JPS6040717B2 - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6040717B2
JPS6040717B2 JP52068501A JP6850177A JPS6040717B2 JP S6040717 B2 JPS6040717 B2 JP S6040717B2 JP 52068501 A JP52068501 A JP 52068501A JP 6850177 A JP6850177 A JP 6850177A JP S6040717 B2 JPS6040717 B2 JP S6040717B2
Authority
JP
Japan
Prior art keywords
region
groove
base
layer
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52068501A
Other languages
Japanese (ja)
Other versions
JPS544079A (en
Inventor
秀美 高桑
彰康 石谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP52068501A priority Critical patent/JPS6040717B2/en
Publication of JPS544079A publication Critical patent/JPS544079A/en
Publication of JPS6040717B2 publication Critical patent/JPS6040717B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 本発明は、半導体装置、特に半導体基板表面に設けられ
た構内にゲート部が構成された縦型の2重拡散型絶縁ゲ
ート電界効果トランジスタに係わる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor device, and particularly to a vertical double-diffused insulated gate field effect transistor having a gate portion formed within a structure provided on the surface of a semiconductor substrate.

第1図は従来のV字溝型の縦型の2重拡散型絶縁ゲート
電界効果トランジスタの要部の断面を示し、Nチャンネ
ル型のそれを示している。
FIG. 1 shows a cross section of a main part of a conventional V-groove vertical double-diffused insulated gate field effect transistor, and shows an N-channel type transistor.

通常、この場合、主としてドレィン領域2を構成するN
型の半導体基体1の一方の主面laに全面的にP型の不
純物が所要の深さに拡散されてベース領域3が形成され
、この領域3に選択的にN型の不純物が拡散されて第2
図に示すようにソース領域4が形成される。そして、基
板1の主面la側よりソース領域4を横切りこれの下の
ベース領域3を穣切りこれの下のドレィン領域1に達す
る深さをもって断面V字の溝5が形成される。この溝5
内には、少くともこの溝5内に臨むベース領域3上にゲ
ート絶縁層6が被着され、これの上にゲート電極7が被
着される。8はソース領域4上にオーミツクに被着され
るソース電極でこのソース鰭滋8は通常ベース領域3上
に跨って被着される。
Usually, in this case, N
A P-type impurity is diffused to a required depth over the entire surface of one main surface la of a semiconductor substrate 1 of the type to form a base region 3, and an N-type impurity is selectively diffused into this region 3. Second
A source region 4 is formed as shown in the figure. Then, a groove 5 having a V-shaped cross section is formed by cutting across the source region 4 from the side of the main surface la of the substrate 1 and cutting through the base region 3 below it to reach the drain region 1 below it. This groove 5
Inside, a gate insulating layer 6 is deposited at least on the base region 3 facing into the trench 5, and a gate electrode 7 is deposited on this. A source electrode 8 is ohmicly deposited on the source region 4, and this source electrode 8 is normally deposited over the base region 3.

ドレィン電極は図示しないが、基体1の他方の主面lb
側に設けられる。尚、基体1の面lb側にはN型の低比
抵抗領域2′が、例えば全面拡散によって形成される。
このような構成による電界効果トランジスタは、そのゲ
ート絶縁層5下のソース領域4及びドレィン領域2間の
溝5内に臨むベース領域3の表面に形成されるチャンネ
ルの有効長じffが、ベース領域3とソース領域4の拡
散の深さの差Lに対応し、これら領域3及び4の拡散の
深さを規定することによって規定できるので、これを小
に選定することによって規定できるので、これを4・に
選定できて高周波特性を良好にすることができる。
Although the drain electrode is not shown, the other main surface lb of the base 1
installed on the side. Note that an N-type low resistivity region 2' is formed on the surface 1b side of the base 1 by, for example, full-surface diffusion.
In the field effect transistor having such a configuration, the effective length ff of the channel formed on the surface of the base region 3 facing into the groove 5 between the source region 4 and the drain region 2 under the gate insulating layer 5 is equal to that of the base region. Corresponding to the difference L between the diffusion depths of regions 3 and 4, it can be defined by defining the diffusion depths of these regions 3 and 4, and this can be defined by selecting a small value. 4. can be selected and the high frequency characteristics can be improved.

