JPS6035201B2 - Rolling method for continuously cast slabs - Google Patents

Rolling method for continuously cast slabs

Info

Publication number
JPS6035201B2
JPS6035201B2 JP11045976A JP11045976A JPS6035201B2 JP S6035201 B2 JPS6035201 B2 JP S6035201B2 JP 11045976 A JP11045976 A JP 11045976A JP 11045976 A JP11045976 A JP 11045976A JP S6035201 B2 JPS6035201 B2 JP S6035201B2
Authority
JP
Japan
Prior art keywords
rolling
steel
reduction ratio
continuously cast
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11045976A
Other languages
Japanese (ja)
Other versions
JPS5335657A (en
Inventor
直樹 奥村
泰 井上
道彦 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11045976A priority Critical patent/JPS6035201B2/en
Priority to US05/746,307 priority patent/US4119442A/en
Priority to IT52413/76A priority patent/IT1074206B/en
Priority to SE7613497A priority patent/SE426556B/en
Priority to FR7636266A priority patent/FR2333586A1/en
Priority to GB50112/76A priority patent/GB1556072A/en
Priority to DE2654504A priority patent/DE2654504C2/en
Publication of JPS5335657A publication Critical patent/JPS5335657A/en
Publication of JPS6035201B2 publication Critical patent/JPS6035201B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】 本発明は優れた機械的特性を有する鋼材を高い生産性で
圧延によって製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing steel products with excellent mechanical properties by rolling with high productivity.

近年、鋼材の使用量が増加するに伴ない、主として製造
コストの低減、高生産性を意図して、圧延に供される銭
片が大型化する傾向にある。
In recent years, as the amount of steel used has increased, coin coins used for rolling have tended to become larger, mainly with the intention of reducing manufacturing costs and increasing productivity.

特に生産性、製品歩留り、および製造コストの面で優れ
ている連続鋳造設備(以下CCと略称する)による連続
鋳造銭片(以下CC銭片と略称する)の製造が主流にな
りつつあるが、さらに高生産性を狙って銭片厚みが30
仇肌を越える大型のCC銭片も製造されてきている。他
方、製品の軽量化を図るため、製品厚みを薄くし、強度
の補填は鋼材をより高張力鋼化することによって行なう
方法が近年の趨勢である。
Manufacturing of continuously cast coin coins (hereinafter referred to as CC coin coins) using continuous casting equipment (hereinafter referred to as CC), which is particularly superior in terms of productivity, product yield, and manufacturing cost, is becoming mainstream. Furthermore, the coin thickness is 30mm for higher productivity.
Large CC coin coins that exceed the enemy's size are also being manufactured. On the other hand, in order to reduce the weight of the product, the recent trend is to reduce the thickness of the product and supplement the strength by using higher tensile strength steel.

即ちCC銭片厚みが同一である場合、製品になるまでの
圧延加工量は増大することになる。上記2つの理由から
近年製造されている鋼材のCC銭片厚みDと製品厚みd
との比、すなわち圧下比の値は大きくなる煩向にある。
That is, if the thickness of the CC coin is the same, the amount of rolling required to produce a product will increase. CC coin thickness D and product thickness d of steel materials manufactured in recent years due to the above two reasons
The ratio, that is, the value of the rolling reduction ratio, tends to increase.

