JPS59177352A - Low-decarburization spring steel for continuous casting - Google Patents

Low-decarburization spring steel for continuous casting

Info

Publication number
JPS59177352A
JPS59177352A JP5023083A JP5023083A JPS59177352A JP S59177352 A JPS59177352 A JP S59177352A JP 5023083 A JP5023083 A JP 5023083A JP 5023083 A JP5023083 A JP 5023083A JP S59177352 A JPS59177352 A JP S59177352A
Authority
JP
Japan
Prior art keywords
steel
decarburization
continuous casting
spring steel
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5023083A
Other languages
Japanese (ja)
Inventor
Makoto Saito
誠 斉藤
Atsuyoshi Kimura
木村 篤良
Yukio Ito
伊藤 幸生
Kiyoaki Nishikiori
錦織 清明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP5023083A priority Critical patent/JPS59177352A/en
Publication of JPS59177352A publication Critical patent/JPS59177352A/en
Pending legal-status Critical Current

Links

Landscapes

  • Springs (AREA)

Abstract

PURPOSE:To obtain a low-decarburization spring steel for continuous casting having a significant effect of preventing local decarburization by adding specified amounts of C, Si, Mn, Cr and one or more among V, Nb, Mo, W, Ta, Zr and Ti to Fe. CONSTITUTION:The composition of a lowdecarburization spring steel for continuous casting is composed of, by weight, 0.4-0.75% C, 1-2.5% Si, 0.5-1% Mn, 0.1-1% Cr, one or more among 0.03-0.3% V, 0.01-0.3% Nb, 0.01-0.3% Mo, 0.01-1.5% W, 0.01-1.5% Ta, 0.01-0.3% Zr and 0.01-0.3% Ti, and the balance Fe with inevitable impurities. When the steel is continuously cast into a bloom, carbon diffuses slowly in the side and pin corner parts of the bloom, so decarburized layers are not formed up to a large depth especially in the pin corner parts.

Description

【発明の詳細な説明】 この発明は、連続鋳造において生じやすい局部脱炭の防
止作用が大きい連続鋳造用低脱炭ばね鋼に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low decarburization spring steel for continuous casting that has a large effect of preventing local decarburization that tends to occur during continuous casting.

従来、JIS  5UP6,5UP7や5AE9254
に規定されているばね鋼は、十分な強度および酎へたり
性が得られるように高Stの組成となっているが、この
高Stのばね鋼は脱炭をきわめて起しゃすい鋼種である
Conventionally, JIS 5UP6, 5UP7 and 5AE9254
The spring steel specified in the above has a high St composition in order to obtain sufficient strength and hardness, but this high St spring steel is a steel type that is extremely susceptible to decarburization.

一方、近年、鋼の生産性向上のために、従来の造塊鋳型
を用いた鋼塊製造法に代わって、連続鋳造法の採用が特
殊鋼の分野にまで及んできている。ところが、連続鋳造
法によって製造されたブルームは、従来の鋼塊製造法に
よって製造されたインゴットに比べて著しく鋭い角部を
もっている。すなわち、通常のインゴットではコーナ一
部分の半径は小さくとも50mm程度であるのに対して
、連続鋳造法によるビレットではコーナ一部分に丸味が
ほとんどない鋭いピン角状をなしている。
On the other hand, in recent years, in order to improve steel productivity, the continuous casting method has been adopted in the field of special steel instead of the conventional steel ingot manufacturing method using an ingot mold. However, blooms manufactured by the continuous casting method have significantly sharper corners than ingots manufactured by the conventional steel ingot manufacturing method. That is, in a normal ingot, the corner radius is at least about 50 mm, whereas in a continuous casting billet, the corner part has a sharp pin corner shape with almost no roundness.

そのため、連続鋳造法によって製造されたビレットでは
、ピン角部分での脱炭が著しいという問題点を有してい
た。この脱炭は、C(炭素)が外部へ拡散することによ
って生ずるものであるが、ピン角の場合には丸味のある
場合に比べてCの拡散速度が大きいので、そのためピン
角部分の脱炭が著しくなると考えられる。
Therefore, billets manufactured by the continuous casting method have the problem of significant decarburization at the corner portions of the pins. This decarburization is caused by the diffusion of C (carbon) to the outside, but the diffusion rate of C is higher in the case of pin corners than in the case of round pins, so the decarburization of the pin corners is is expected to become significant.