しかしながら、このような構成による電界効果トランジ
スタにおいても、そのチャンネル長じffは、両領域3
及び4の拡散の深さの差Lに比し、大となってしまい、
このチャンネル長LeHを十分小に選定することができ
ない。これはV字溝5の側面が基体1の厚さ方向に沿わ
ず所要の懐きを有すること、即ち、ベース領域3を最短
距離をもって横切らず斜めに横切っていることに基く。
云い換えれば、ソース領域4とベース領域3との間のP
N接合面J,と、ベース領域3とドレィン領域2との間
のPN接合面)2に対し、溝5の側面が直交していない
ことに基く。因みに通常この溝5は、均一な形状とする
ために、結晶方位性エッチングによって形成する。即ち
、基体1として例えば10併溝晶面のシリコンスライス
を用い、これを結晶方位性エッチングを行って主として
エッチングの進行いこくい111結晶面を側面とするV
字溝を形成するが、このV字溝の底部の角度のま2つの
111結晶面のなす角700となるので仏ff/L′は
約1.25となる。したがってこの構造において、十分
小さいチャンネル長じffを得んとすれば、両領域3及
び4の拡散の深さの差Lは更に小さくする必要が生じ、
ソース・ドレイン間の耐圧の低下を招来してしまう。こ
れに比し、第3図に示すように、基体1に溝を形成する
ことなく基体1の主面la側よりべ−ス領域3と、ソー
ス領域4とが、少くともそのゲート部を構成する側の縁
部を共通とする拡散マスクの拡散窓を通じて拡散され、
ドレィン領域2の一部が面laに臨み、この部分と、ソ
ース領域4との間に介存するベース領域3上にゲート絶
縁層6が彼着され、これの上にゲート電極7が被着され
た2重拡散型プレナー型構成を有するものは、各領域4
,3,2間の接合面J,及びJ2がチャンネルが形成さ
れる基体1の面laに殆んど直交するように延在するの
で、そのチャンネル長じffと、両領域3及び4の拡散
の深さの溝LとのKュeff/Lは殆んど「1」となる
However, even in a field effect transistor with such a configuration, the channel length ff is
and 4 is large compared to the difference L in the diffusion depth,
This channel length LeH cannot be selected to be sufficiently small. This is based on the fact that the side surfaces of the V-shaped groove 5 do not follow the thickness direction of the base body 1 but have a required width, that is, they do not cross the base region 3 at the shortest distance but diagonally.
In other words, P between the source region 4 and the base region 3
This is based on the fact that the side surfaces of the groove 5 are not perpendicular to the N junction plane J, and the PN junction plane (J) between the base region 3 and the drain region 2. Incidentally, this groove 5 is usually formed by crystal orientation etching in order to have a uniform shape. That is, a silicon slice with, for example, a 10-groove crystal plane is used as the substrate 1, and this is subjected to crystal orientation etching to form a V with the 111 crystal plane as the side surface where the etching mainly proceeds.
A groove is formed, and since the angle at the bottom of this V-shaped groove is the angle 700 formed by the two 111 crystal planes, ff/L' is about 1.25. Therefore, in this structure, if a sufficiently small channel length ff is to be obtained, the difference L between the diffusion depths of both regions 3 and 4 must be further reduced.
This results in a decrease in breakdown voltage between the source and drain. In contrast, as shown in FIG. 3, the base region 3 and the source region 4 form at least the gate portion from the main surface la side of the base 1 without forming a groove in the base 1. diffused through the diffusion window of the diffusion mask that has a common edge on the side that
A part of the drain region 2 faces the plane la, and a gate insulating layer 6 is deposited on the base region 3 interposed between this part and the source region 4, and a gate electrode 7 is deposited on this. For those with a double diffusion type planar configuration, each region 4
, 3, and 2 extend almost orthogonally to the plane la of the substrate 1 where the channel is formed, the channel length ff and the diffusion of both regions 3 and 4 are Keff/L with a groove L having a depth of is almost "1".

ところが、この構成による場合、単位面積当りのべリフ
ヱリ、即ち面laに臨んでベース領域3を挟んで対向す
るドレィン領域2とソース領域4との対向長の総和をで
きるだけ長くするように、そのパターンの密度を高める
べく、互に対向するベース領域3間の間隔をせばめると
、ドレイン領域2の面laに臨む部分の幅Wがせばめら
れることになり、チャンネル部とドレィン電極間に介存
する分布抵抗によるドレイン抵抗R。
However, in the case of this configuration, the pattern is designed so that the verification per unit area, that is, the sum of the opposing lengths of the drain region 2 and the source region 4 facing the plane la and facing each other with the base region 3 in between, is made as long as possible. If the distance between the opposing base regions 3 is narrowed in order to increase the density of Drain resistance R due to resistance.

