、浮上案内を電磁気吸引反発力により非接触に支持し、推進する磁気浮上推進装置に係わり、特に半導体製造工程の中で移動ストロークが長い搬送系に適した磁気浮上推進装置に関する。   The present invention relates to a magnetic levitation propulsion device that supports and lifts a levitation guide in a non-contact manner by an electromagnetic attractive repulsion force, and more particularly to a magnetic levitation propulsion device suitable for a transport system having a long movement stroke in a semiconductor manufacturing process.

近年の半導体製造基準の進歩に伴い、超LSI素子パターンの微細化がさらに進み、極めてクリーン度の高い真空内製造設備が強く要求されてきている。特に、16Mbit以上のDRAM製造工程においては、ダストフリーであることが絶対条件である。しかし、直線方向の搬送が不可欠である製造設備において、摩擦,摩耗による塵埃の発生を防ぐことは、非常に困難である。
一方、磁気浮上搬送装置は、磁力による非接触の支持であるため、塵埃の発生はなく、潤滑媒体も不要である。このため、極めてクリーン度の高い搬送装置として注目されている。
従来の磁気浮上推進装置は、浮上(案内)機構と推進機構を別々に構成して可動子を浮上しながら推進するようになっている(例えば、特許文献1参照)。
図4は、従来の磁気浮上推進装置の縦断面図である。図において、1は固定子、2は可動子、5は浮上用コイル、6は浮上用永久磁石、7は推進用コイル、8は推進用永久磁石である。
また、浮上用コイル5と浮上用永久磁石6は左右対称に配置されていて、浮上z方向に浮上力を発生すると同時に案内x方向に引き戻す力も発生するので、浮上(案内)機構となっている。尚、推進用コイル7と推進用永久磁石8は装置の中心に配置されていて、普通の3相リニアモータの構造をして推進機構となっている。
このように、従来の磁気浮上推進装置は、浮上z方向に付けられたギャップセンサーからのギャップ信号に基づいて浮上用コイル5の電流を制御して浮上用永久磁石6との間に吸引力を発生し可動子を浮上(案内)させながら、推進y方向に付けられた位置センサーからの位置情報に基づいて推進用コイル7の電流を制御して推進用永久磁石8との間に推進力を発生し可動子を推進するのである。
特開平5−4717号公報(第2−5頁、図1)
Along with the recent progress in semiconductor manufacturing standards, the miniaturization of VLSI element patterns has further progressed, and there is a strong demand for in-vacuum manufacturing equipment with an extremely high degree of cleanliness. In particular, in a DRAM manufacturing process of 16 Mbit or more, it is an absolute condition that it is dust-free. However, it is very difficult to prevent the generation of dust due to friction and wear in a manufacturing facility where conveyance in a linear direction is indispensable.
On the other hand, since the magnetic levitation transport device is non-contact support by magnetic force, no dust is generated and no lubricating medium is required. For this reason, it has been attracting attention as an extremely clean transfer device.
A conventional magnetic levitation propulsion device is configured to propel a mover while levitating (guide) mechanism and propulsion mechanism separately (see, for example, Patent Document 1).
FIG. 4 is a longitudinal sectional view of a conventional magnetic levitation propulsion device. In the figure, 1 is a stator, 2 is a mover, 5 is a levitation coil, 6 is a levitation permanent magnet, 7 is a propulsion coil, and 8 is a propulsion permanent magnet.
The levitation coil 5 and the levitation permanent magnet 6 are arranged symmetrically and generate a levitation force in the levitation z direction and at the same time generate a force of pulling back in the guide x direction, thus forming a levitation (guide) mechanism. . The propulsion coil 7 and the propulsion permanent magnet 8 are disposed at the center of the apparatus, and form a propulsion mechanism having the structure of an ordinary three-phase linear motor.
As described above, the conventional magnetic levitation propulsion device controls the current of the levitation coil 5 based on the gap signal from the gap sensor attached in the levitation z direction and generates an attractive force between the levitation permanent magnet 6 and the levitation permanent magnet 6. A propulsive force is generated between the propulsion permanent magnet 8 by controlling the current of the propulsion coil 7 based on the position information from the position sensor attached in the propulsion y direction while floating and guiding the mover. It generates and propels the mover.
Japanese Patent Laid-Open No. 5-4717 (page 2-5, FIG. 1)