したがって、高Stばね鋼を生産性の高い連続鋳造法に
よって製造した場合には、ブルームのピン角部分に比較
的深い脱炭層が生ずるのは避けられず、そのため、連続
鋳造後にホットスカーフインクを行ってブルームビン角
部の脱炭層を除去する必要があるが、通常のホットスカ
ーフ量では高Stばね鋼のピン角部の脱炭層は完全に除
去しきれず、スポット的に残存する場合かある。しかし
、このスポット的に残存した局部脱炭層は、ばね特性に
対して非常に悪い影響を及ぼすので、完全になくす必要
があるが、このような除去作業は著しく煩わしいもので
あり、ばね鋼の生産性を大きく阻害すると共に、渉留り
の低下も大きいという問題点があった。
Therefore, when high-St spring steel is manufactured by the highly productive continuous casting method, it is inevitable that a relatively deep decarburized layer will be formed at the pin corners of the bloom, so hot scarf ink is applied after continuous casting. It is necessary to remove the decarburized layer at the corner of the bloom bin, but the decarburized layer at the corner of the pin of high St spring steel cannot be completely removed with a normal amount of hot scarf, and may remain in spots. However, this spot-remaining localized decarburized layer has a very negative effect on the spring properties, so it must be completely eliminated, but such removal work is extremely troublesome, and it is difficult to produce spring steel. There was a problem in that it greatly impeded the performance and also caused a large decrease in wading retention.

この発明は、このような従来の問題点を解消するために
なされたもので、局部脱炭の防止作用が大きく、連続鋳
造法によって高Stのばね鋼を製造したときでもブルー
ムのビン角部に深い脱炭層が生ずるのを防止することが
できる連続鋳造用低すなわち、この発明による連続鋳造
用低脱炭ばね鋼は、重量%で、C:0.40〜0.75
%、Si:1.O〜2.5%、Mn:0.5〜1.0%
、Cr:0.1〜1.0%、およびV:0.03〜0.
3%、Nb:0.01〜0.3%、 M 。
This invention was made to solve these conventional problems, and has a great effect of preventing local decarburization, and even when high St spring steel is manufactured by continuous casting, it does not occur at the bottle corners of the bloom. The low decarburized spring steel for continuous casting that can prevent the formation of deep decarburized layers, that is, the low decarburized spring steel for continuous casting according to the present invention, has a C: 0.40 to 0.75 in weight%.
%, Si:1. O~2.5%, Mn:0.5~1.0%
, Cr: 0.1-1.0%, and V: 0.03-0.
3%, Nb: 0.01-0.3%, M.

:O,O2N2.3%、W:0.01〜1.5%、Ta
:0.01〜1.5%、Zr:0.01〜0.3%、T
i:0.01〜0.3%のうちの1種または2種以上を
含み、残部Feおよび不純物からなることを特徴として
おり、連続鋳造法によってブルームを製造したときに、
前記ブルームの辺部分およびピン角部分のCの拡散が遅
く、そのためとくにピン角部分の脱炭層が深く形成され
ないようにしたことを特徴としている。
:O, O2N2.3%, W: 0.01-1.5%, Ta
:0.01~1.5%, Zr:0.01~0.3%, T
It is characterized by containing one or more of i: 0.01 to 0.3%, with the balance consisting of Fe and impurities, and when producing bloom by continuous casting method,
It is characterized in that the diffusion of C in the side portions of the bloom and the pin corner portions is slow, so that a deep decarburized layer is not formed particularly in the pin corner portions.

次に、この発明による連続鋳造用低脱炭ばね鋼の成分範
囲(重量%)の限定理由を説明する。
Next, the reason for limiting the composition range (weight %) of the low decarburization spring steel for continuous casting according to the present invention will be explained.

C(炭素); Cは、鋼の強度を高めるのに有効な元素である。C (carbon); C is an element effective in increasing the strength of steel.

が、0.40%未満ではばねとしての必要な強度を得る
ことができず、0.75%を超えると網状のセメンタイ
トが出やすくなり、ばねの疲労強度が損われるので、0
,40〜0,75%の範囲とした。
However, if it is less than 0.40%, it will not be possible to obtain the necessary strength as a spring, and if it exceeds 0.75%, reticular cementite will tend to form, impairing the fatigue strength of the spring.
,40 to 0.75%.