が大となってしまう。本発明は上述した諸欠点を全排し
た半導体装置、特に絶縁ゲート電界効果トランジスタを
提供せんとするものである。
becomes large. The present invention aims to provide a semiconductor device, particularly an insulated gate field effect transistor, completely eliminating the above-mentioned drawbacks.

第4図を参照して本発明を説明するに、図中、10は本
発明による絶縁ゲート電界効果トランジスタを全体とし
て示す。
The present invention will be described with reference to FIG. 4, in which 10 generally indicates an insulated gate field effect transistor according to the present invention.

図示の例はNチャンネル型とした場合を示し、この場合
、主として第1導電型の第1の半導体領域即ちドレィン
領域12を構成するN型の半導体基体1 1、例えば1
0増吉晶面のSi基体が設けられる。そして、その一方
の主面11aに、選択的に第2導電型の第2の半導体領
域、即ちP型のべ−ス領域13と、これの上の一部に第
1導亀型の第3の半導体領域14との2重拡散領域が設
けられる。また、基体11の主面11aには、溝15、
例えば結晶方位性エッチングによるV字溝が形成される
が、この場合、溝15は、第5図に鎖線bで示すように
ソース領域14とベース領域13との間に形成される接
合面Lと、ベース領域13とドレィン領域12との間に
形成される接合面i2との轡曲部において、溝15の側
面がソース領域14と、ベース領域13を横切るように
形成され、溝15の側面が接合面i,及びもとほぼ直交
するようになされる。そして、溝15内の、特にこの溝
15に臨むドレィン領域12とソース領域14との間に
介存するベース領域13の表面にSi02のような所要
の厚さを有するゲート絶縁層16が被着され、これの上
にゲート電極17が被着される。
The illustrated example shows the case of an N-channel type, and in this case, an N-type semiconductor substrate 1 1, e.g.
A Si substrate with a 0 Masuyoshi crystal plane is provided. A second semiconductor region of the second conductivity type, that is, a P-type base region 13 is selectively formed on one main surface 11a, and a third semiconductor region of the first turtle type is formed on a portion above this. A double diffusion region with the semiconductor region 14 is provided. Further, the main surface 11a of the base body 11 has grooves 15,
For example, a V-shaped groove is formed by crystal orientation etching, but in this case, the groove 15 connects to the bonding surface L formed between the source region 14 and the base region 13, as shown by the chain line b in FIG. , the side surface of the groove 15 is formed so as to cross the source region 14 and the base region 13 at the curved portion of the junction surface i2 formed between the base region 13 and the drain region 12. The joint surface i and the original are made to be substantially perpendicular to each other. Then, a gate insulating layer 16 having a required thickness, such as Si02, is deposited on the surface of the base region 13 in the trench 15, and especially on the surface of the base region 13 interposed between the drain region 12 and the source region 14 facing the trench 15. , on which a gate electrode 17 is deposited.

18はソース領域14上にオーミックに被着されたソー
ス磁極で、その一部が基体1の面laに臨むベース領域
13上に跨いで被着されている。
Reference numeral 18 denotes a source magnetic pole ohmically deposited on the source region 14, and a part of the source magnetic pole 18 is deposited astride the base region 13 facing the surface la of the substrate 1.

尚、本発明においても、基体11の他方の主面11bに
N型の高不純物濃度、即ち低比抵抗の領域12′が形成
され、こ)に図示しないがドレイン電極が設けられる。
30‘ま基体表面に形成したSi02のような表面不活
性化用絶縁層である。
Also in the present invention, an N-type high impurity concentration, ie, low resistivity, region 12' is formed on the other main surface 11b of the substrate 11, and a drain electrode (not shown) is provided in this region.
30' is an insulating layer for surface passivation such as Si02 formed on the surface of the substrate.