従来の磁気浮上推進装置は、浮上(案内)機構と推進機構が別々に構成されているので、浮上(案内)機構と推進機構の各々の空隙を管理する必要があるとともに、部品点数が多くなり、装置が複雑になるという問題があった。
また、浮上(案内)機構と推進機構は別々に制御されていて、推力の発生に伴う空隙方向への吸引力により浮上力とが互いに干渉する。この吸引力は、一定の吸引力ではなく移動位置によって変化するために、非線形な制御系となり難しくなるというような問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、浮上(案内)機構と推進機構を一体化すると共に浮上力と推進力を同時に発生し、簡単な構成で可動子の姿勢を制御しながらバランス良く安定に可動子を推進することができる磁気浮上推進装置を提供することを目的とする。
In the conventional magnetic levitation propulsion device, the levitation (guide) mechanism and the propulsion mechanism are configured separately, so it is necessary to manage the gaps of the levitation (guide) mechanism and the propulsion mechanism, and the number of parts increases. There was a problem that the device became complicated.
Further, the levitation (guide) mechanism and the propulsion mechanism are controlled separately, and the levitation force interferes with each other due to the suction force in the gap direction accompanying the generation of thrust. Since this suction force is not a constant suction force but changes depending on the moving position, there is a problem that it becomes difficult to become a non-linear control system.
The present invention has been made in view of such problems, and the levitation (guide) mechanism and the propulsion mechanism are integrated, and the levitation force and the propulsion force are simultaneously generated to control the attitude of the mover with a simple configuration. An object of the present invention is to provide a magnetic levitation propulsion device capable of propelling the mover in a balanced and stable manner.

上記問題を解決するため、本発明は、次のように構成したのである。
発明は、固定子と、可動子と、コイルと、永久磁石とを備えた磁気浮上推進装置において、前記コイルは前記固定子または前記可動子の左右両側の底面に対称的に設定され、前記永久磁石は前記コイルに上下対向して前記可動子または前記固定子の左右両側に設定され、浮上と推進を同時に制御するように前記コイルを給電するものである。
また、発明は、固定子と、可動子と、コイルと、永久磁石とを備えた磁気浮上推進装置において、前記コイルは前記固定子または前記可動子の左右両側の側面に対称的に設定され、前記永久磁石は前記コイルに左右対向して前記可動子または前記固定子の左右両側に設定され、案内と推進を同時に制御するように前記コイルを給電するものである。
また、発明は、前記コイルは、独立に制御できる相数が4以上とするものである。
また、発明は、前記コイルは、浮上または案内と推進を4相以上のdq変換することで給電するものである。
また、発明は、前記コイルは、d軸を基本軸としたときに、第1の前記コイルと前記d軸との位相は1極の永久磁石の幅と前記d軸と前記第1のコイルの距離の比率から求められるものである。
In order to solve the above problem, the present invention is configured as follows.
The present invention relates to a magnetic levitation propulsion device comprising a stator, a mover, a coil, and a permanent magnet, wherein the coil is set symmetrically on the bottom surfaces on both the left and right sides of the stator or the mover, Permanent magnets are set on both the left and right sides of the mover or the stator so as to face the coil in the vertical direction, and feed the coil so as to control levitation and propulsion simultaneously.
Further, the present invention provides a magnetic levitation propulsion device including a stator, a mover, a coil, and a permanent magnet, wherein the coil is set symmetrically on the left and right side surfaces of the stator or the mover. The permanent magnet is set on the left and right sides of the mover or the stator so as to face the coil in the left-right direction, and feeds the coil so as to control the guidance and the propulsion simultaneously.
In the present invention, the coil has four or more phases that can be independently controlled.
Further, according to the present invention, the coil supplies power by performing dq conversion of four phases or more for levitation or guidance and propulsion.
Further, according to the present invention, when the coil has a d-axis as a basic axis, the phase between the first coil and the d-axis is the width of a permanent magnet having one pole, the d-axis, and the first coil. It is calculated | required from the ratio of distance.