従来はCC鍵片に加えるべき加工量あるし、は圧下比の
値が大きい程、鋼材の具備する機械的特性は向上するも
のと考えられてきたが、実際には圧下比が大きいと機械
的特性が劣化したり超音波深傷欠陥が多発する鋼材が製
造される場合が生じてきている。また、最近海洋開発が
進展するにつれ、海洋構造物に供される鋼材量が急増し
ているが海洋構造物の多くは鋼材の厚さ方向に負荷がか
かり特に厳しい耐ラメラテア特性が要求されている。耐
ラメラテア特性に優れた鋼材は、特殊元素を添加して製
造されるのが通常であるが製造コストが著しく高くなる
欠点を有している。以上の現況を踏まえた上で本発明者
は圧延工程での加工が鋼材の機械的特性におよぼす影響
を詳細に検討し、低コストで高生産性をもち、かつ優れ
た機械的特性、就中、耐ラメラテア性および母材轍性を
有する鋼材を圧延方法を工夫することによって製造する
方法を発明した。
Conventionally, it was thought that there was a certain amount of machining to be added to the CC key piece, and that the mechanical properties of the steel material improved as the rolling reduction ratio increased, but in reality, the mechanical properties of the steel material improve as the rolling reduction ratio increases. There are cases in which steel materials are being manufactured that have deteriorated properties or frequently suffer from deep ultrasonic flaws. In addition, as offshore development has progressed recently, the amount of steel materials used for offshore structures has rapidly increased, but many of the offshore structures are subject to loads in the thickness direction of the steel materials, requiring particularly severe lamellar tear resistance. . Steel materials with excellent lamellar tear resistance properties are usually manufactured by adding special elements, but they have the drawback of significantly increasing manufacturing costs. Based on the above-mentioned current situation, the inventor of the present invention has conducted a detailed study on the influence of processing in the rolling process on the mechanical properties of steel materials, and has determined that the present inventors can achieve low cost, high productivity, and excellent mechanical properties, among others. have invented a method for producing steel materials with lamellar tear resistance and base material rutting properties by devising a rolling method.

以下に本発明の詳細な説明を行なう。本発明者は鋳造ま
ま状態での材質を劣化させる要因を検討し、圧延加工を
与える過程で、如何にその要因が除去さされていくかを
詳細に探査した。
A detailed explanation of the present invention will be given below. The present inventor investigated the factors that deteriorate the quality of the material in the as-cast state, and investigated in detail how these factors could be removed during the rolling process.

従来、圧下比が大きくなると鋼材の板厚方向の引張試験
における断面積減少率■zが低下することは認められて
おり、またそれが硫化物とくにMnSによるものである
ことも知られている。しかしながら従来の製造法ではす
でにのべたように鞠性を得るために、圧下比を大きくと
らざるを得ず、またぐzと硫黄含有量との関係も定量的
にはわかっていない。本発明者らはまず通常の鋼材に不
可避成分であるマンガン(Mn)、硫黄(S)が溶鋼凝
固過程で、MnSとして晶出し、その晶出位置が主とし
て櫨枝状晶間で、しかも二次元的配列をなしていること
を明らかにした。
It has been conventionally recognized that as the rolling reduction ratio increases, the cross-sectional area reduction rate ■z in a tensile test in the thickness direction of steel material decreases, and it is also known that this is due to sulfides, particularly MnS. However, as mentioned above, in the conventional manufacturing method, in order to obtain ballability, a large reduction ratio must be used, and the relationship between the straddle z and the sulfur content is not quantitatively known. The present inventors first discovered that manganese (Mn) and sulfur (S), which are unavoidable components of ordinary steel materials, crystallize as MnS during the solidification process of molten steel. It was revealed that the results show that there is a specific arrangement.

従って鋳造まま状態ではひとたび形成された亀裂が、M
nSが晶出した面に容易に伝播し、CC銭片の材質とり
わけ母材靭一性を著しく阻害していることを明確にした
Therefore, in the as-cast state, once the cracks are formed, the M
It has been clarified that nS easily propagates to the crystallized surface and significantly impairs the material properties of CC coins, especially the toughness of the base material.