上述の本発明によれば、ベース領域13と、ソース領域
14との双方を選択的2重拡散領域とするもので、接合
面i,及びi2の双方に轡曲部が生ずるようにし、この
馨曲部において溝15が各接合面i,及びi2とほぼ直
交するようにしたので、この溝15内に臨むベース領域
13の幅、即ち有効チャンネル長じff‘ま、殆んど両
領域13及び14の拡散の深さLに等しくすることがで
きるので、このチャンネル長じffは、十分小さくでき
る。
According to the present invention described above, both the base region 13 and the source region 14 are made into selective double diffusion regions, and curved portions are formed on both the junction surfaces i and i2, and this Since the groove 15 is made to be substantially orthogonal to each joint surface i and i2 at the curved portion, the width of the base region 13 facing into the groove 15, that is, the effective channel length ff', is almost perpendicular to both regions 13 and i2. Since the channel length ff can be made equal to the diffusion depth L of 14, the channel length ff can be made sufficiently small.

またこのようにじff≠Lにしたことによってこの両領
域13及び14の拡散の深さの差Lは、得んとするチャ
ンネル長じffより更に十分4・さくする必要を回避し
たので、冒頭に述べたような耐圧低下を回避でき高周波
高耐圧用の電界効果トランジスタが得られる。また、本
発明構成によれば、溝15が設けられ、その内面にゲー
ト部が設けられた構造となしたので、例えば第4図に示
すように、隣り合うベース領域13を十分接近ないしは
接するように配置しても、第5図に示す領線bに示すよ
うに溝15を形成することによって溝15の相対向する
両側面に、夫々接合面i,及びi2が、第4図において
紙面を直交する方向に沿って延在させることができ、そ
のべリフヱリの総和が十分大となされたゲート部を構成
することができる。
In addition, by setting ff≠L in this way, the difference L between the diffusion depths of both regions 13 and 14 avoids the need to make it 4 times smaller than the desired channel length ff. A field effect transistor for high frequency and high voltage use can be obtained in which the drop in breakdown voltage as described in 1. can be avoided. Further, according to the configuration of the present invention, since the groove 15 is provided and the gate portion is provided on the inner surface of the groove 15, the adjacent base regions 13 can be brought close enough to each other or in contact with each other, as shown in FIG. 4, for example. By forming the groove 15 as indicated by the horizontal line b in FIG. 5, joint surfaces i and i2 are formed on both opposing sides of the groove 15, respectively, as shown in FIG. It is possible to configure a gate portion that can extend along orthogonal directions and has a sufficiently large sum of verifiability.

因みに、第6図に示すように、各領域を第4図と同一の
配置パターンとするも、溝15を設けずに第3図に示し
たようなプレナー型構造とした場合を考えると、この場
合はソース及びドレイン間の抵抗Roは大となってしま
うが、本発明によるときは、この抵抗Roの増大を回避
できることになる。次に第7図を参照して、第4図に説
明した本発明装置10を得る製法の一例を説明する。
Incidentally, as shown in FIG. 6, if we assume that each area has the same arrangement pattern as in FIG. 4 but has a planar structure as shown in FIG. 3 without providing the groove 15, this In this case, the resistance Ro between the source and drain becomes large, but according to the present invention, this increase in resistance Ro can be avoided. Next, with reference to FIG. 7, an example of a manufacturing method for obtaining the device 10 of the present invention illustrated in FIG. 4 will be described.

この場合、先ず前述したように第7図Aに示すように、
10豚吉晶面に切り出されたN型Si基体11を設け、
その裏側の主面lbに例えば全面拡散によってN型の低
比抵抗領域12′を形成する。
In this case, as described above, as shown in FIG. 7A,
10 An N-type Si substrate 11 cut out to have a positive crystal plane is provided,
An N-type low resistivity region 12' is formed on the main surface 1b on the back side by, for example, full-surface diffusion.

