JPS6037784A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6037784A
JPS6037784A JP14720583A JP14720583A JPS6037784A JP S6037784 A JPS6037784 A JP S6037784A JP 14720583 A JP14720583 A JP 14720583A JP 14720583 A JP14720583 A JP 14720583A JP S6037784 A JPS6037784 A JP S6037784A
Authority
JP
Japan
Prior art keywords
layer
gate
electrode
source
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14720583A
Other languages
Japanese (ja)
Inventor
Kazunari Oota
一成 太田
Masaru Kazumura
数村 勝
Tatsuo Otsuki
達男 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14720583A priority Critical patent/JPS6037784A/en
Publication of JPS6037784A publication Critical patent/JPS6037784A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier
    • H01L29/812Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier with a Schottky gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Abstract

PURPOSE:To enable to have a high mutual conductance and to act at high speed by forming an active layer, source electrode and drain electrode of different III- Vgroup compound semiconductors. CONSTITUTION:An i-type InP buffer layer 11 is provided on a semi-insulation InP substrate 10, and an N type InGaAs active layer 12 and an N<+> type InP electrode layer 13 are grown thereon, respectively. As the contact for current injection to the drain-source, AuGeNi/Au films 14 and 16 are evaporated respectively and then treated by alloying. At the gate part, the layer 13 is etched through an aperture formed in a spacer Si3N4 17. This etching stops at the interface between the layers 12 and 13. Therefore, the channel thickness immediately under the gate electrode 15 is equal to the film thickness of the layer 12. In the Schottky barrier gate FET thus formed, the gate-source resistance is low only by the resistance of the layer 12 of a distance l. Besides, the mutual conductance is high, and high speed action is enabled.

Description

【発明の詳細な説明】 産業ヒのy、1川分野 本発明は1稚界グj1果型トうフジスタに関する。[Detailed description of the invention] Industry Hi, 1 river field TECHNICAL FIELD The present invention relates to a fruit type Tofujista.

従来例の構成とその問題点 III −V族化合物半2n体は、SlやCyeなどの
■旌単体元素の半導体に比べで高い移動度を有し、また
材木St的には容易にシヨ・リド牛−バリアゲート構造
が得られるため、(・7れ1こ高周波特性を持つNET
材料として研究開発が進められている。更に、111−
V族化合物半導体てはSiやGeてイアにくかつ1こ半
絶縁性の結晶が容易に得られるため、集積苧バイスの材
料として注目を集めている・− 第1図はIII −V族化合物半導体に」こる従来のシ
ョ・ソト士−パリアゲート型FETの(’i+71′、
□1tを示す。′″1′約1′基板(])にに無添加の
i型バ・ソファ層(2)を介して活性n(3)を裁置し
、その−ににFETを構成するドレイン電極(4)、グ
ー1〜鋸極(5)、ソース電極(ハの各種電極が形成さ
れている。(6)はスペーサSi3N4である。図中の
ゲート、ソース直列抵抗R8の存在はFETのチセネル
コンタクタンスy271を’ 14− Rs 、ym”
ymと低下さぜる。まtこゲート容fi ccs と共
に偵う−(回路を形成して伝達速度も低下させる。1<
5を小さくするtこめには、活性層(3)の抵抗率が低
いものを使用すれば良いか、FTL1’を動作させる場
合に必要なショ・リド士−バリアノf−ト〔以下、 M
ESと称す〕の逆耐圧が抵抗率に比例するfコめ、いず
れかが!、1性になる。従来では、n = I X 1
017cm ”のn型GaAsを活性層としt、:場合
、ゲート耐圧は15ボルトとなりFET動作域としては
満足できる値きなるが、抵統率はρ5= 0.02Ω−
cmとなりブセネルコンタクタンスは本来の14程度に
なってしまうことが計算によりイ)かる・活性11?l
の士Pリア濃度が一定で、Rsが低減する試みとしては
リセス構造がよく用いられる。第1図もその例である。
Structure of the conventional example and its problems III-V group compound semi-2n semiconductors have higher mobility than semiconductors of single element elements such as Sl and Cye, and are easily used for lumber storage. Because a cow-barrier gate structure is obtained, (7 and 1 are NETs with high frequency characteristics
Research and development is underway as a material. Furthermore, 111-
Group V compound semiconductors are attracting attention as materials for integrated vices because they are resistant to Si and Ge and semi-insulating crystals can be easily obtained. Figure 1 shows III-V compound semiconductors. ('i+71',
□Indicates 1t. An active n(3) is placed on a substrate (]) through an additive-free i-type bath layer (2), and a drain electrode (4) constituting an FET is placed on the substrate (2). ), saw electrodes (5), and source electrodes (various electrodes (C) are formed. (6) is a spacer Si3N4. The presence of gate and source series resistance R8 in the figure indicates the FET's chisenel contactor. '14-Rs, ym''
It decreases with ym. - (form a circuit and also reduce the transmission speed. 1 <
In order to reduce the value of 5, it would be better to use an active layer (3) with a low resistivity.
The reverse breakdown voltage of ES (referred to as ES) is proportional to resistivity. , becomes monosexual. Conventionally, n = I x 1
017 cm'' with n-type GaAs as the active layer, the gate breakdown voltage is 15 volts, which is a value that is satisfactory for the FET operating range, but the resistivity is ρ5 = 0.02 Ω-
cm, and the Busenel contactance is calculated to be about 14, which is the original value.A) Karu・Activity 11? l
A recessed structure is often used as an attempt to reduce Rs while keeping the P rear concentration constant. FIG. 1 is also an example.