圧延加工を与える一つの意義はこの樹枝状晶間に晶出し
たMnSの配列を変えることにあるが、その配列を変え
るに必要な圧延加工量は圧下比にして2程度の軽加工度
で良く、また晶出MnSの悪影響を除くには少〈とも圧
下比2の加工が必要であるとの知見を得た。この事実は
従来の常識とは異なり、詳細な研究に基づく本発明の最
も特徴とする要点の1つである。すなわちMnSによる
材質劣化を除去するに必要な加工量は圧下比2で良いの
で製品厚みに対し2倍の厚みを持つCC銭片を製造する
ことにより、最も効果的な圧延を行なう‐ことが可能に
なる。さらに詳細にのべればMnSの二次元的配列によ
る材質劣化は母村華及一性のなかでも特にシヤルピー試
験における上棚吸収エネルギーの著しい低下となって現
われるが、母材靭性の別の指標である磯面遷移温度には
顕著な効果は与えず、破面遷移温度を決める主要因はオ
ーステナィト結晶粒度であることが判った。現在通常行
なわれている圧延作業においては、圧延前のCC銭片加
熱によりオーステナィト結晶粒度は0〜−1番(AST
M番号)に粗大化するので充分良好な破面遷移温度を得
るには圧延によってオーステナィト結晶粒度を細かくす
ることが必須になっており、圧下比として6以上の加工
が与えられねばならないとされている。しかし本発明者
は第2図に示すように、析出物の有効利用あるいはCC
銭片の加熱温度を制御することにより圧延前のCC銭片
のオーステナィト結晶粒度を2番以上好ましくは4番以
上に細粒化しておくことにより、充分良好な破面遷移温
度を得るに必要な圧下比は、2程度の軽加工で良く、ま
た前記のように、晶出したMnSの悪影響を除去するた
めに少くとも2の圧下比の加工が必要であるとの知見を
得た。鋼材を製造するに要するエネルギーを節約する観
点から今後は溶鋼を連続鋳造機により鋳造した後、該C
C銭片を冷却して再加熱することなく、直接圧延される
工程が実施されていくと考えられるが、その際は析出物
を有効に利用して圧延前のCC鏡片のオーステナィト結
晶粒度を充分に細かくしておくことが効率的である。な
お本発明では、圧延前のCC銭片のオーステナィト結晶
粒度を充分に細かくしておくことは必須であるが細粒化
の方法、手段には何ら拘束を与えるものではない。CC
鏡片中に不可避的に含有されているMnSは圧延過程で
圧延方向に伸長していくことは良く知られている。
One of the significances of applying rolling processing is to change the arrangement of MnS crystallized between these dendrites, and the amount of rolling required to change the arrangement can be as light as a reduction ratio of about 2. In addition, it was found that processing with a reduction ratio of at least 2 is necessary to eliminate the adverse effects of crystallized MnS. This fact is contrary to conventional wisdom and is one of the most distinctive points of the present invention based on detailed research. In other words, the amount of processing required to remove material deterioration due to MnS is only a rolling reduction ratio of 2, so it is possible to perform the most effective rolling by manufacturing CC coin coins that are twice as thick as the product thickness. become. In more detail, material deterioration due to the two-dimensional arrangement of MnS manifests itself as a significant decrease in the upper shelf absorbed energy in the Shallie test, which is another indicator of base material toughness. It was found that austenite grain size was the main factor determining the fracture surface transition temperature, with no significant effect on the rock surface transition temperature. In the current rolling operation, the austenite crystal grain size is reduced from 0 to -1 (AST
In order to obtain a sufficiently good fracture surface transition temperature, it is essential to refine the austenite crystal grain size by rolling, and it is said that a rolling reduction ratio of 6 or more must be applied. There is. However, as shown in Figure 2, the present inventor has proposed effective utilization of precipitates or CC
By controlling the heating temperature of the coin piece, the austenite grain size of the CC coin piece before rolling is made finer than No. 2, preferably No. 4 or more, which is necessary to obtain a sufficiently good fracture surface transition temperature. It has been found that light processing with a reduction ratio of about 2 is sufficient, and as mentioned above, processing with a reduction ratio of at least 2 is necessary in order to remove the adverse effects of crystallized MnS. From the perspective of saving the energy required to manufacture steel materials, from now on, after molten steel is cast using a continuous casting machine, the C
It is thought that a process will be implemented in which the C coin piece is directly rolled without cooling and reheating, but in that case, the precipitates will be effectively used to sufficiently increase the austenite grain size of the CC mirror piece before rolling. It is efficient to keep it detailed. In the present invention, it is essential to make the austenite crystal grain size of the CC coin coins sufficiently fine before rolling, but there is no restriction on the method or means of grain refinement. C.C.
It is well known that MnS, which is unavoidably contained in mirror pieces, elongates in the rolling direction during the rolling process.