一方、基体11の表側の王面11aに、不純物拡散のマ
スク21を形成する。このマスク21は、酸化のマスク
ともなり得るマスク、例えばSi3N4層より構成し得
る、この場合、基体11の面11a上に全面的に歪防止
のための薄いSi02層22を形成し、これの上に同様
に全面的にSi3N4層23を形成し、更にこれの上に
全面的にこのSj3N4層23を選択的にエッチング除
去するためのエッチングマスクとなる届22に比し十分
大なる厚さのSi02層24を夫々周知の技術によって
被着する。そして、フオトェツチング法によってSi0
2層24の不要部分を除去し、次いで、このSi02層
24をエッチングマスクとしてSi02層24によって
覆われざる部分のSi3N4層23をエッチング除去し
、更に残った部分の厚いSi02層24とSi3N4層
23をエッチングマスクとしてこれらによって覆われざ
る部分の薄いSi02層22をエッチング除去する。尚
、このマスク21のパターンは、例えば第7図において
紙面と直交する方向に延在する帯状となす。次に第7図
Bに示すように、マスク21によって覆われていない部
分、即ち両側の窓21a及び21bを通じてP型の不純
物を所要の深さをもって選択的に拡散してベース領域1
3を形成する。
On the other hand, an impurity diffusion mask 21 is formed on the front surface 11a of the base 11. This mask 21 can also be used as an oxidation mask, for example, it can be composed of a Si3N4 layer. In this case, a thin Si02 layer 22 for preventing distortion is formed entirely on the surface 11a of the base 11, and on this Similarly, a Si3N4 layer 23 is formed on the entire surface, and a Si02 layer 23 with a thickness sufficiently larger than that of the layer 22 is formed on the Si3N4 layer 23 to serve as an etching mask for selectively etching away the Sj3N4 layer 23 on the entire surface. Layers 24 are each applied by well-known techniques. Then, Si0
Unnecessary portions of the second layer 24 are removed, and then, using this Si02 layer 24 as an etching mask, the portions of the Si3N4 layer 23 that are not covered by the Si02 layer 24 are etched away, and the remaining thick Si02 layer 24 and Si3N4 layer 23 are removed. Using these as an etching mask, the portions of the thin Si02 layer 22 not covered by these are etched away. The pattern of this mask 21 is, for example, in the form of a band extending in a direction perpendicular to the plane of the paper in FIG. Next, as shown in FIG. 7B, P-type impurities are selectively diffused to a required depth through the portions not covered by the mask 21, that is, the windows 21a and 21b on both sides.
form 3.

この場合、このベース領域13は窓21a及び21b下
のみならず、これら窓21a及び21bの縁部から、マ
スク層21下に入り込むように拡散し、ほぼこの綾部を
中心とする断面円弧状のPN接合面らが形成される。次
いで第7図Cに示すように、少くとも最終的にゲート部
が形成される側の縁部が先に形成した領域13を拡散し
た窓の綾部と一致するようにした拡散窓、例えば領域1
3の拡散窓と同一の窓21a及び21bを通じて、N型
の不純物を拡散してソース領域14を選択的に拡散する
In this case, the base region 13 diffuses not only under the windows 21a and 21b but also from the edges of these windows 21a and 21b so as to enter under the mask layer 21, and has a PN arc-shaped cross section approximately centered on this twilling portion. Joint surfaces are formed. Next, as shown in FIG. 7C, a diffusion window, for example, region 1, is formed so that at least the edge on the side where the gate portion will ultimately be formed coincides with the twill of the window in which the previously formed region 13 is diffused.
N-type impurities are diffused through the windows 21a and 21b, which are the same as the diffusion windows No. 3, to selectively diffuse the source region 14.

この場合においても、領域14は、窓21a及び21b
の縁部を中心とする断面円弧をなしてマスク層21下に
入り込んで形成され領域13との間のPN接合面上‘こ
轡曲部が形成されるが、この場合の拡散の深さは、ベー
ス領域13の拡散の深さより小に選ばれる。また例えば
この拡散は酸素を含む雰囲気中で行い窓21a及び21
bを閉塞するように基体11の表面にSi02層、即ち
表面不活性化用絶縁層30を形成する。その後、第7図
Dに示すように、マスク層21を除去し、絶縁層30を
エッチングマスクとしてマスク層21が除去されて綾出
した部分を結晶方位性エッチングによってエッチングし
、溝15を形成する。
In this case as well, the region 14 has windows 21a and 21b.
It is formed by penetrating under the mask layer 21 with a cross-sectional arc centered on the edge of the region 13, and a curved portion is formed on the PN junction surface between it and the region 13, but the depth of diffusion in this case is , is chosen to be smaller than the diffusion depth of the base region 13. Further, for example, this diffusion is performed in an atmosphere containing oxygen, and the windows 21a and 21
An Si02 layer, that is, an insulating layer 30 for surface inactivation, is formed on the surface of the base 11 so as to close the area b. Thereafter, as shown in FIG. 7D, the mask layer 21 is removed, and using the insulating layer 30 as an etching mask, the exposed portions of the mask layer 21 are etched by crystal orientation etching to form the grooves 15. .