しかし、この構造はノf−ト111下の半導体層の工・
リチシクが不可欠でチ1フネル厚さ[の制御かう!IC
シい。特にノーマリオフ型MES−FETは活性層(3
)が前記n=lX1017cm−3の+セリア濃度の場
合、t−800λではノーマリオフ型となるが、900
Aを越えるとノーマリオン型となる。リセス構造を採用
する限り、このような微少量の工・リチシタ11・制御
はプロセス上灯しく、再現性よくノーマリオフ特性を得
ることは、θツト間は言うに及ばず、Dット内、1ウ工
ハ面内でも困Iず゛「な問題であった。
However, this structure is not suitable for the semiconductor layer under the note 111.
It is essential to control the thickness of the film! IC
Yes. In particular, the normally-off MES-FET has an active layer (3
) is the + ceria concentration of n=lX1017cm-3, it becomes normally off type at t-800λ, but
If it exceeds A, it becomes normally on type. As long as a recessed structure is adopted, such small amounts of processing, reticulation, and control are useful in the process, and it is possible to obtain normally-off characteristics with good reproducibility not only between θ but also within D and 1. This was a very difficult problem within the U.S. engineering field.

発明の目的 本発明は再現性よ< MES・FET特性を実現し、か
つ1セ、をほとんど零にし、従って9m が高く、高速
動作が可能な’r7を界効果型トラスジスタを提供する
ことを目的とする。
Purpose of the Invention The purpose of the present invention is to provide a field-effect transistor which achieves reproducibility and MES/FET characteristics, reduces 1s to almost zero, and therefore has a high 9m range and is capable of high-speed operation. shall be.

発明の構成 本発明の可算効果型トランジスタは、第1の11(−V
族化合物半導体からFV、る活性層と、この活性層とシ
ヨ・シト+−バリア接合を形成するゲート電極と、前記
活性層上に削設されると共に第1のlr[−V族化合物
半導体とは異なる第2のIII −V族化合物半導体か
ら成るソースおよびドしイン電極とを設けtこことを特
徴とする。
Structure of the Invention The countable effect transistor of the present invention has a first 11(-V
an active layer made of a FV group compound semiconductor; a gate electrode forming a side-to-barrier junction with the active layer; and a first lr[-V group compound semiconductor and is characterized by providing source and drain electrodes made of a different second group III-V compound semiconductor.

実施例の説明 以下、本発明の一実施例を第2図に基づいて説明する。Description of examples Hereinafter, one embodiment of the present invention will be described based on FIG. 2.

第2図は本発明によるFiζTの慴造図七分府層を示す
。半絶縁性1nP lr(:板θ()上にi型1nPバ
・ソファ層Onを1.07/7+1の厚さに設け、その
」二にnfi、1JIn O,53GaO,47AS活
性F1(+2を800λ、n生型I nP n’l f
E T’l (11を2000Aそれぞれ成長する。成
長は膜1−(制御の容易なMBE法、NtocvD法な
どを用いるが、本実施例ではMBE法により成長を行な
った。]、(仮温度は500℃Gaセル温度1100”
C,Inセル温度1200℃、As t IL+温度2
50°c、p、cル潟度250 ”Cとし、n型不に、
−ロ物。
FIG. 2 shows the seven-layer structure of FiζT according to the present invention. An i-type 1nP bath layer On with a thickness of 1.07/7+1 is provided on the semi-insulating 1nP lr(: plate θ(), and then nfi, 1JInO, 53GaO, 47AS active F1(+2) 800λ, n live type I nP n'l f
E T'l (11 is grown at 2000A each. The growth is performed using the MBE method, NtocvD method, etc., which are easy to control. In this example, the growth was performed by the MBE method.), (The temporary temperature was 500℃Ga cell temperature 1100''
C, In cell temperature 1200℃, As t IL + temperature 2
50°c, p, c 250"C, non-n type,
-Ro things.