この為に、製造された鋼材の機械的特性に著しい異万性
が生じ、特に鋼材の厚み方向の特性が極端に劣化する。
近年では海洋構造物はもとより、鋼材の厚み方向に負荷
のかかる場合が多く、圧延方向の母材級性は十分であっ
ても鋼材の特性としては不充分である。鋼材の厚み方向
の特性値で特に問題となるのは耐ラメラテア性である。
For this reason, the mechanical properties of the manufactured steel material vary significantly, and in particular, the properties in the thickness direction of the steel material are extremely deteriorated.
In recent years, loads are often applied to steel materials in the thickness direction, not only in offshore structures, but even if the base metal quality in the rolling direction is sufficient, the properties of the steel materials are insufficient. A particularly important characteristic of steel materials in the thickness direction is lamellar tear resistance.

この耐ラメラテア性はMnSの伸長と密接な関係を有し
ているが、定量的な関係は得られておらず、圧延技術と
しては未開拓である。本発明者らは硫黄含有量と圧延条
件との関係について詳細な研究を重ねた上で、同特性は
CC銭片に与えた加工量の目安としての圧下比とCC銭
片中に含まれる硫黄量とに主として支配されること、さ
らにそれが鋼材に要求される板厚方向の引張試験断面減
少率(?z)と特定な関係にあることを見出した。この
関係はD/d:C;器;(1−◇Z)3 ………‘1}
であらわされる。
Although this lamellar tear resistance has a close relationship with the elongation of MnS, a quantitative relationship has not been obtained, and this is unexplored as a rolling technology. The present inventors conducted detailed research on the relationship between sulfur content and rolling conditions, and found that the same characteristics were determined by the rolling ratio as a guideline for the amount of processing given to CC coin coins and the sulfur contained in CC coin coins. It has been found that this is mainly controlled by the amount of steel material, and that it has a specific relationship with the tensile test section reduction rate (?z) in the thickness direction required for steel materials. This relationship is D/d:C; vessel; (1-◇Z)3 ......'1}
It is expressed as

これは本発明の最も特徴とする第2の要点である。‘1
ー式においてD/dは圧下比、CSは重量%で表わされ
るCC銭片中の最大硫黄含有量である。なおめzは試験
片の原断面積A。と試験後の断面債Aとにより、中z=
(A。−A)/A。で与えられる。ところで耐ラメラテ
ア性はぐzと高い相関があり、めzが大きい程、耐ラメ
ラテア性が向上することは、例えば「製鉄研究」第28
6号(1975)82頁により知られている。
This is the second most distinctive feature of the present invention. '1
In the formula, D/d is the rolling reduction ratio, and CS is the maximum sulfur content in the CC coin expressed in weight %. Note that z is the original cross-sectional area A of the test piece. and the cross-sectional bond A after the test, medium z=
(A.-A)/A. is given by By the way, lamellar tear resistance has a high correlation with z, and the larger z is, the better the lamellar tear resistance is, for example, according to "Steel Research" No. 28.
No. 6 (1975), page 82.

CSを一定としたとき、所要の0zを与えれば、圧下比
は{1}式によって一義的に決定されるのが加工による
MnSの展伸がめzを低下させる要因であるのでm式に
よって決定される圧下比は上限値に該当する。従って耐
ラメラテア性の確保を目的とする場合はD/d≦CS≧
等。
When CS is constant and the required 0z is given, the rolling reduction ratio is uniquely determined by the formula {1}.Since the expansion of MnS due to processing is the factor that lowers z, it is determined by the formula m. The rolling reduction ratio corresponds to the upper limit. Therefore, if the purpose is to ensure lamellar tear resistance, D/d≦CS≧
etc.

,(1−◇Z)3で表現される。, (1-◇Z)3.

また通常、各CCにおける銭片厚みは一定であり、製品
板厚が規定されているときには必然的に圧下比が特定さ
れるが、所要のでzを確保するには、CSに制限を設け
る必要がある場合がある。
In addition, normally, the thickness of each CC is constant, and when the product board thickness is specified, the reduction ratio is inevitably specified, but in order to secure the required z, it is necessary to set a limit on the CS. There are cases.

この場合も、耐ラメラテア性はCSが低い程良く、Cs
の値は常に上限値となるので、D/d≦を生害;(・−
ぐZ)3 で表現される。
In this case as well, the lower the CS, the better the lamellar tear resistance;
The value of is always the upper limit, so D/d≦ is considered a biological damage; (・-
It is expressed as guZ)3.