このようにして形成されたエッチング溝15は、その内
側面がエッチングが進行し縫い111結晶面によって形
成されるので、このエッチング溝15の大いさ、形状は
、溝15の関口幅、即ちマスク層21の幅を規定するこ
とによって、一定の大いさ、形状に形成される。したが
って、この溝15の関口幅を選定することによって、こ
の溝15の側面が両接合面i,及びi2をその轡曲部に
おいて横切り、これら側面が接合面i,及びj2とほぼ
直交するようになす。そして、第7図Eに示すように、
この溝15内に、少くともその側面に臨むベース領域1
3上を含んでゲート絶縁層16を、例えば表面熱酸化し
てSi02層を生成することによって形成する。
The etching groove 15 formed in this way has an inner surface formed by the crystal plane of the seam 111 as etching progresses, so the size and shape of the etching groove 15 are determined by the width of the entrance of the groove 15, that is, the mask layer. By defining the width of 21, it is formed into a certain size and shape. Therefore, by selecting the entrance width of this groove 15, the side surfaces of this groove 15 cross both joint surfaces i and i2 at their curved portions, and these side surfaces are approximately orthogonal to the joint surfaces i and j2. Eggplant. Then, as shown in Figure 7E,
In this groove 15, the base region 1 faces at least the side surface thereof.
A gate insulating layer 16 is formed by, for example, surface thermal oxidation to produce a Si02 layer.

そして、ソース領域14とその外側の図示しないが、ベ
ース領域表面上の絶縁層30に電極窓あげを行い、ソー
ス電極18をオーミックに被着すると共に、ゲート絶縁
層16上にゲート電極17を被着する。かくすれば、第
4図に説明した本発明装置、即ち電界効果トランジスタ
10が得られる。尚、図示した例は、Nチャンネル型の
電界効果トランジスタであるが、Pチャンネル型に適用
する場合には、図示の各部の導電型を夫々反対の導電型
とすれば良い。
Then, although not shown in the drawings, an electrode window is formed on the source region 14 and the insulating layer 30 on the surface of the base region, the source electrode 18 is ohmically attached, and the gate electrode 17 is coated on the gate insulating layer 16. wear it. In this way, the device of the present invention, ie, the field effect transistor 10, illustrated in FIG. 4 is obtained. The illustrated example is an N-channel field effect transistor, but when applied to a P-channel type, the conductivity types of each part shown in the figure may be set to opposite conductivity types.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のV字溝型の電界効果トランジス夕の拡大
断面図、第2図はその説明に供する図、第3図は従来の
プレナー型の電界効果トランジスタの拡大断面図、第4
図は本発明装置の一例の拡大断面図、第5図はその説明
に供する図、第6図は本発明装置に対する比較例の拡大
断面図、第7図AないしEは本発明装置の一例の一製法
の各工程における拡大断面図である。 10は本発明による半導体装置、11は半導体菱体、1
2,13及び14は第1,第2及び第3の半導体領域、
i,及びi2はPN接合面、15は溝、16はゲート絶
縁層、17はゲート電極である。 第1図第2図 第5図 第3図 第4図 第6図 第7図 第7図
FIG. 1 is an enlarged cross-sectional view of a conventional V-groove field effect transistor, FIG. 2 is an explanatory diagram, FIG. 3 is an enlarged cross-sectional view of a conventional planar field effect transistor, and FIG.
The figure is an enlarged cross-sectional view of an example of the device of the present invention, FIG. 5 is a diagram for explaining the same, FIG. 6 is an enlarged cross-sectional view of a comparative example for the device of the present invention, and FIGS. 7 A to E are examples of the device of the present invention. It is an enlarged cross-sectional view in each step of one manufacturing method. 10 is a semiconductor device according to the present invention, 11 is a semiconductor rhombus, 1
2, 13 and 14 are first, second and third semiconductor regions;
i and i2 are PN junction surfaces, 15 is a trench, 16 is a gate insulating layer, and 17 is a gate electrode. Figure 1 Figure 2 Figure 5 Figure 3 Figure 4 Figure 6 Figure 7 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1 第1導電型の第1の半導体領域に、第2導電型の第
2の半導体領域と第1導電型の第3の半導体領域との選
択的2重拡散領域が形成されると共に、溝が形成され、
該溝はその側面が、上記第2及び第3の半導体領域の、
上記第1及び第2の半導体領域との間に形成されるPN
接合面の彎曲部において該接合面とほぼ直角に交るよう
に形成され、該溝内に臨む上記第1及び第3の領域間上
にゲート絶縁層を介してゲート電極が設けられることを
特徴とする半導体装置。
1 A selective double diffusion region of a second semiconductor region of the second conductivity type and a third semiconductor region of the first conductivity type is formed in the first semiconductor region of the first conductivity type, and a groove is formed. formed,
The side surfaces of the groove are formed in the second and third semiconductor regions.
PN formed between the first and second semiconductor regions
A gate electrode is formed at a curved portion of the bonding surface so as to intersect the bonding surface at a substantially right angle, and a gate electrode is provided between the first and third regions facing into the groove with a gate insulating layer interposed therebetween. semiconductor device.
JP52068501A 1977-06-10 1977-06-10 semiconductor equipment Expired JPS6040717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52068501A JPS6040717B2 (en) 1977-06-10 1977-06-10 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52068501A JPS6040717B2 (en) 1977-06-10 1977-06-10 semiconductor equipment