としてはSnを使い、セル温度は780℃としtこ。パ
・ソファ層θυ、活性JrR(ハ)、電極層09の各層
の成長時間はそれぞれ1時間、6分、5分であった。ド
レイン・ソースへの哄#襖赤なヌtf!、流注入用]ン
タクトとじてはそれぞれAuGeNi/Au膜+1/l
) a6を蒸着し−c tu 極層((艷と1−ミ・ツ
ク接触を吉るtこめに合金化熱処理を行なう。グーr−
rrr<分はスペーサSi3N4膜O乃に形成した開孔
部を力6して電極層(13の工・ソチンクを行なう。エ
ツチング液としてはIC7/H20液を用いtこ。この
工・リチンジ液によりIno。sa Ga O,47A
sとInPとの選択工tリチシクが可能であるので、■
・リチンクは活性層(1′2とn工極盾(1ニルとの界
面で停止する。
Sn was used as the material, and the cell temperature was set to 780°C. The growth times for each layer, ie, the Pa-sofa layer θυ, the active JrR (c), and the electrode layer 09, were 1 hour, 6 minutes, and 5 minutes, respectively. A song to the drain source #fusuma red Nutf! , for flow injection] AuGeNi/Au film + 1/l for each contact
) A6 is vapor deposited and alloying heat treatment is carried out to ensure good contact with the pole layer.
For rrr< minutes, apply force to the opening formed in the spacer Si3N4 film O to perform etching and etching of the electrode layer (step 13).Use IC7/H20 solution as the etching solution. Ino.saGaO,47A
Since it is possible to selectively combine S and InP, ■
・Litink stops at the interface between the active layer (1'2) and the n-electrode shield (1-nil).

従ってゲートQ(極(19の直下のチセシネルJ9さt
′はちょうど活性jM(J乃の膜厚に等しい。結晶成長
は膜厚の面内均一性および制御性に優れているMBE成
長でなされているためt’= 800Aが常にウェハー
のどの場所でも成りたち、そのtこめ非常に再現性よく
ノーマリオフ特性が得られる。シヨ・シト+−ゲート電
極00はAe魚着およびフトオフ技術により形成する。
Therefore, the gate Q (pole (19)
' is exactly equal to the film thickness of the active jM (J). Because the crystal growth is done by MBE growth, which has excellent in-plane film thickness uniformity and controllability, t' = 800A is always achieved at any location on the wafer. As a result, normally-off characteristics can be obtained with very good reproducibility.The top and bottom gate electrodes 00 are formed by the Ae fish and foot-off techniques.

以上のようにして第2図のMES−FETが得られる。In the manner described above, the MES-FET shown in FIG. 2 is obtained.

であり・比抵抗は5 X 10−’Ω−Cnl と低く
、従一つで、ゲート・ソース間の抵抗は電イ1ζIiへ
1 t13の+1イド]−゛ソチンジによって生じtこ
距1’j:l lの能fij!+ lri n型InO
,53Ga O,47As JfJ Q2の抵抗分だ6
すとなり敬Ωの低]Lll、抗で11f来の第1図の例
に比べ2桁の改善がなされfコ。
The specific resistance is as low as 5 x 10-'Ω-Cnl, and the resistance between the gate and the source is 1ζIi to 1t13 +1 id]-゛Sochinji, which is caused by the distance 1'j: l l's Noh fij! + lri n-type InO
,53Ga O,47As JfJ It is the resistance of Q26
A two-digit improvement has been made in the resistance of 11 f compared to the example shown in Fig. 1.

得られたMES−FETの静持性として、しきい値ケ−
l−tff圧V丁= 0.1ポル1−(ド1ノイーJ電
流20 //A) ]?/タクタンスF?m= 150
m5/m+yx、 ;t y抵抗R□N=150Ω伝播
遅延速度201)s、’:従)1コより10倍高速な;
Lモ子が?“7られた。
As the static stability of the obtained MES-FET, the threshold value
l-tff pressure V = 0.1 por 1-(d 1 noi J current 20 //A) ]? /Tactance F? m=150
m5/m+yx, ;t y resistance R□N=150Ω Propagation delay speed 201) s,': slave) 10 times faster than 1;
L Moko? “I got 7.