また圧延の生産性およびMnSの伸長のしにくさから、
圧延温度は90000以上が望ましい。
In addition, due to the productivity of rolling and the difficulty in elongating MnS,
The rolling temperature is preferably 90,000 or higher.

第1図は、マzが15%(破線)および25%(一点鎖
線)の場合のD/dがとり得る最大の値を示したもので
ある。またD/d=2に示した実線は、前記のように、
樹枝状晶間に晶出したMnSの配列を変えるに必要な圧
下比および晶出MnSの悪影響を除くために必要な圧下
比が2であるため、D/dの下限を表わしたものである
。中zとして15%をとった理由はすべての鋼材に完全
な耐ラメラテア性が要求されるものではないこと、同一
形状のCC銭片から様々な製品厚みの鋼材を製造できる
必要があり、そのためには許容圧下比領域が広い方が好
都合であることの主として二点である。
FIG. 1 shows the maximum possible values of D/d when Maz is 15% (dashed line) and 25% (dotted chain line). Also, the solid line shown at D/d=2 is, as mentioned above,
This represents the lower limit of D/d because the reduction ratio required to change the arrangement of MnS crystallized between dendrites and the reduction ratio necessary to eliminate the adverse effects of crystallized MnS is 2. The reason why we chose 15% as medium z is that not all steel materials are required to have perfect lamellar tear resistance, and it is necessary to be able to manufacture steel materials with various product thicknesses from CC coin coins of the same shape. There are two main reasons why it is more convenient to have a wider allowable reduction ratio range.

領域Pは充分な耐ラメラテア特性を示す02が25%以
上となる圧延条件の範囲を示す。
Region P indicates a range of rolling conditions in which 02, which exhibits sufficient lamellar tear resistance, is 25% or more.

領域Pと領域Qとが耐ラメラテア性が一応良いとされる
◇zが15%以上の圧延条件である。鏡片の主たる製造
方法であるCC法による錆片の厚さ方向中央部には、い
わゆる中心偏折帯と称する含有成分元素の濃度が高い領
域が存在する。
Region P and region Q are considered to have good lamellar tear resistance under rolling conditions where ◇z is 15% or more. In the center of the rust piece produced by the CC method, which is the main manufacturing method for mirror pieces, there is a region with a high concentration of the contained elements, called the so-called center polarization zone.

中心偏析帯の存在は鋼材の機械的特性を劣化させると言
われているが圧延の加工度を強めることにより、サルフ
アブリント、マクロエッチング等のマクロ組織観察では
軽減されていくにも拘らず、その加工によって、富化さ
れたMnSはより延伸し、鋼材の耐ラメラテア性はむし
ろ極端に低下する傾向を示す。すなわち、鋼材の材質に
とっては中心偏析帯に過度な加工を与えることはいたず
らにMnSの伸長を促進することになり、かえって有害
な結果をもたらす。第1図に示すグラフの横軸の硫黄含
有量はCC銭片内にばらつきがある場合には通常の分析
法において測定点とされる領域の平均濃度で最高値を意
味することにする。したがってCC綾片の場合には中心
偏析帯の硫黄含有量を意味する。以上、従釆知られてい
なかった新しい知見を基に構成された研究結果を総合し
て、鋼材の機械的特性を劣化させるMnSを生成する硫
黄の含有量が多い場合には圧下比2の軽圧延加工がむし
ろ好ましく、少ない場合のみ許容圧下比が2以上に拡大
でき、しかもCC鏡片の圧延前のオーステナィト結晶粒
度を2番以上、好ましくは4番以上に細粒化しておくこ
とにより、母材籾性はもとより、耐ラメラテア性にも優
れた鋼材を低コストかつ高に生産性で製造することを可
能とする本発明に到達したものである。
It is said that the presence of a central segregation zone deteriorates the mechanical properties of steel materials. As a result, the enriched MnS is more elongated, and the lamellar tear resistance of the steel material tends to be rather drastically reduced. That is, for the steel material, excessive processing on the central segregation zone will unnecessarily promote the elongation of MnS, which will have a detrimental effect on the contrary. The sulfur content on the horizontal axis of the graph shown in FIG. 1 means the average concentration in the area that is the measurement point in the normal analysis method and the highest value when there is variation within the CC coin. Therefore, in the case of CC twill, it means the sulfur content in the central segregation zone. Based on the above research results, which are based on new knowledge that was previously unknown, we found that when the sulfur content is high, which produces MnS, which deteriorates the mechanical properties of steel, a reduction ratio of 2 is required. Rolling is rather preferable; the permissible rolling reduction ratio can be expanded to 2 or more only in small cases, and by reducing the austenite grain size of the CC mirror piece before rolling to No. 2 or more, preferably No. 4 or more, it is possible to improve the base material. The present invention has been achieved, which makes it possible to manufacture steel materials with excellent grain tear resistance as well as grain tear resistance at low cost and with high productivity.