Publications (2)

Publication Number Publication Date
JPS544079A JPS544079A (en) 1979-01-12
JPS6040717B2 true JPS6040717B2 (en) 1985-09-12

Family

ID=13375502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52068501A Expired JPS6040717B2 (en) 1977-06-10 1977-06-10 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS6040717B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140114U (en) * 1986-02-26 1987-09-04

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662365A (en) * 1979-10-26 1981-05-28 Nippon Telegr & Teleph Corp <Ntt> High voltage-proof mos field effect transistor
JPS5718365A (en) * 1980-07-08 1982-01-30 Matsushita Electronics Corp Semiconductor device and manufacture thereof
DD154049A1 (en) * 1980-10-30 1982-02-17 Siegfried Wagner CONTROLLABLE SEMICONDUCTOR ELEMENT
JPS5832464A (en) * 1981-08-20 1983-02-25 Nec Corp Vertical type tetrode mosfet
JPS5868044U (en) * 1981-10-30 1983-05-09 日産自動車株式会社 MOS semiconductor device
JPS63141375A (en) * 1986-12-03 1988-06-13 Fuji Electric Co Ltd Insulated gate field effect transistor
US4954854A (en) * 1989-05-22 1990-09-04 International Business Machines Corporation Cross-point lightly-doped drain-source trench transistor and fabrication process therefor
US6238981B1 (en) * 1999-05-10 2001-05-29 Intersil Corporation Process for forming MOS-gated devices having self-aligned trenches

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62140114U (en) * 1986-02-26 1987-09-04

Also Published As

Publication number Publication date
JPS544079A (en) 1979-01-12

Similar Documents

Publication Publication Date Title
US4072975A (en) Insulated gate field effect transistor
JP2859351B2 (en) Method for manufacturing semiconductor device
TWI436479B (en) High voltage nmos with low on resistance and method of making it thereof
JPH11163341A (en) Silicon carbide semiconductor device
JP4747879B2 (en) Integrated circuit manufacturing method
US8133788B2 (en) Method of manufacturing semiconductor device
JPS6040717B2 (en) semiconductor equipment
JP2006012898A (en) Semiconductor device and its manufacturing method
JPS62126675A (en) Semiconductor device and manufacture thereof
JP2003069040A (en) Silicon carbide semiconductor device and manufacturing method thereof
JP3008154B2 (en) Method for manufacturing semiconductor device
JP3054531B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP2002190593A (en) Insulated gate fet and method of manufacturing the same
JPH01268061A (en) Semiconductor device
EP1703567A2 (en) Insulated gate field-effect transistor and method of making the same
KR810000754B1 (en) Insulated gate field effect transistor
JPS6225456A (en) Vertical semiconductor device and manufacture thereof
JPH01189173A (en) Semiconductor device
JPS61125084A (en) Semiconductor integrated circuit device
JPS59186343A (en) Manufacture of semiconductor device
JPH05175238A (en) Junction type field-effect transistor
JP3276480B2 (en) Electrostatic induction transistor and method of manufacturing the same
JPS583391B2 (en) The power of transistors is high.
JPS6248907B2 (en)
JPS62120079A (en) Manufacture of semiconductor device