なお、」二記実1’f+j例において活性層Uツ市5(
弛L゛j(1月11 n o、sa Ga o、4゜Δ
s、InPとして説明したが、これはGaAs。
In addition, in the example of "2 Notes 1'f+j", the active layer Utsuichi 5 (
Relaxation L゛j (January 11 no, sa Ga o, 4゜Δ
s, InP, but this is GaAs.

(ya 1 xAlXAe、 Ill 1−XGaXA
Si −y Py 、 I n )−x、G(I XA
hP 。
(ya 1 xAlXAe, Ill 1-XGaXA
Si-y Py, I n )-x, G(I XA
hP.

GaSbなど、どのようプλlll −V /へ化合物
半尊付\でも可能である。まr、:I;I;、rの子ト
ネII/ 21IL!もn l’ ?ネルに限定される
ものではない。43’ −1−IY、、f!〕;もAl
に限らずCr−Pt、金屑シリリイドなどこの他のもの
でも可能である。FET特性もノーマリオフ!リリにl
;−1*らずノーマリオン型でもよい。
Any compound, such as GaSb, can be added to λllll -V /. Mar, :I;I;, r's son Tone II/21IL! Mo n l'? It is not limited to flannel. 43'-1-IY,, f! ];MoAl
However, other materials such as Cr--Pt and gold scrap silylide are also possible. FET characteristics are also normally off! Lily to l
;-1*Normally-on type may be used.

発明の効集 以−ヒ説明の、I′うに本発明の1a界効果型トランジ
スタによる2−5活性J1”りよ、ソース7fて極とド
レイ7ン″11にlj−とを異なるIll −V fr
’j:化合物半専体で形成し1こ1こめ、高いイ[1,
l:I’、 ]ヲタクタンスを有し、高77動作の可能
なItJ界効果1−うシジスタを再現性よ< i’、’
fることかできるものである。
In the summary of the invention, the 2-5 active J1 by the 1a field effect transistor of the present invention is different from the source 7f and the drain 7'11 by Ill -V fr.
'j: Formed with compound semi-exclusively, with high i[1,
l: I', ] reproducible ItJ field effect 1-effect resistor with high tactance and capable of high 77 operation <i','
It is possible to do something like f.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従)14の電ル゛2効果トラyジスタの断面図
、第2図は本発明の一実施例の電界効果1−5二ノジス
タの断面図でΔ′、る。 (1(N 半T:Q !l!f1.T nP基板、(I
II −i型1nPバ・ソファhニア、’J’A −n
 2GQ In6.53Gn6,47AS活性11el
 [’第1の川−V族化合物半導体から成る活訃Jri
 ) 、 o:i・n型1nP’jri極層(’、第2
 (7) 川−V族化合物21″導体7J1ら成ロソー
 ス 及 乙〆 ト1ノ イ I ’f(−f !j’
RJ 、 (14) (lfQ −ΔuGeN i /
Au 114J 、(In) −’j’ −) Wi、
 t;tji代理人 合 本 、%6 弘 第1図 第2図
FIG. 1 is a sectional view of a field effect transistor 1-5 according to an embodiment of the present invention, and FIG. 2 is a sectional view of a field effect transistor 1-5 according to an embodiment of the present invention. (1(N half T:Q !l!f1.T nP substrate, (I
II -i type 1nP Ba Sofa hnia, 'J'A -n
2GQ In6.53Gn6,47AS activity 11el
['The first river - an active semiconductor composed of a group V compound semiconductor]
), o: i/n type 1nP'jri polar layer (', second
(7) I'f(-f!j'
RJ, (14) (lfQ −ΔuGeN i /
Au 114J, (In)-'j'-) Wi,
t; tji agent combined copy, %6 Hiro 1, 2

Claims (1)

【特許請求の範囲】[Claims] 1、第1σ月11−v族化合物半導体から成る活性層と
、この活性層とシヨ・リド士−バリ?接合を形成するゲ
ート鍵、(完と、前記活性層」二に配設される表共に第
1 (7) III −V族化合物半導体とは異なる第
2のIII −V If、(化合物半導体からなるソー
スおよびドしイン電fltとを設けtこ電、界効眼型ト
ランジスタ。
1. An active layer made of a 1st σ group 11-v compound semiconductor, and the relationship between this active layer and the 11-v group compound semiconductor. A gate key for forming a junction, (7) a second III-V If, which is different from a III-V compound semiconductor, (made of a compound semiconductor); A field effect type transistor is provided with a source and a drain voltage flt.
JP14720583A 1983-08-10 1983-08-10 Field effect transistor Pending JPS6037784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14720583A JPS6037784A (en) 1983-08-10 1983-08-10 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14720583A JPS6037784A (en) 1983-08-10 1983-08-10 Field effect transistor