請求項1および請求項2に記載の発明によると、浮上(案内)機構と推進機構を一体化することで装置を簡素化することができる。
また、請求項3から5に記載の発明によると、4相コイルの電流を独立に制御することで任意な浮上力、推進力fおよびピッチングトルクを発生することができるので、可動子をバランス良く安定に推進することができる。
According to the first and second aspects of the invention, the apparatus can be simplified by integrating the floating (guide) mechanism and the propulsion mechanism.
In addition, according to the invention described in claims 3 to 5, any levitating force, propulsive force fq, and pitching torque can be generated by independently controlling the current of the four-phase coil. It can be promoted well and stably.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1実施例を示す磁気浮上推進装置の縦断面図である。図において、浮上(案内)推進機構は固定子1に左右対称で配置されている浮上推進用永久磁石4と浮上推進用永久磁石4に対向して可動子に配置されている浮上推進用コイル3とで構成されている。
本発明が従来技術と異なる部分は、浮上(案内)機構と推進機構を別々に構成することではなく一体化した点である。
以下、図を用いて磁気浮上推進機構の原理を説明する。
図1において、浮上(案内)推進機構はコイルと永久磁石の吸引力で浮上と推進を行う同時にx(案内)方向に中心に戻る力が発生するので、案内の働きもするものである。また、浮上(案内)推進機構が完全に左右対称に構成されているので、片側のコイルと永久磁石がz(浮上)方向に浮上力、y(推進)方向に推進力、そしてx軸を軸中心とするピッチングトルクを独立に発生することができれば、可動子をバランス良く安定に推進することができる。以下、簡単のために片側のコイルと永久磁石用いて、浮上、推進、案内が可能であることを説明する。
図2は、図1に示す磁気浮上推進機構のP−P’に沿う断面図である。図において、41は永久磁石のN側、42は永久磁石のS側であり、移動ストロークが長い搬送系にはこのような極対永久磁石がN側とS側交互に固定子1に配置されている。また、31はA相コイル、32はB相コイル、33はC相コイル、34はD相コイルであり、それぞれ独立に通電可能である。この4つコイルは1セットとなり、永久磁石に対向し1極対の幅に合わせて設置されている。以下、このような永久磁石と4つ独立なコイルで構成されたものを4相アクチュエータと呼ぶ。
まず、各コイルへの電流に対して4相のdq変換を行う。
図2において、永久磁石のN側41の中心軸をd軸とし、永久磁石N側41と永久磁石S側42との間隔の中心位置をq軸とし、A相コイル31、B相コイル32、C相コイル33およびD相コイル34の中心軸をそれそれα軸、β軸、γ軸およびδ軸とする。また、1極対永久磁石の幅をLとし、d軸からα軸までの距離をlとする。
図3は磁気浮上推進機構の空間ベクトル位相図である。図3において、1極対永久磁石の位相範囲を360°とし、そしてd軸を基準軸とすると、q軸の位相は90°となる。また、α軸の位相θは
θ=360°×l/L (1)
となる。そして、β軸、γ軸およびδ軸の位相はそれぞれ(θ+90°)、(θ+180°)および(θ+270°)となる。よって、A相コイル31の電流i、B相コイル32の電流i、C相コイル33の電流iおよびD相コイル34の電流iは、それぞれd軸における写像idA、idB、idCおよびidDが式(2)になる。また、それぞれq軸における写像iqA、iqB、iqCおよびiqDが式(3)になる。
FIG. 1 is a longitudinal sectional view of a magnetic levitation propulsion device showing a first embodiment of the present invention. In the figure, the levitation (guide) propulsion mechanism includes a levitation propulsion permanent magnet 4 disposed symmetrically with respect to the stator 1 and a levitation propulsion coil 3 disposed on the mover facing the levitation propulsion permanent magnet 4. It consists of and.
The difference between the present invention and the prior art is that the levitation (guide) mechanism and the propulsion mechanism are not separately configured but integrated.
Hereinafter, the principle of the magnetic levitation propulsion mechanism will be described with reference to the drawings.
In FIG. 1, the levitation (guide) propulsion mechanism functions as a guide because a force that returns to the center in the x (guide) direction is generated at the same time as levitation and propulsion are performed by the attractive force of the coil and the permanent magnet. In addition, the levitating (guide) propulsion mechanism is completely symmetrical, so the coil and permanent magnet on one side are levitating in the z (levitation) direction, propelling in the y (propulsion) direction, and the x axis is the axis If the centering pitching torque can be generated independently, the mover can be stably propelled in a balanced manner. Hereinafter, for simplicity, it will be described that levitation, propulsion, and guidance are possible using a coil and a permanent magnet on one side.
2 is a cross-sectional view taken along PP ′ of the magnetic levitation propulsion mechanism shown in FIG. In the figure, 41 is the N side of the permanent magnet, and 42 is the S side of the permanent magnet. In a conveyance system having a long moving stroke, such pole-pair permanent magnets are alternately arranged on the stator 1 on the N side and the S side. ing. Further, 31 is an A-phase coil, 32 is a B-phase coil, 33 is a C-phase coil, and 34 is a D-phase coil, which can be independently energized. These four coils form one set, and are installed in accordance with the width of one pole pair facing the permanent magnet. Hereinafter, such a permanent magnet and four independent coils are referred to as a four-phase actuator.
First, four-phase dq conversion is performed on the current to each coil.
In FIG. 2, the central axis on the N side 41 of the permanent magnet is d-axis, the center position of the interval between the permanent magnet N side 41 and the permanent magnet S side 42 is q-axis, and the A phase coil 31, B phase coil 32, The central axes of the C-phase coil 33 and the D-phase coil 34 are the α axis, β axis, γ axis, and δ axis, respectively. Further, the width of one pole pair permanent magnet is L, and the distance from the d-axis to the α-axis is l d .
FIG. 3 is a space vector phase diagram of the magnetic levitation propulsion mechanism. In FIG. 3, assuming that the phase range of one pole pair permanent magnet is 360 ° and the d-axis is a reference axis, the phase of the q-axis is 90 °. Further, the phase theta of the α-axis θ = 360 ° × l d / L (1)
It becomes. The phases of the β-axis, γ-axis, and δ-axis are (θ + 90 °), (θ + 180 °), and (θ + 270 °), respectively. Therefore, the current i A of the A-phase coil 31, the current i B of the B-phase coil 32, the current i D of the current i C and D-phase coils 34 of the C-phase coil 33, mapping i dA in d-axis, respectively, i dB, i dC and i dD are expressed by Equation (2). Further, the maps i qA , i qB , i qC, and i qD on the q axis are respectively given by the equation (3).