St(けい素); Stは、鋼の強度を向上し、ばねの耐へたり性を向上さ
せるのに有効な元素であるが、1.0%未満ではばねと
して必要な酎へたり性を得ることができず、2.5%を
超えると靭性が劣化するので、1.0〜2.5%の範囲
とした。
St (silicon): St is an element effective in improving the strength of steel and the setting resistance of springs, but if it is less than 1.0%, it will not provide the necessary setting resistance for springs. If the content exceeds 2.5%, the toughness deteriorates, so the content was set in the range of 1.0 to 2.5%.

Mn(マンガン); Mnは、鋼の脱酸に有効であると共にSによる害を阻止
するのに有効な元素であり、このためには0.5%以上
含有させることが必要であるが、■、0%を超えると造
塊時に偏析を生じやすく、この偏析によって強度むらを
生ずるおそれがあるので、0.5〜1.0%の範囲とし
た。
Mn (manganese): Mn is an element that is effective in deoxidizing steel as well as preventing damage caused by S, and for this purpose it is necessary to contain it in an amount of 0.5% or more. If it exceeds 0%, segregation tends to occur during agglomeration, and this segregation may cause uneven strength, so it is set in the range of 0.5 to 1.0%.

Cr(クロム) Crは、高炭素鋼の脱炭および黒鉛化を防止するのに有
効な元素であるが、0.1%未満でt±これらの効果を
十分に期待することができず、1゜0%を超えると靭性
が劣化するので、0.1〜i、o%の範囲とした。
Cr (Chromium) Cr is an effective element for preventing decarburization and graphitization of high carbon steel, but if it is less than 0.1%, these effects cannot be fully expected; If it exceeds 0%, the toughness deteriorates, so it is set in the range of 0.1 to i,o%.

■(バナジウム)、Nb(ニオブ)、M6(モリブデン
)、W(タングステン)、Ta(タンタル)、Zr(ジ
ルコニウム)  、Ti  (チタン)V 、 N b
 、 M o 、 W 、 T a 、 Z r 、 
T iは、いずれもCとの親和力が大きい元素であり、
これらの1種または2種以上を添加することによって安
定な炭化物が析出し、この炭化物が分解されにくいため
に、鋼の脱炭抵抗性を著しく高めることができる。そし
て、これらのうち、V、Nbは鋼の焼入れ焼もどし時の
析出硬化の効果が大きく、ばね特性を向上するという作
用もある。
■ (vanadium), Nb (niobium), M6 (molybdenum), W (tungsten), Ta (tantalum), Zr (zirconium), Ti (titanium) V, N b
, M o , W , T a , Z r ,
T i is an element that has a large affinity with C,
By adding one or more of these, stable carbides are precipitated, and since these carbides are difficult to decompose, the decarburization resistance of steel can be significantly improved. Among these, V and Nb have a large precipitation hardening effect during quenching and tempering of steel, and also have the effect of improving spring characteristics.

これらの各元素において、■は、0.03%未満では上
記した効果があまり期待できず、0.3%を超えると製
鋼上の取扱いが困難となるので、0.03〜0.3%の
範囲とした。
In each of these elements, ■ is less than 0.03%, the above effects cannot be expected, and if it exceeds 0.3%, it becomes difficult to handle in steel manufacturing, so 0.03 to 0.3%. range.

また、Nbは、0.015未満では上記した効果があま
り期待できず、0.3%を超えると造塊時に炭化物(N
bC)がストリンガ−状に生成し、これが通常の分塊圧
延時に溶体化せず、また後の熱処理で溶解しにくく、製
品としてのばね特性を低下させるので、0.O1〜0.
3%の範囲とした。
In addition, if Nb is less than 0.015%, the above effects cannot be expected, and if it exceeds 0.3%, carbide (Nb) is formed during agglomeration.
bC) is formed in the form of stringers, which do not become solution during normal blooming rolling and are difficult to dissolve during subsequent heat treatment, reducing the spring properties of the product. O1~0.
The range was set at 3%.

さらに、Mo 、W、Ta、Zr 、Tiは、いずれも
0.01%未満では上記した効果があまり期待できず、
また多く添加した場合には炭化物が粗大化して十分なば
ね特性が得られなくなるので、M o 、 Z r 、
 T iについては0.3%以下、W。
Furthermore, if Mo, W, Ta, Zr, and Ti are all less than 0.01%, the above-mentioned effects cannot be expected.
In addition, if too much is added, the carbide becomes coarse and sufficient spring characteristics cannot be obtained, so M o , Z r ,
0.3% or less for Ti, W.