Publications (1)

Publication Number Publication Date
JPS6037784A true JPS6037784A (en) 1985-02-27

Family

ID=15424935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14720583A Pending JPS6037784A (en) 1983-08-10 1983-08-10 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6037784A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254967A (en) * 1985-09-04 1987-03-10 Sumitomo Electric Ind Ltd Field effect transistor
JPS63188973A (en) * 1987-01-30 1988-08-04 Nec Corp Semiconductor device
JPH04202205A (en) * 1990-11-29 1992-07-23 Chisso Corp Matted vinyl chloride resin composition
US5170230A (en) * 1989-05-10 1992-12-08 Fujitsu Limited Semiconductor device and production method thereof
EP0551110A2 (en) * 1992-01-09 1993-07-14 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor devices
WO2011155571A1 (en) 2010-06-09 2011-12-15 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and molded articles thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661169A (en) * 1979-10-25 1981-05-26 Oki Electric Ind Co Ltd Preparation of compound semiconductor device
JPS5768073A (en) * 1980-10-14 1982-04-26 Nec Corp Field effect transistor
JPS57112079A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Field-effect semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661169A (en) * 1979-10-25 1981-05-26 Oki Electric Ind Co Ltd Preparation of compound semiconductor device
JPS5768073A (en) * 1980-10-14 1982-04-26 Nec Corp Field effect transistor
JPS57112079A (en) * 1980-12-29 1982-07-12 Fujitsu Ltd Field-effect semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254967A (en) * 1985-09-04 1987-03-10 Sumitomo Electric Ind Ltd Field effect transistor
JPS63188973A (en) * 1987-01-30 1988-08-04 Nec Corp Semiconductor device
US5170230A (en) * 1989-05-10 1992-12-08 Fujitsu Limited Semiconductor device and production method thereof
JPH04202205A (en) * 1990-11-29 1992-07-23 Chisso Corp Matted vinyl chloride resin composition
EP0551110A2 (en) * 1992-01-09 1993-07-14 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor devices
EP0551110A3 (en) * 1992-01-09 1994-09-07 Mitsubishi Electric Corp Compound semiconductor devices
US5477066A (en) * 1992-01-09 1995-12-19 Mitsubishi Denki Kabushiki Kaisha Heterojunction bipolar transistor
US5508535A (en) * 1992-01-09 1996-04-16 Mitsubishi Denki Kabushiki Kaisha Compound semiconductor devices
WO2011155571A1 (en) 2010-06-09 2011-12-15 旭化成ケミカルズ株式会社 Thermoplastic elastomer composition and molded articles thereof

Similar Documents

Publication Publication Date Title
JPS59124171A (en) Double hetero junction fet
JPH0573055B2 (en)
JP3376078B2 (en) High electron mobility transistor
JPS6037784A (en) Field effect transistor
Daniels et al. Quantum-well p-channel AlGaAs/InGaAs/GaAs heterostructure insulated-gate field-effect transistors with very high transconductance
US4771324A (en) Heterojunction field effect device having an implanted region within a device channel
JPS6242569A (en) Field effect transistor
JPH02109360A (en) Semiconductor device
JP2576173B2 (en) Insulated gate semiconductor device
JP2569626B2 (en) Semiconductor integrated circuit device
JPH03211839A (en) Compound semiconductor device and method of manufacturing the same
JPS5998559A (en) Field effect transistor
JPS5954271A (en) Semiconductor integrated circuit device
JP3090451B2 (en) Semiconductor device
JP2834172B2 (en) Field effect transistor
JPS594083A (en) Manufacture of semiconductor device
JPH0810701B2 (en) Method for manufacturing junction field effect transistor
JPS61110469A (en) Semiconductor field effect transistor
JP2876749B2 (en) Semiconductor device
JP3347837B2 (en) Compound semiconductor field effect transistor
JPH01268071A (en) Compound semiconductor element
JPH01227455A (en) Semiconductor device
JPS60154573A (en) Semiconductor device
JPS60116178A (en) Semiconductor device and manufacture thereof
JPH01204475A (en) Iii-v compound semiconductor element and manufacture thereof