次に、磁気浮上推進機構が発生する電磁気力について説明する。
図2において、浮上推進用永久磁石4がA相コイル31の電流i、B相コイル32の電流i、C相コイル33の電流iおよびD相コイル34の電流iに働く電磁気力をそれぞれf、f、fおよびfとする。f、f、fおよびfが浮上z方向における写像fdA、fdB、fdCおよびfdDは式(4)になる。また、f、f、fおよびfが推進y方向における写像fqA、fqB、fqCおよびfqDは式(5)になる。ただし、kdA、kdB、kdCおよびkdDはそれぞれA、B、CおよびD相コイルのd軸トルク定数、kqA、kqB、kqCおよびkqDはそれぞれA、B、CおよびD相コイルのq軸トルク定数である。
Next, the electromagnetic force generated by the magnetic levitation propulsion mechanism will be described.
2, electromagnetic force acting permanent magnet 4 for levitation propulsion current i A of the A-phase coil 31, the current i B of the B-phase coil 32, the current i D of the current i C and D-phase coils 34 of the C-phase coil 33 Are denoted by f A , f B , f C and f D , respectively. The mappings f dA , f dB , f dC, and f dD in the floating z direction are f A , f B , f C, and f D are given by Equation (4). Further, f A , f B , f C, and f D are maps f qA , f qB , f qC, and f qD in the propulsion y direction as shown in Expression (5). Where k dA , k dB , k dC and k dD are the d-axis torque constants of the A, B, C and D phase coils, respectively, and k qA , k qB , k qC and k qD are A, B, C and D, respectively. It is the q-axis torque constant of the phase coil.

従って、可動子に発生する浮上力fと推進力fはそれぞれ式(6)と式(7)になる。 Therefore, the flying force f d a driving force f q each type occurring mover and (6) into equation (7).