以上は主として鋼板について説明したが、本発明はその
他の鋼材についても同様に適用できるものである。
Although the above description has mainly been given to steel plates, the present invention can be similarly applied to other steel materials.

なお本発明の対象とするCC鏡片の化学成分は下記の低
炭素低合金鋼である。tl} C:0.05〜0.25
%,Sj:0.05〜0.60%,Mn:0.60〜1
.90%を含有する基準低炭素シリコンマンガン鋼。
The chemical composition of the CC mirror piece targeted by the present invention is the following low-carbon, low-alloy steel. tl} C: 0.05-0.25
%, Sj: 0.05-0.60%, Mn: 0.60-1
.. Standard low carbon silicon manganese steel containing 90%.

■ 上記{1)の基準低炭素シリコンマンガン鋼に、0
.1%以下の山,0.5%以下のCu,2%以下のN言
,0.5%以下のCr,0.3%以下のMo,0.2%
以下のV,0.1%以下のNb,0.1%以下のTjの
うち一種または二種以上を含有する低合金鋼。
■ For the reference low carbon silicon manganese steel in {1) above, 0
.. 1% or less mountain, 0.5% or less Cu, 2% or less N, 0.5% or less Cr, 0.3% or less Mo, 0.2%
Low alloy steel containing one or more of the following V, 0.1% or less Nb, and 0.1% or less Tj.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

用いたCC銭片の基本成分はJIS規格SM50相当で
ある。本発明による圧延法と従釆からの圧延法とを行な
い、機械的特性を比較した。試験結果を第1表に示す。
なお、引張試験片はJIS規格4号丸樟試験片である。
第1表 機械的性質 (1)のzは鋼材厚さ方向の絞り値を示す。
The basic components of the CC coin coins used are equivalent to JIS standard SM50. The rolling method according to the present invention and the rolling method from the secondary mold were performed, and the mechanical properties were compared. The test results are shown in Table 1.
The tensile test piece was a JIS standard No. 4 round camphor test piece.
In Table 1 Mechanical Properties (1), z indicates the reduction of area in the thickness direction of the steel material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼材の機械的特性を充分満足させるための実験
的に求められた圧延条件の許容範囲と本発明が示す計算
式との比較を示す図で破線で示した曲線がめz=15%
、一点鎖線で示した曲線がめz=25%となる圧延条件
の許容限界を示す。 第2図は圧延前のCC鋳片のオーステナィト結晶粒度が
細かければ所要の母材級性を得るのに圧下比が小さくて
良いことを示す図である。第1図 第2図
Figure 1 is a diagram showing a comparison between the allowable range of rolling conditions determined experimentally to fully satisfy the mechanical properties of steel and the calculation formula shown by the present invention.
, the curve shown by a dashed dotted line shows the permissible limit of rolling conditions where z=25%. FIG. 2 is a diagram showing that if the austenite crystal grain size of the CC slab before rolling is fine, the rolling reduction ratio may be small to obtain the required base metal quality. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 圧延によつて連続鋳造鋳片から鋼材を製造するにあ
たり、連続鋳造鋳片厚みD、製品厚みdとした時、圧延
前の連続鋳造鋳片のオーステナイト結晶粒度(ASTM
番号)を2番以上、鋼材に要求される板厚方向の引張試
験断面積減少率φ_Zと、連続鋳造鋳片の重量%で表さ
れる最大硫黄含有量C_Sとに応じてD/dの値を2≦
D/d≦(0.31)/(C_S+0.01)(1−φ
_Z)^3とすることを特徴とする連続鋳造鋳片の圧延
法。
1. When manufacturing steel products from continuously cast slabs by rolling, when the continuous cast slab thickness is D and the product thickness is d, the austenite grain size (ASTM) of the continuous cast slab before rolling is
2 or higher, the value of D/d is determined according to the tensile test cross-sectional area reduction rate φ_Z in the plate thickness direction required for the steel material and the maximum sulfur content C_S expressed in weight percent of the continuously cast slab. 2≦
D/d≦(0.31)/(C_S+0.01)(1-φ
_Z)^3 A rolling method for continuously cast slabs.
JP11045976A 1975-12-01 1976-09-14 Rolling method for continuously cast slabs Expired JPS6035201B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP11045976A JPS6035201B2 (en) 1976-09-14 1976-09-14 Rolling method for continuously cast slabs
US05/746,307 US4119442A (en) 1975-12-01 1976-12-01 Process for manufacturing a steel product
IT52413/76A IT1074206B (en) 1975-12-01 1976-12-01 PROCEDURE FOR PREPARING A STEEL PRODUCT
SE7613497A SE426556B (en) 1975-12-01 1976-12-01 PROCEDURE FOR THE PREPARATION OF A STEEL MASTER OF A CASTLE PUBLIC BY ROLLING
FR7636266A FR2333586A1 (en) 1975-12-01 1976-12-01 PROCESS FOR THE MANUFACTURE OF A STEEL PRODUCT
GB50112/76A GB1556072A (en) 1975-12-01 1976-12-01 Process for manufacturing a steel product
DE2654504A DE2654504C2 (en) 1975-12-01 1976-12-01 Method of manufacturing a steel product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11045976A JPS6035201B2 (en) 1976-09-14 1976-09-14 Rolling method for continuously cast slabs