Taについては1,5%以下とした。Ta was set to 1.5% or less.

そのほか、Bは、鋼の焼入性を増大させるのに有効な元
素であり、必要なばね特性が得られるように使用目的等
に応じて添加するのが良いが、0.0005%未満では
上記した効果が得がたく、0.01%を超えても上記し
た効果はさほど増大しないので、添加する場合には0.
0005〜0.01%の範囲とするのが良い。
In addition, B is an effective element for increasing the hardenability of steel, and should be added depending on the purpose of use to obtain the necessary spring characteristics, but if it is less than 0.0005%, the above It is difficult to obtain the above effect, and even if it exceeds 0.01%, the above-mentioned effect does not increase significantly, so when adding 0.01%.
The range is preferably from 0.0005% to 0.01%.

また、Sは、ばねの疲労強度を損ないやすい元素であり
、S含有量が低いほどばねとしての信頼性を高めること
ができるので、使用目的等に応じてその上限を規制する
のがより望ましい。そして、0.010%以下であれば
Sによる害はほとんどなくなるので、0.010%以下
とするのがより望ましい。
Further, S is an element that tends to impair the fatigue strength of the spring, and the lower the S content, the higher the reliability of the spring, so it is more desirable to regulate its upper limit depending on the purpose of use. If it is 0.010% or less, there will be almost no harm caused by S, so it is more desirable that it be 0.010% or less.

さらに、0は、酸化物系の介在物を生成し、これが疲労
破壊の起点となることがあるので、使用目的等に応じて
その含有量を規制することがより望ましい。この場合、
0.0015%以下であれば、疲労破壊の起点となりに
くいので1.0.0015%以下とすることがより望ま
しい。
Furthermore, since 0 produces oxide-based inclusions, which may become the starting point of fatigue failure, it is more desirable to regulate the content depending on the purpose of use. in this case,
If it is 0.0015% or less, it is less likely to become a starting point for fatigue fracture, so it is more desirable that it is 1.0.0015% or less.

このような成分九有量の鋼を素材とするばねにおいて、
その酎へ嫁り性や疲労強度等のばね特性を向上させるた
めに、連続鋳造および製品圧延後の素材に対して、焼入
れ焼もどし等の調質や制御圧延などを施して、組織の結
晶粒度が9番以上となるようにすることがより望ましい
In springs made of steel with such a large amount of ingredients,
In order to improve the spring properties such as adhesion to the sake and fatigue strength, the material after continuous casting and product rolling is subjected to tempering such as quenching and tempering, controlled rolling, etc. to improve the crystal grain size of the structure. It is more desirable that the number is 9 or higher.

以下、この発明の実施例をおび比較例とともに説明する
Examples of the present invention will be described below along with comparative examples.

実施例1 表に示す化学成分の鋼を溶製したのち造塊し、次いでこ
の鋼塊を分塊圧延および線材圧延し、得られた線材から
直径10mm、長さ50IIIInの試料を切り出した
。次に、各試料を1000℃に加熱保持した熱処理炉の
中に所定時間(1時間毎に取り出し)保持し、脱炭層を
形成させたのち各試料の脱炭層深さを測定した。この結
果を第1図に示−27″ 第1図は、比較鋼として5UP6 (No、l)を取り
」二げ、本発明鋼として」二記5UP6とC1Si、M
nの3成分が比較的近似した鋼(No、 4 。
Example 1 A steel having the chemical composition shown in the table was melted and then formed into an ingot.The steel ingot was then subjected to blooming rolling and wire rod rolling, and a sample having a diameter of 10 mm and a length of 50IIIn was cut from the obtained wire rod. Next, each sample was kept in a heat treatment furnace heated and maintained at 1000° C. for a predetermined time (taken out every hour) to form a decarburized layer, and then the depth of the decarburized layer of each sample was measured. The results are shown in Figure 1. Figure 1 shows 5UP6 (No, l) as a comparison steel, and 5UP6 (No, l) as the invention steel.
Steel in which the three components of n are relatively similar (No. 4).

5 、6 、7)を取り」二げて、それぞれ熱処理炉内
で加熱保持したのちの全脱炭層深さを調べた結果を示す
ものである。第1図に示すように、比較鋼では最初の2
時間で脱炭層の形成が非常に早く、その後説炭層の増加
速度はゆるやかになっているのが明らかである。これに
対して本発明−鋼では、2時間以内での脱炭層の形成が
遅く、かつ長時間側での脱炭層の厚み自体も少ないこと
が明らかである。このことは、V、Nb、Mo、W、T
a。
5, 6, and 7), and show the results of examining the total decarburization layer depth after heating and holding in a heat treatment furnace. As shown in Figure 1, the first two
It is clear that the decarburized layer formed very quickly over time, and that the rate of increase in the decarburized layer subsequently slowed down. On the other hand, in the steel of the present invention, it is clear that the formation of a decarburized layer within 2 hours is slow, and the thickness of the decarburized layer itself is small over a long period of time. This means that V, Nb, Mo, W, T
a.

Zr、Tiのうちの1種または2種以上の添加が脱炭防
止に非常に有効であることを物語るものである。なお、
これらの元素の添加によってばね特性はむしろ向上して
おり、ばね特性に対するマイナス要因は全く認められな
かった。
This shows that the addition of one or more of Zr and Ti is very effective in preventing decarburization. In addition,
The spring properties were rather improved by the addition of these elements, and no negative factors were observed for the spring properties.

第2図は、比較鋼として5UP7 (No、2)を取り
上げ、本発明鋼として上記5UP7とC1Si、Mnの
31&分が比較的近似したvI4(No、 8 。
FIG. 2 takes up 5UP7 (No. 2) as a comparison steel, and vI4 (No. 8), which has relatively similar values of 31 & of C1Si and Mn to the above-mentioned 5UP7 as an inventive steel.

9.10,11,12,13,14.15)を取り上げ
て、それぞれ熱処理炉内で加熱保持したのちの全脱炭層
深さを調べた結果を示すものである。第2図に示すよう
に、この場合にも第1図のときと同じような結果が得ら
れており、」二記V。
9.10, 11, 12, 13, 14.15), and shows the results of investigating the total decarburization layer depth after heating and holding in a heat treatment furnace. As shown in FIG. 2, the same results as in FIG. 1 were obtained in this case as well.

Nb、Mo、W、Ta、Zr、Tiのうちの1種または
2種以上の添加が脱炭防止に非常に有効であることが確
認された。また、この場合にもばね特性はむしろ向上し
ており1、これらの添加による不具合は全くなかった。
It was confirmed that the addition of one or more of Nb, Mo, W, Ta, Zr, and Ti is very effective in preventing decarburization. Moreover, in this case as well, the spring properties were rather improved1, and there were no problems caused by the addition of these substances.

さらに、第3図は、比較鋼としてSAE  9254 
(No、 3)を取り上げ、本発明鋼として上記SAE
  9254とC,Si、Mnの3成分が比較的近似し
た鋼(No’、16,17,18.19)を取り上げて
、それぞれ熱処理炉内で加熱保持したのちの全脱炭層深
さを調べた結果を示すものである。第3図に示すように
、この場合にも第1図および第2図のときと同じような
結果士得ることができた。
Furthermore, Figure 3 shows SAE 9254 as a comparison steel.
(No. 3) and the above SAE as the invention steel.
Steels (No', 16, 17, 18.19) whose three components of C, Si, and Mn are relatively similar to 9254 were taken up, and the total decarburization layer depth was investigated after each was heated and held in a heat treatment furnace. This shows the results. As shown in FIG. 3, results similar to those in FIGS. 1 and 2 were obtained in this case as well.

穿施舅2 表に示す化学成分の鋼を溶製したのち造塊し、次いでこ
の鋼塊を分塊圧延したのち圧延材から20mm角X50
mm長さの直方体形状の試料を切り出した。なお、各試
料のコーナ一部は、連続鋳造による鋳片形状に倣ってピ
ン角に加工した。
Drilling 2 After melting the steel with the chemical composition shown in the table, it is made into an ingot, and then this steel ingot is bloomed and rolled, and then 20 mm square x 50 pieces are made from the rolled material.
A rectangular parallelepiped sample with a length of mm was cut out. Note that a portion of the corner of each sample was machined into a pin angle following the shape of the slab formed by continuous casting.