次に、磁気浮上推進機構が可動子に働くトルクを分析する。
以下、説明しやすくするため、xoz平面に平行であり可動子2の重心Gを通る平面を重心平面と定義する。また、f、f、fおよびfの作用点がそれぞれα軸、β軸、γ軸およびδ軸にあるとし、α軸、β軸、γ軸およびδ軸から重心平面までの距離をそれぞれldA、ldB、ldCおよびldDとし、そして4相コイルの中心点通る線と重心との距離をlとすると、磁気浮上推進機構が可動子に働くピッチングトルクTは式(8)になる。
Next, the torque acting on the mover by the magnetic levitation propulsion mechanism is analyzed.
Hereinafter, for ease of description, it is defined as the center of gravity plane a plane passing through the center of gravity G of the movable element 2 is parallel to xoz plane. Further, assuming that the action points of f A , f B , f C and f D are respectively on the α-axis, β-axis, γ-axis and δ-axis, the distances from the α-axis, β-axis, γ-axis and δ-axis to the center of gravity plane the l dA, l dB respectively, l dC and l and dD, and the distance between the line and the center of gravity G that passes through the center point of the 4-phase coil When l q, the pitching torque T P of magnetic levitation propulsion mechanism acts on the movable element Becomes equation (8).

式(5)と式(7)を式(8)に代入し、整理すると、式(9)となる。   Substituting Equation (5) and Equation (7) into Equation (8) and rearranging results in Equation (9).

最後に、磁気浮上推進機構が任意な浮上力f、推進力fおよびピッチングトルクTを出力できるかについて説明する。
一般的に、各相の電流は式(10)を満たす必要がある。
+i+i+i=0 (10)
式(6)、式(7)、式(9)および式(10)をまとめると、式(11)になる。
Finally, the magnetic levitation propulsion mechanism any levitation force f d, whether it outputs a propulsion force f q and the pitching torque T P will be described.
In general, the current of each phase needs to satisfy Equation (10).
i A + i B + i C + i D = 0 (10)
When Expression (6), Expression (7), Expression (9), and Expression (10) are put together, Expression (11) is obtained.

ただし、Hは式(12)となる。 However, H becomes Formula (12).

一般的に、Hの行列式が0にならない。よって、Hが正則であるため磁気浮上推進機構が任意な浮上力f、推進力fおよびピッチングトルクTを出力するように4相コイルに給電することが可能である。 In general, the determinant of H does not become zero. Thus, H is capable of supplying power to the four-phase coils as the magnetic levitation propulsion mechanism for a regular outputs an arbitrary lift force f d, propulsion f q and the pitching torque T P.

このように、1極対永久磁石に対向して4相コイルを設置し、そして4相コイルの電流を適切に制御することによって、任意な浮上力、推進力fおよびピッチングトルクを発生し、可動子をバランス良く安定に推進することができる。 In this way, by installing a four-phase coil facing the one-pole pair permanent magnet and appropriately controlling the current of the four-phase coil, an arbitrary levitation force, propulsive force f q and pitching torque are generated, The mover can be propelled in a balanced and stable manner.

ここでは、可動子に1セット4相コイルを設置しているが、数セット4相コイルを設置することも可能である。また、コイルと永久磁石の設置場所を交替し、可動子に永久磁石、移動子にコイルを設置することも可能である。また、1セットのコイル相数を必ず4とする必要がなく4以上とすれば良い。   Here, one set of four-phase coils is installed on the mover, but several sets of four-phase coils can also be installed. It is also possible to change the installation location of the coil and the permanent magnet, and install the permanent magnet in the movable element and the coil in the movable element. Further, the number of coil phases in one set is not necessarily 4 and may be 4 or more.

浮上はエア浮上で、4相アクチュエータを可動子と固定子の横側に設置することによって、案内力と推進力を同時に発生することができるので、磁気案内推進装置という用途にも適用できる。   The levitation is air levitation, and a guide force and a propulsion force can be generated simultaneously by installing a four-phase actuator on the side of the mover and the stator. Therefore, the levitation can be applied to a magnetic guide propulsion device.