Publications (2)

Publication Number Publication Date
JPS5335657A JPS5335657A (en) 1978-04-03
JPS6035201B2 true JPS6035201B2 (en) 1985-08-13

Family

ID=14536237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11045976A Expired JPS6035201B2 (en) 1975-12-01 1976-09-14 Rolling method for continuously cast slabs

Country Status (1)

Country Link
JP (1) JPS6035201B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317948U (en) * 1986-07-16 1988-02-05

Also Published As

Publication number Publication date
JPS5335657A (en) 1978-04-03

Similar Documents

Publication Publication Date Title
JP3863878B2 (en) Welded structural steel with excellent weld heat affected zone toughness, manufacturing method thereof, and welded structure using the same
JP6391801B2 (en) Hot rolled steel sheet and related manufacturing method
JPH0152451B2 (en)
JPS6035201B2 (en) Rolling method for continuously cast slabs
JP2902328B2 (en) Roll for hot rolling, outer layer material of roll, and method for manufacturing roll for hot rolling
JP2001234274A (en) Composite roll for hot rolling
JP2001200335A (en) Roll for rolling
JPS59177352A (en) Low-decarburization spring steel for continuous casting
JP3009750B2 (en) Method for producing structural steel sheet with excellent low-temperature toughness
JPS63179020A (en) Production of steel sheet having excellent strength and toughness and small difference in sectional hardness in thickness direction of sheet
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
JPS641203B2 (en)
JP2001158936A (en) Thin steel sheet excellent in hydrogen induced cracking resistance and producing method therefor
JP2619182B2 (en) Hot-rolled steel sheet for deep drawing excellent in secondary work cracking resistance and small in anisotropy and method for producing the same
JPH0741903A (en) Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture
JPS6017061A (en) Free cutting steel and its production
JPH029088B2 (en)
KR100328059B1 (en) A method for manufacturing structural steel plate
JP2003253396A (en) Roll material for hot rolling, and roll for hot rolling using the same
JPS6318019A (en) Manufacture of wear-resistant steel plate
SU1076486A1 (en) Steel
JPS63180305A (en) Production of high tensile steel by direct hot rolling of thin slab
JPH03107427A (en) Production of cr-ni stainless steel sheet excellent in mechanical property and surface characteristic
JP2001234273A (en) Composite roll for hot rolling
JPH0579733B2 (en)