次に、各試料を1000°Cに加熱保持した熱処理炉で
5時間保持したのち冷却し、冷却後に第7図に示すよう
に各試料lに形成された脱炭層2の深さを辺部(深さa
)とコーナ一部(深さb)とで測定した。
Next, each sample was held in a heat treatment furnace heated and held at 1000°C for 5 hours, and then cooled. After cooling, the depth of the decarburized layer 2 formed on each sample l was measured at the side ( depth a
) and a part of the corner (depth b).

第4図は、比較鋼として5UP6 (No、l)を取り
上げ、本発明鋼として上記5UP6とC,Si、Mnの
3成分が比較的近似した鋼(No、 4 。
FIG. 4 takes 5UP6 (No. 1) as a comparative steel, and a steel (No. 4) whose three components of C, Si, and Mn are relatively similar to the above-mentioned 5UP6 as an inventive steel.

5 、6 、7)を取り上げて、それぞれ加熱保持した
後の辺部の脱炭層深さaとコーナ一部の脱炭層深さbと
を測定し、第4図の縦軸にコーナ一部の脱炭層深さ度合
(b/a)をとって示したものである。第4図に示すよ
うに、比較鋼では辺部の脱炭層深さaに比べてコーナ一
部の脱炭層深さbがより大きくなっているのに対して、
本発明鋼では辺部の脱炭層深さaに比べてコーナ一部の
脱炭層深さbがより小さくなっており、コーナ一部の脱
炭が従来のものよりも抑制されていることが明らかであ
る。このことは、連続鋳造により製造された鋳片のコー
ナーピン角部においても脱炭層の局部残存の発生が有効
に阻止できたことを示してl、%る。
5, 6, and 7), the depth a of the decarburized layer at the side and the depth b of the decarburized layer at a part of the corner after heating and holding were measured, and the vertical axis in Fig. 4 shows the depth of the decarburized layer at the part of the corner. It is shown based on the degree of decarburization layer depth (b/a). As shown in Fig. 4, in the comparative steel, the decarburized layer depth b in the corner part is larger than the decarburized layer depth a in the side part, whereas
In the steel of the present invention, the depth b of the decarburized layer in a part of the corner is smaller than the depth a of the decarburized layer in the side part, and it is clear that decarburization in the part of the corner is suppressed more than in the conventional steel. It is. This indicates that the occurrence of local residual decarburized layers could be effectively prevented even at the corner pin corners of slabs manufactured by continuous casting.

第5図は、比較鋼として5UP7 (No、2)を取り
上げ、本発明鋼として上記5UP7とC25i、Mnの
3成分が比較的近似した鋼(No、 8 。
FIG. 5 shows 5UP7 (No. 2) as a comparison steel, and a steel (No. 8) whose three components of C25i and Mn are relatively similar to the above-mentioned 5UP7 as an inventive steel.

9、to、11,12,13,14.15)を取り上げ
て、それぞれ加熱保持した後の辺部の脱炭層深さaとコ
ーナ一部の脱炭層深さbとを測定し、縦軸にコーナ一部
の脱炭層深さ度合(b/a)をとって示したものである
。第5図の場合においても、第4図のときと同様に、本
発明鋼ではいずれもコーナ一部の脱炭の促進が十分に抑
制されていることが明らかである。
9, to, 11, 12, 13, 14.15), measure the depth a of the decarburized layer at the side and the depth b of the decarburized layer at a part of the corner after heating and holding, and plot them on the vertical axis. The figure shows the depth (b/a) of the decarburized layer in a part of the corner. In the case of FIG. 5 as well, as in the case of FIG. 4, it is clear that the acceleration of decarburization in a part of the corner is sufficiently suppressed in all of the steels of the present invention.

さらに、第6図は、比較鋼としてSAE  9254 
(No、 3)を取り上げ、本発明鋼として上記SAE
  9254とC,Si、Mnの3成分が比較的近似し
た鋼(No、16.17,18.19)を取り上げて、
それぞれ前記と同様にして、縦軸にコーナ一部の脱炭層
深さ度合(b/a)をとって示したものである。第6図
の場合においても、第4図および第5図のときと同様に
、本発明鋼ではいずれもコーナ一部の脱炭の促進が十分
に抑制されていることが明らかである。
Furthermore, Fig. 6 shows SAE 9254 as a comparative steel.
(No. 3) and the above SAE as the invention steel.
Taking steel (No. 16.17, 18.19) whose three components of C, Si, and Mn are relatively similar to 9254,
Similarly to the above, the depth of the decarburized layer (b/a) at a portion of the corner is plotted on the vertical axis. In the case of FIG. 6 as well, as in the case of FIGS. 4 and 5, it is clear that the acceleration of decarburization in a part of the corner is sufficiently suppressed in all of the steels of the present invention.

以」−説明してきたように、この発明によるばね鋼では
、C,Si、Mn、Crを基本成分とする高Siばね鋼
番乙V、Nb、Mo、W、Ta、Zr、Tiの1種以上
を含有させるようにしたから、加熱時におけるCの外部
への拡散を遅くすることが可能であり、局部脱炭の防止
作用が大きいというすぐれた効果を有し、連続鋳造法に
よって高Siのばね鋼を製造したときでもブルームのピ
ン角部に深い脱炭層が生ずるのを防止することができ、
従来のように、ホットスカーフィング後においてもコー
ナ一部の脱炭層が除去しきれずにスポット的に残存し、
これがばねの品質を著しく損ねるという不具合や、ホッ
トスカーフィング量の増大による歩留りの低下という不
具合をことごとく解消することができ、ばね鋼の生産を
連続鋳造によって高能率で行うことができるという非常
に優れた効果を有する。
- As explained above, the spring steel according to the present invention is one of the high-Si spring steel numbers V, Nb, Mo, W, Ta, Zr, and Ti whose basic components are C, Si, Mn, and Cr. By containing the above, it is possible to slow down the diffusion of C to the outside during heating, and it has an excellent effect of preventing local decarburization. Even when manufacturing spring steel, deep decarburized layers can be prevented from forming at the pin corners of the bloom.
Conventionally, even after hot scarfing, the decarburized layer in some corners cannot be completely removed and remains in spots.
This is an extremely advantageous feature that can completely eliminate problems such as significantly impairing the quality of springs and decreasing yield due to an increase in the amount of hot scarfing, and allows production of spring steel to be carried out with high efficiency through continuous casting. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図はこの発明の実施例1において各試
料の加熱時間と全脱炭層深さとの関連を調べた結果を示
すグラフ、第4図ないし第6図はこの発明の実施例2に
おいて各試料のピン角を有するコーナ一部の脱炭層深さ
度合を調べた結果を示すグラフ、第7図はコーナ一部の
脱べ層深さ度合を調べる際に測定した辺部脱炭層深さお
よびコーナ一部説炭層深さの測定要領を示す説明図であ
る。 特許出願人  大同特殊鋼株式会社 代理人弁理士 小  塩   豊 第1図 jJD熱M Pli (hr、 1ooo’c )第2
図 力0熱綺間(hr、 1ooo ’c )第3図 加gm間(hr、1ooo’c) 第4図 1455’7 (JIS 5llP6) 試料No。 第5図 第6回 3   /θ   /7/8’IQ (5AEQ254) −2′
1 to 3 are graphs showing the results of investigating the relationship between the heating time of each sample and the total decarburization layer depth in Example 1 of the present invention, and Figures 4 to 6 are graphs showing the results of investigating the relationship between the heating time of each sample and the total decarburization layer depth in Example 1 of the present invention. Figure 7 shows the depth of the decarburized layer at the edges measured when examining the depth of the decarburized layer in a part of the corner with the pin angle of each sample. FIG. 3 is an explanatory diagram showing a procedure for measuring the depth of a coal seam and a part of a corner. Patent Applicant Daido Steel Co., Ltd. Representative Patent Attorney Yutaka Oshio
Figure 3: Calculation time (hr, 1ooo'c) Figure 4: 1455'7 (JIS 5llP6) Sample No. Figure 5 No. 6 3 /θ /7/8'IQ (5AEQ254) -2'

Claims (1)

【特許請求の範囲】[Claims] (1)重量%で、C二〇、40〜0.75%、Si:1
.0〜2.5%、Mn:0.5〜1.0%、Cr:0.
1−1.0%、およびV:0.03〜0.3%、Nb:
0.01〜0.3%、 M 。 :0.01〜0.3%、W:0.01〜1.5%、Ta
:0.01〜1.5%、Zr:0.01〜0.3%、T
i :0.01〜0.3%のうちの1種または2種以上
を含み、残部Feおよび不純物からなることを特徴とす
る局部脱炭の防止作用が大きい連続鋳造用低脱炭ばね鋼
(1) C20, 40-0.75%, Si: 1 in weight%
.. 0-2.5%, Mn: 0.5-1.0%, Cr: 0.
1-1.0%, and V: 0.03-0.3%, Nb:
0.01-0.3%, M. :0.01~0.3%, W:0.01~1.5%, Ta
:0.01~1.5%, Zr:0.01~0.3%, T
A low decarburization spring steel for continuous casting, which has a strong effect of preventing local decarburization, and is characterized by containing one or more of i:0.01 to 0.3%, with the remainder consisting of Fe and impurities.
JP5023083A 1983-03-25 1983-03-25 Low-decarburization spring steel for continuous casting Pending JPS59177352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5023083A JPS59177352A (en) 1983-03-25 1983-03-25 Low-decarburization spring steel for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5023083A JPS59177352A (en) 1983-03-25 1983-03-25 Low-decarburization spring steel for continuous casting

Publications (1)

Publication Number Publication Date
JPS59177352A true JPS59177352A (en) 1984-10-08

Family

ID=12853218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5023083A Pending JPS59177352A (en) 1983-03-25 1983-03-25 Low-decarburization spring steel for continuous casting

Country Status (1)

Country Link
JP (1) JPS59177352A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114944A (en) * 1986-10-31 1988-05-19 Kobe Steel Ltd Spring steel excellent in fatigue resistance and settling resistance
US5470528A (en) * 1994-04-04 1995-11-28 Mitsubishi Steel Mfg. Co., Ltd. Low decarburization spring steel
WO2016002931A1 (en) * 2014-07-03 2016-01-07 新日鐵住金株式会社 Rolled steel bar for mechanical structure and production method therefor
US10260123B2 (en) 2014-07-03 2019-04-16 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for machine structural use and method of producing the same
CN111593268A (en) * 2020-06-29 2020-08-28 马鞍山钢铁股份有限公司 Heat-resistant high-strength spring steel and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114944A (en) * 1986-10-31 1988-05-19 Kobe Steel Ltd Spring steel excellent in fatigue resistance and settling resistance
US5470528A (en) * 1994-04-04 1995-11-28 Mitsubishi Steel Mfg. Co., Ltd. Low decarburization spring steel
WO2016002931A1 (en) * 2014-07-03 2016-01-07 新日鐵住金株式会社 Rolled steel bar for mechanical structure and production method therefor
JPWO2016002931A1 (en) * 2014-07-03 2017-06-01 新日鐵住金株式会社 Rolled steel bar for machine structure and manufacturing method thereof
US10260123B2 (en) 2014-07-03 2019-04-16 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for machine structural use and method of producing the same
US10266908B2 (en) 2014-07-03 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Rolled steel bar for machine structural use and method of producing the same
CN111593268A (en) * 2020-06-29 2020-08-28 马鞍山钢铁股份有限公司 Heat-resistant high-strength spring steel and production method thereof

Similar Documents

Publication Publication Date Title
JPH04141553A (en) Composite roll for hot rolling
JPS59177352A (en) Low-decarburization spring steel for continuous casting
JPH03254304A (en) Wear resistance conjugated roll
JP4922971B2 (en) Composite roll for hot rolling and manufacturing method thereof
JPH11229069A (en) High speed steel type cast iron material excellent in wear resistance at high temperature
JP2953304B2 (en) Roll outer tube material for continuous sheet casting machine
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JPH02285047A (en) Roll for hot rolling
JPH02153045A (en) Hardened roll for rolling and rolling mill
JP3215573B2 (en) Continuous casting method of nickel-containing steel
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JPH07268455A (en) Production of cr-ni stainless alloy free from microracking in hot rolling
JPH0148337B2 (en)
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
JP2838467B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws
JP2686207B2 (en) Roll material for rolling
JP2000345290A (en) Hot roll for copper and copper alloy
KR100611201B1 (en) High speed steel compound roll for hot strip milling having excellent roughness-resistance
JP2003183766A (en) Tool material for hot working
JP2000256798A (en) Ni-CONTAINING STEEL EXCELLENT IN SURFACE CHARACTERISTIC, AND ITS MANUFACTURE
JPH04110419A (en) Production of high ni stainless steel plate
JP3530379B2 (en) Work roll for cold rolling
JPS6230041B2 (en)
JPH055127A (en) Production of high strength steel sheet pile