本発明の第1実施例を示す磁気浮上推進装置の縦断面図1 is a longitudinal sectional view of a magnetic levitation propulsion device showing a first embodiment of the present invention. 図1に示す磁気浮上推進機構のP−P’に沿う断面図Sectional view along P-P 'of the magnetic levitation propulsion mechanism shown in FIG. 磁気浮上推進機構の空間ベクトル位相図Space vector phase diagram of magnetic levitation propulsion mechanism 従来の磁気浮上推進装置の縦断面図A longitudinal sectional view of a conventional magnetic levitation propulsion device

符号の説明Explanation of symbols

1 固定子
2 可動子
3 浮上推進用コイル
31 A相コイル
32 B相コイル
33 C相コイル
34 D相コイル
4 浮上推進用永久磁石
41 永久磁石のN側
42 永久磁石のS側
5 浮上用コイル
6 浮上用永久磁石
7 推進用コイル
8 推進用永久磁石
DESCRIPTION OF SYMBOLS 1 Stator 2 Mover 3 Levitation propulsion coil 31 A phase coil 32 B phase coil 33 C phase coil 34 D phase coil 4 Levitation propulsion permanent magnet 41 Permanent magnet N side 42 Permanent magnet S side 5 Levitation coil 6 Levitation permanent magnet 7 Propulsion coil 8 Propulsion permanent magnet

Claims (2)

固定子と、可動子と、コイルと、永久磁石とを備えた磁気浮上推進装置において、
前記永久磁石は、
前記可動子の移動方向からみて、前記可動子または前記固定子の左右両側の底面に対称的に設置され、かつ、前記移動方向について、極対が所定のピッチで繰り返して設置され、
前記コイルは、
前記移動方向からみて、前記永久磁石と対向するように前記固定子または前記可動子に設置され、かつ、前記移動方向について、4つの相にそれぞれ対応する各相コイルの中心軸が、前記ピッチを該相の数で除した間隔となるようにそれぞれ設置され、
前記各相コイルに流す電流の条件式は、
であり、
前記条件式に基づき、浮上力および推進力がそれぞれ目標とする値になるように、前記各相コイルに流す電流がそれぞれ独立に制御されること
を特徴とする磁気浮上推進装置。
In a magnetic levitation propulsion device comprising a stator, a mover, a coil, and a permanent magnet,
The permanent magnet is
As viewed from the moving direction of the mover, the mover or the stator is symmetrically installed on the left and right bottom surfaces, and the moving direction is repeatedly installed at a predetermined pitch with respect to the moving direction,
The coil is
When viewed from the moving direction, the central axis of each phase coil that is installed on the stator or the mover so as to face the permanent magnet and corresponds to each of the four phases in the moving direction has the pitch. Installed to be spaced apart by the number of phases,
The conditional expression for the current flowing through each phase coil is:
And
A magnetic levitation propulsion device characterized in that, based on the conditional expression, the currents flowing through the phase coils are controlled independently so that the levitation force and the propulsion force become target values, respectively .
固定子と、可動子と、コイルと、永久磁石とを備えた磁気浮上推進装置において、
前記永久磁石は、
前記可動子の移動方向からみて、前記可動子または前記固定子の左右両側の側面に対称的に設置され、かつ、前記移動方向について、極対が所定のピッチで繰り返して設置され、
前記コイルは、
前記移動方向からみて、前記永久磁石と対向するように前記固定子または前記可動子に設置され、かつ、前記移動方向について、4つの相にそれぞれ対応する各相コイルの中心軸が、前記ピッチを該相の数で除した間隔となるようにそれぞれ設置され、
前記各相コイルに流す電流の条件式は、
であり、
前記条件式に基づき、案内力および推進力がそれぞれ目標とする値になるように、前記各相コイルに流す電流がそれぞれ独立に制御されること
を特徴とする磁気浮上推進装置。
In a magnetic levitation propulsion device comprising a stator, a mover, a coil, and a permanent magnet,
The permanent magnet is
As viewed from the moving direction of the mover, the mover or the stator is installed symmetrically on the left and right side surfaces, and the pole pair is repeatedly installed at a predetermined pitch for the moving direction,
The coil is
When viewed from the moving direction, the central axis of each phase coil that is installed on the stator or the mover so as to face the permanent magnet and corresponds to each of the four phases in the moving direction has the pitch. Installed to be spaced apart by the number of phases,
The conditional expression for the current flowing through each phase coil is:
And
A magnetic levitation propulsion device characterized in that, based on the conditional expression, the currents flowing through the phase coils are controlled independently so that the guide force and the propulsion force become target values, respectively .
JP2007336298A 2007-12-27 2007-12-27 Magnetic levitation propulsion device Expired - Fee Related JP5272404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007336298A JP5272404B2 (en) 2007-12-27 2007-12-27 Magnetic levitation propulsion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007336298A JP5272404B2 (en) 2007-12-27 2007-12-27 Magnetic levitation propulsion device

Publications (3)

Publication Number Publication Date
JP2009159753A JP2009159753A (en) 2009-07-16
JP2009159753A5 JP2009159753A5 (en) 2011-06-02
JP5272404B2 true JP5272404B2 (en) 2013-08-28

Family

ID=40963147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007336298A Expired - Fee Related JP5272404B2 (en) 2007-12-27 2007-12-27 Magnetic levitation propulsion device

Country Status (1)

Country Link
JP (1) JP5272404B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834523B2 (en) * 2011-06-20 2015-12-24 株式会社ニコン Actuator, lens barrel and imaging device
CN106712582B (en) * 2017-01-09 2018-07-17 张则羿 2 magnetic suspension methods and system
JP7060995B2 (en) 2018-03-30 2022-04-27 キヤノン株式会社 Manufacturing methods for stage equipment, lithography equipment, and articles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54100010A (en) * 1978-01-20 1979-08-07 Toshiba Corp Magnetic floating propulsive device
JPS54100016A (en) * 1978-01-20 1979-08-07 Toshiba Corp Magnetic floating propulsive device
JPS5662063A (en) * 1979-10-25 1981-05-27 Akira Yamamura Sucking-force type magnetic floating propelling device
JPS6041762Y2 (en) * 1980-10-20 1985-12-19 昌 山村 magnetic levitation vehicle
JPH0810961B2 (en) * 1984-05-01 1996-01-31 松下電工株式会社 Linear induction motor
JPH01298944A (en) * 1988-05-26 1989-12-01 Sharp Corp Linear driver
JPH0257203U (en) * 1988-10-20 1990-04-25
JP2002186244A (en) * 2000-12-15 2002-06-28 Mitsubishi Heavy Ind Ltd Permanent magnet linear motor
JP5097110B2 (en) * 2006-04-28 2012-12-12 Thk株式会社 Servo motor control apparatus and method

Also Published As

Publication number Publication date
JP2009159753A (en) 2009-07-16

Similar Documents

Publication Publication Date Title
US7990084B2 (en) Linear stepping motor
US7687942B2 (en) Iron core linear motor having low detent force with high power density
US7808133B1 (en) Dual-axis planar motor providing force constant and thermal stability
JP5099629B2 (en) Magnetic levitation device
US20190002214A1 (en) Method for operating a transport apparatus in the form of a long stator linear motor
JPH09322518A (en) Synchronous linear motor using permanent magnet
US20120187873A1 (en) Linear motor driving system and linear motor control method
JP5387570B2 (en) Multi-degree-of-freedom actuator and stage device
JP4811798B2 (en) Linear motor device
JP2007228686A (en) Magnetic levitation device
JP6970194B2 (en) Power electronics converters for controlling linear electromechanical machines and linear electromechanical machines
KR20140109932A (en) Linear synchronous motor
US8217538B2 (en) Linear motor having a slidable element
JP5272404B2 (en) Magnetic levitation propulsion device
JPH06335111A (en) Magnetic levitation actuator
KR20210102190A (en) polar linear synchronizer
JPH09261805A (en) Magnetic levitating actuator
CN107925336A (en) Transverse magnetic flux linear electric machine
JP2001069746A (en) Non-contacting type table
KR100761690B1 (en) The stage apparatus which uses the permanent magnet movement linear motor and air bearing
JP5427037B2 (en) Linear motor system
JPH0741992B2 (en) Magnetic levitation carrier
JP4631405B2 (en) Magnetic levitation propulsion device
JP4253823B1 (en) Magnetic levitation propulsion device
US20220001902A1 (en) Carrier device and control method for carrier device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110420

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees