JPH07268455A - Production of cr-ni stainless alloy free from microracking in hot rolling - Google Patents

Production of cr-ni stainless alloy free from microracking in hot rolling

Info

Publication number
JPH07268455A
JPH07268455A JP5940794A JP5940794A JPH07268455A JP H07268455 A JPH07268455 A JP H07268455A JP 5940794 A JP5940794 A JP 5940794A JP 5940794 A JP5940794 A JP 5940794A JP H07268455 A JPH07268455 A JP H07268455A
Authority
JP
Japan
Prior art keywords
less
slab
hot rolling
cal
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5940794A
Other languages
Japanese (ja)
Inventor
Masayuki Abe
阿部  雅之
Tetsuo Takeshita
哲郎 竹下
Shigeru Suzuki
鈴木  茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5940794A priority Critical patent/JPH07268455A/en
Publication of JPH07268455A publication Critical patent/JPH07268455A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To prevent microcracking causing scab at the time of producing a Cr-Ni stainless alloy. CONSTITUTION:This alloy is a stainless alloy having a composition which is composed essentially of 16-35%, by weight, Cr and 7-30% Ni and in which the value of delta(cal) represented by equation delta(cal)=3Creq-2.8Nieq-19.8 is regulated to >4-10. This alloy can be produced by performing cooling, at the time of casting, at a rate of >=30 deg.C/S through the temp. region between 1350 and 1000 deg.C and at a rate of >=10 deg.C/S through the temp. region between 1000 and 500 deg.C and subjecting a slab, in which the region where the ratio between the Ni concentration in an Ni segregation zone, in a trough part of oscillation mark in the surface layer part of slab, and the average Ni concentration is >=1.15 is regulated to <=200mum, to heating at the tenp. in the range between 1000 and Tgamma deg.C represented by equation Tgamma=(105+Nieq-3.9 Creq)/(0.07-1.95X10<-3>Creq) and then to hot rolling. In the equations, Creq=Cr+1.5Si+Mo+0.5(Nb+Ti) and Nieq=Ni+0.5Mn+0.5Cu+30C+30N are satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はCr−Ni系ステンレス
合金の熱間圧延時のスラブ表面に発生する微小な割れを
防止する製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for preventing minute cracks generated on the surface of a slab during hot rolling of a Cr-Ni type stainless alloy.

【0002】[0002]

【従来の技術】Cr−Ni系ステンレス合金は高合金で
あるために熱間加工性が悪く、熱間圧延時に割れが発生
しこれを防止するためにさまざまな研究がなされてき
た。特に、耳割れといわれるスラブエッジや熱延板エッ
ジに発生する割れは、製造可否に関わる場合が生じたり
歩留まりを大幅に低下させる等製造上の大きな問題点で
あった。これらの熱延過程で発生する大きな割れについ
ては従来からさまざまな検討がなされており、今日では
成分や圧延条件の適正化によって製造不可となることは
少なくなってきている。
2. Description of the Related Art Since Cr-Ni type stainless alloys are high alloys, they have poor hot workability, and various studies have been conducted to prevent cracks from occurring during hot rolling. In particular, cracks that occur in the slab edge and the edge of the hot-rolled sheet, which are called ear cracks, are major problems in manufacturing, such as the occurrence of a possibility of manufacturing and a significant decrease in yield. Various investigations have been made for large cracks that occur during the hot rolling process, and nowadays, it is less likely that manufacturing will not be possible due to optimization of components and rolling conditions.

【0003】一方、このような製造可否に関わるような
大きな割れとは別に、熱間圧延工程でほとんど検出され
ず、酸洗後や冷延工程のような熱延工程の後工程におい
てはじめて検出されるヘゲ疵といわれるような疵が発生
することがある。このヘゲ疵のような疵は発生箇所が熱
延板表面であり、表面品質が重要なステンレス合金にお
いては致命的な欠陥で、再酸洗やグラインダー等による
手入れ等精整再工程を必要とし、場合によっては表面品
質の点で全く製品化できない等厚板、薄板の製造工程で
コストアップの大きな要因となっている。
On the other hand, apart from such large cracks related to the possibility of manufacturing, they are hardly detected in the hot rolling process, and are not detected until after the hot rolling process such as pickling or cold rolling process. Defects that are called baldness may occur. Defects such as bald defects are fatal defects in the hot-rolled sheet surface where the surface quality is important, and require a reconditioning process such as re-pickling and maintenance with a grinder. In some cases, it is a major factor of cost increase in the manufacturing process of equal-thickness plates and thin plates that cannot be commercialized at all in terms of surface quality.

【0004】従来、このような熱延段階で発見できず酸
洗後や冷延工程段階で発見されるヘゲ疵に対しては、鋳
造工程から熱延及び焼鈍工程に到るまでさまざまな検討
がなされている。
Conventionally, for the bald defects which cannot be found in the hot rolling stage and are found after pickling or in the cold rolling process, various examinations are conducted from the casting process to the hot rolling and annealing processes. Has been done.

【0005】特にヘゲ疵は熱延工程での微小な割れであ
るとして割れを防止する観点から、特開昭57−161
53号公報では鋼組成のCr当量、Ni当量を規制しδ
(cal)=3(Cr+Mo+1.5Si+0.5Nb)−
2.8(Ni+0.5Mn+0.5Cu)−84(C+
N)−19.8で決まるδ(cal)を4以下にすることで
熱間加工性を確保する技術が開示されている。またδ−
Feの取扱いについては、従来δ−フェライトを多量に
含有する二相組織のオーステナイト系ステンレス鋼の耳
割れを防止するためにソーキング(拡散熱処理)を十分
に行うことが特開昭59−35620号公報等に述べら
れているが、耳割れを防止しさらにヘゲ疵の原因となる
微小な割れに対する防止をするための加熱条件そのもの
については開示がない。
In particular, since the hairline flaw is a minute crack in the hot rolling process, from the viewpoint of preventing the crack, it is disclosed in JP-A-57-161.
In Japanese Patent No. 53, the Cr equivalent and the Ni equivalent of the steel composition are regulated and δ
(cal) = 3 (Cr + Mo + 1.5Si + 0.5Nb)-
2.8 (Ni + 0.5Mn + 0.5Cu) -84 (C +
N) A technique for ensuring hot workability by setting δ (cal) determined by -19.8 to 4 or less is disclosed. Also δ −
Regarding the handling of Fe, it is conventionally necessary to sufficiently perform soaking (diffusion heat treatment) in order to prevent ear cracking of an austenitic stainless steel having a two-phase structure containing a large amount of δ-ferrite. However, there is no disclosure of heating conditions themselves for preventing ear cracks and for minute cracks that cause bald spots.

【0006】またスラブ組織の観点から、特開昭57−
127554号公報では鋳造段階でオーステナイト系ス
テンレス鋼のN量と鋳造時のタンディシュ温度(ΔT)
の関係を制御し結晶粒の粗大化を防止して熱間加工性を
高める技術が開示されている。表層の組織改善という観
点から特公平2−9651号公報ではオーステナイト系
ステンレス鋼のSi含有量を規制したスラブを加熱炉挿
入前にショットブラストを行うことで表層に加工層を導
入し、加熱時に再結晶させスラブ表層の結晶粒を微細化
させて割れを防止する技術が開示されている。また、加
熱時のスケールに着目したものとしては、特公平4−4
8865号公報ではsol Alを規制しスラブ加熱時の酸
素濃度を0.5〜5%に規制しヘゲ疵を防止する技術を
開示している。しかし、上述の方法は微小割れ防止の点
で完全とはいえないものであった。
From the viewpoint of the slab structure, Japanese Patent Laid-Open No. 57-
No. 127554 discloses the N content of austenitic stainless steel and the tundish temperature (ΔT) during casting in the casting stage.
There is disclosed a technique of controlling the relationship of (1) to prevent coarsening of crystal grains to enhance hot workability. From the viewpoint of improving the microstructure of the surface layer, in Japanese Patent Publication No. 9651/1990, a slab having a controlled Si content of austenitic stainless steel is shot-blasted before insertion into a heating furnace to introduce a processing layer into the surface layer and re-heat it during heating. A technique is disclosed in which crystallization is performed and the crystal grains in the surface layer of the slab are refined to prevent cracking. In addition, as one that focuses on the scale during heating, Japanese Patent Publication No. 4-4
JP-A-8865 discloses a technique for preventing bald spots by controlling sol Al to regulate the oxygen concentration during slab heating to 0.5 to 5%. However, the above method is not perfect in terms of preventing microcracks.

【0007】[0007]

【発明が解決しようとする課題】本発明は上述したCr
−Ni系ステンレス合金の熱間圧延時に発生する微小な
割れやヘゲ疵といわれる疵を改善するにあたり、疵防止
のための工程負荷増なく疵を改善しCr−Ni系ステン
レス合金を提供することを目的とする。
The present invention is based on the above-mentioned Cr.
To provide a Cr-Ni-based stainless alloy by improving the flaws without increasing the process load for preventing the flaws, in order to improve the microcracks and the flaws called bald flaws that occur during the hot rolling of the Ni-based stainless alloy. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記の通りである。 (1)重量%で、C :0.002〜0.08%、
Si:2.0%以下、Mn:10%以下、
P :0.040%以下、S :0.008%以
下、 O :0.005%以下、Cr:16〜
35%、 Ni:7〜30%、Mo:0.
01〜8%、 Cu:0.01〜4%、N
:0.003〜0.3%、残部がFeと不可避的不純
物からなり、δ(cal)=3(Cr+1.5×Si+Mo
+0.5×Nb+0.5×Ti)−2.8(Ni+0.
5×Mn+0.5×Cu)−84(C+N)−19.8
で示されるδ(cal)が4を超え10以下で、連続鋳造時
のスラブ表面の冷却が1350℃から1000℃までを
平均冷却速度で30℃/Sを超え、1000℃から500
℃までの平均冷却速度を10℃/S以上とし、スラブ表層
のオッシレーションマーク谷部に存在する平均Ni濃度
より1.15倍以上濃化したNi偏析帯深さがオッシレ
ーションマーク谷から200μm以下であるスラブを、
熱間圧延に際し1000℃以上かつTγ(℃)=(10
5+Nieq−3.9×Creq)/(0.07−1.95
×10-3×Creq)以下の温度T(℃)に加熱した後、
熱間圧延することを特徴とする熱間圧延での割れを防止
するCr−Ni系ステンレス合金の製造方法。 (ここでCreq=Cr(%)+1.5×Si(%)+M
o(%)+0.5×Nb(%)+0.5×Ti(%) Nieq=Ni(%)+0.5×Mn(%)+0.5×C
u(%)+30×C(%)+30×N(%)) (2)さらにAl:0.05%以下を含有するスラブを
用いた上記(1)記載の熱間圧延で表面疵の発生しない
Cr−Ni系ステンレス合金の製造方法。 (3)さらにAl:0.05%以下、Ca:0.001
〜0.005%を含有するスラブを用いた上記(1)記
載の熱間圧延で表面疵の発生しないCr−Ni系ステン
レス合金の製造方法。 (4)さらにNb:0.01〜1.5%、Ti:0.0
1〜1.0%のうち1種または2種を含有するスラブを
用いた上記(1),(2)或いは(3)のそれぞれに記
載の熱間圧延での表面疵を発生しないCr−Ni系ステ
ンレス合金の製造方法。
The gist of the present invention is as follows. (1)% by weight, C: 0.002 to 0.08%,
Si: 2.0% or less, Mn: 10% or less,
P: 0.040% or less, S: 0.008% or less, O: 0.005% or less, Cr: 16-
35%, Ni: 7 to 30%, Mo: 0.
01-8%, Cu: 0.01-4%, N
: 0.003 to 0.3%, the balance consisting of Fe and unavoidable impurities, δ (cal) = 3 (Cr + 1.5 × Si + Mo)
+ 0.5 × Nb + 0.5 × Ti) -2.8 (Ni + 0.
5 × Mn + 0.5 × Cu) -84 (C + N) -19.8
Δ (cal) is more than 4 and less than 10 and the cooling of the slab surface during continuous casting is from 1350 ° C to 1000 ° C at an average cooling rate of more than 30 ° C / S, from 1000 ° C to 500 ° C.
The average cooling rate up to ℃ is 10 ℃ / S or more, and the Ni segregation zone depth enriched by 1.15 times or more than the average Ni concentration existing in the oscillation mark valley of the slab surface layer is 200 μm or less from the oscillation mark valley. The slab that is
During hot rolling, 1000 ° C or higher and Tγ (° C) = (10
5 + Nieq-3.9 × Creq) / (0.07-1.95)
After heating to a temperature T (° C.) not higher than × 10 −3 × Creq),
A method for producing a Cr-Ni-based stainless alloy for preventing cracking in hot rolling, characterized by hot rolling. (Here, Creq = Cr (%) + 1.5 × Si (%) + M
o (%) + 0.5 × Nb (%) + 0.5 × Ti (%) Nieq = Ni (%) + 0.5 × Mn (%) + 0.5 × C
u (%) + 30 × C (%) + 30 × N (%)) (2) No surface flaw occurs in the hot rolling described in (1) above using a slab containing Al: 0.05% or less. A manufacturing method of a Cr-Ni system stainless steel alloy. (3) Further, Al: 0.05% or less, Ca: 0.001
The manufacturing method of the Cr-Ni type | system | group stainless alloy which does not generate | occur | produce a surface flaw by the hot rolling as described in said (1) using the slab containing 0.005%. (4) Further, Nb: 0.01 to 1.5%, Ti: 0.0
Cr-Ni that does not generate surface defects in the hot rolling described in (1), (2) or (3) above, using a slab containing one or two of 1 to 1.0%. Of producing a stainless steel alloy.

【0009】[0009]

【作用】本願発明によれば、熱間圧延時に発生する微小
な割れによるヘゲ疵を防止することができる。以下に本
発明を詳細に説明する。本発明者らは、微小な割れやヘ
ゲ疵に対してその防止方法を詳細に検討した。特に熱間
圧延時に発生する微小な割れの発生箇所と鋳片組織の対
応を検討することにより、鋳造組織との関連を明確にす
ることを検討した。
According to the invention of the present application, it is possible to prevent bald defects due to minute cracks generated during hot rolling. The present invention will be described in detail below. The present inventors have studied in detail how to prevent minute cracks and bald marks. In particular, it was examined to clarify the relationship with the cast structure by investigating the correspondence between the microcracking locations that occur during hot rolling and the slab structure.

【0010】この結果、熱間圧延後のスラブの微小割れ
発生箇所は鋳造時に形成されるオッシレーションマーク
と大きく関連することが判明した。特にオッシレーショ
ンマークの山部では、δ−フェライトとオーステナイト
(γ)との界面で割れている場合が多く、δ−フェライ
トの存在しない箇所では微小割れはほとんどない。また
オッシレーションマークの谷部ではδ−フェライトはほ
とんどないもののγ粒界で割れていることが判明した。
従って、微小な割れを防止するためにはオッシレーショ
ンマークの山部に残存するδ−フェライトによる微小割
れを防止することと、オッシレーションマークの谷部の
γ粒界割れの防止方法を確立する必要がある。
As a result, it has been found that the microcrack generation locations of the slab after hot rolling are largely related to the oscillation marks formed during casting. In particular, the peak portion of the oscillation mark is often cracked at the interface between δ-ferrite and austenite (γ), and there is almost no microcrack in the portion where δ-ferrite does not exist. It was also found that the valley of the oscillation mark had almost no δ-ferrite, but cracked at the γ grain boundary.
Therefore, in order to prevent minute cracks, it is necessary to prevent minute cracks due to δ-ferrite remaining in the peaks of the oscillation marks and to establish a method for preventing γ grain boundary cracks in the valleys of the oscillation marks. There is.

【0011】この2点について種々の検討を行った結
果、オッシレーションマークの山部のδ−フェライトは
凝固後の冷却時の冷却速度が小さい場合に加熱時の溶け
残りを生じることが明確となった。加熱時に溶け残らな
いようにするには長時間の加熱も有効であるが、同時に
生成するスケール起因による疵を発生することになり、
得策ではない。スケールによる疵を防止し、さらに上記
のオッシレーションマーク山部のδ−フェライトの溶け
残りによる微小割れを防止するには、凝固時に生成した
δ−フェライトがその後のγ安定域でδ→γ変態を起こ
す時に微細にしてやれば良いことが判明した。δ−フェ
ライトを微細とすることで、δ−フェライトの大きさの
ばらつきをなくし、δ−フェライトの短時間での消滅を
行えるようになった。特に連続鋳造鋳片の厚みが200
mm程度、幅800〜1500mm程度の場合には1350
〜1000℃での温度域をスラブ表面の平均冷却速度で
30℃/Sを超えるような急冷とすることでδ→γ変態が
急激に生じるために微細なδ+γ組織が得られる。
As a result of various studies on these two points, it became clear that the δ-ferrite in the peak portion of the oscillation mark causes unmelted residue during heating when the cooling rate during cooling after solidification is small. It was Long-time heating is also effective to prevent undissolved residue during heating, but at the same time it will cause defects due to scale formation,
Not a good idea. In order to prevent flaws due to scale and further prevent microcracks due to unmelted residue of δ-ferrite in the above oscillation mark peaks, δ-ferrite produced during solidification undergoes δ → γ transformation in the γ stable region thereafter. It turned out that it would be fine to make it fine when awakening. By making the δ-ferrite fine, variations in the size of the δ-ferrite can be eliminated and the δ-ferrite can be eliminated in a short time. Especially the thickness of continuous cast slab is 200
mm, width 1350 for width 800-1500 mm
By quenching the temperature range of up to 1000 ° C. so that the average cooling rate of the slab surface exceeds 30 ° C./S, the δ → γ transformation rapidly occurs, so that a fine δ + γ structure can be obtained.

【0012】この急冷効果によってδが微細となるのは
δ(cal)が4以上の場合であって4以下ではγ相が凝固
直後から安定なため1350〜1000℃の温度範囲が
30℃/Sを超えるような急冷を行っても微細なδ+γ組
織が得られない。δ→γ変態が急激に生じない場合では
δは微細ではなく局所的に集積したり、凝集による粗大
δが見られるようになる。
This quenching effect makes δ fine when δ (cal) is 4 or more, and when it is 4 or less, the γ phase is stable immediately after solidification, so that the temperature range of 1350 to 1000 ° C. is 30 ° C./S. A fine δ + γ structure cannot be obtained even if quenching is performed to exceed the range. When the δ → γ transformation does not occur rapidly, δ is not fine and is locally accumulated, or coarse δ due to aggregation is observed.

【0013】また、熱間圧延前の加熱においてδ−フェ
ライトを微小割れの起点にならないように消滅させるに
は、加熱温度としてδ−フェライトが組織的に安定では
ない温度域、即ち、本願発明においては平衡状態図的に
δ−フェライトが存在しないγ単相域で加熱処理を行わ
なければならない。特にδ−フェライトが増加する温度
域で加熱を行うと、鋳片段階よりδ−フェライトが増加
しδ−フェライト起因の微小割れが生じることになる。
In addition, in order to extinguish the δ-ferrite in the heating before hot rolling so as not to become the starting point of the microcracks, the heating temperature is a temperature range in which the δ-ferrite is not structurally stable, that is, in the present invention. Must be heat-treated in the γ single-phase region where δ-ferrite does not exist in the equilibrium diagram. In particular, when heating is performed in a temperature range in which δ-ferrite increases, δ-ferrite increases from the cast piece stage and fine cracks due to δ-ferrite occur.

【0014】しかし、ステンレス鋼は多元系のため成分
系毎に加熱温度の上限温度を明確に決定することができ
なかった。本発明者らは詳細な検討を行い、加熱温度の
不適、特に過熱によるδ−フェライトの再析出を防止す
る観点から、δ−フェライトが再析出しない温度を実験
的に求め次式で示すようなCreq、Nieqで求め得るγ
単相の上限温度を明確にした。 Tγ(℃)=(Nieq−3.9×Creq+105)/
(0.07−1.95×10-3×Creq) ここでCreq=Cr(%)+1.5×Si(%)+Mo
(%)+0.5×Nb(%)+0.5×Ti(%) Nieq=Ni(%)+0.5×Mn(%)+0.5×C
u(%)+30×C(%)+30×N(%)
However, since stainless steel is a multi-component system, the upper limit temperature of the heating temperature cannot be clearly determined for each component system. The present inventors have conducted a detailed study and experimentally found a temperature at which δ-ferrite does not reprecipitate from the viewpoint of preventing reprecipitation of δ-ferrite due to inappropriate heating temperature, particularly overheating, as shown by the following equation. Γ that can be obtained by Creq and Nieq
Clarified the maximum temperature of single phase. Tγ (° C.) = (Nieq-3.9 × Creq + 105) /
(0.07-1.95 × 10 −3 × Creq) Here, Creq = Cr (%) + 1.5 × Si (%) + Mo
(%) + 0.5 × Nb (%) + 0.5 × Ti (%) Nieq = Ni (%) + 0.5 × Mn (%) + 0.5 × C
u (%) + 30 × C (%) + 30 × N (%)

【0015】従って、上記のγ単相となるTγ以下の温
度で加熱することで加熱中のδ−フェライトの再析出を
防止することができるようになった。
Therefore, it becomes possible to prevent the reprecipitation of δ-ferrite during heating by heating at a temperature not higher than Tγ which is the γ single phase.

【0016】さらに、本願発明におけるδ(cal)が4を
超えて10以下の合金系においては連続鋳造時の冷却条
件として1350〜1000℃の温度域を30℃/S以上
とすることでδ−フェライトが微細になるため加熱時の
δ−フェライトも消滅しやすく、1150℃以上の加熱
温度であればスラブ表層の均熱時間で30分以上均熱す
ることでδ−フェライトによる微小割れは防止可能とな
った。
Further, in the alloy system having δ (cal) of more than 4 and less than 10 in the present invention, by setting the temperature range of 1350 to 1000 ° C. to 30 ° C./S or more as the cooling condition during continuous casting, δ− Since the ferrite becomes fine, the δ-ferrite during heating tends to disappear, and if the heating temperature is 1150 ° C or higher, the microcracking due to δ-ferrite can be prevented by soaking the slab surface layer for 30 minutes or more. Became.

【0017】さらに、鋳造組織との対応で微小割れ起点
となったオッシレーションマークの谷部におけるγ粒界
の割れについて検討を加えた。その結果、オッシレーシ
ョンマークの谷部には図1に示したような形でオッシレ
ーション谷部にNiが濃縮した部分が存在する場合があ
ることが判明した。このようなオッシレーションマーク
の谷部の偏析と微小割れの関係を調査したところ大きな
関係があることが判明した。このNi濃化領域をNi偏
析帯と定義し、オッシレーションマーク谷からの距離を
Ni偏析帯深さとすると、オッシレーションマーク谷部
の偏析帯のNi濃度が高いほど、またNi偏析帯の深さ
が大きいほど、微小割れ発生が顕著となることが明確と
なった。この割れが発生するのは、平均Ni濃度(CNi
AVE)に比べて1.15倍以上濃化していて、その深さが
200μmを超える場合であることが明らかになった。
従って、オッシレーションマークの谷部Ni偏析帯のN
i濃度が平均Ni濃度(CNiAVE)に比べ1.15倍以上
濃化しているNi偏析帯深さが200μm以下であれば
オッシレーションマーク谷部のγ粒界割れを防止しヘゲ
疵発生を回避できることが明確となった。
Further, the cracking of the γ grain boundary in the valley portion of the oscillation mark, which became the starting point of the microcracking in correspondence with the casting structure, was examined. As a result, it was found that the valley portion of the oscillation mark may have a Ni-concentrated portion in the oscillation valley portion as shown in FIG. When the relationship between the segregation of the valleys of the oscillation marks and the microcracks was investigated, it was found that there was a large relationship. If this Ni-enriched region is defined as a Ni segregation zone, and the distance from the oscillation mark valley is defined as the Ni segregation zone depth, the higher the Ni concentration in the segregation zone in the valley of the oscillation mark, and the depth of the Ni segregation zone. It was clarified that the larger the value, the more remarkable the occurrence of microcracks. This crack occurs when the average Ni concentration (CNi
It was revealed that the concentration was 1.15 times higher than that of AVE) and the depth thereof was more than 200 μm.
Therefore, N of the Ni segregation zone at the valley of the oscillation mark
The i concentration is 1.15 times higher than the average Ni concentration (CNiAVE). If the Ni segregation zone depth is 200 μm or less, the γ grain boundary cracks at the valley of the oscillation mark are prevented to prevent the occurrence of bald defects. It became clear that it could be done.

【0018】オッシレーションマーク谷部のNi偏析帯
が微小割れ発生の起点となり、さらにヘゲ疵の原因とな
る理由として、Niそのものが延性を低下させること、
またNi偏析部は凝固時の濃化溶鋼であるため不純物も
濃化しており、特にSの濃化が著しいことが判明した。
Sは同時に濃化したMnとMnSを形成したり粒界に偏
析する。従ってNi偏析帯は、濃化したNiとMnSの
体積分率増加並びに濃化したSの偏析も加わることにな
り、Ni偏析帯以外の箇所に比べて延性が低下すること
となる。従って、鋳片段階でオッシレーションマークの
谷部は局所的に低延性となっており、加熱段階ではこの
偏析程度は軽減されるものの完全に均質化はできず、熱
延時に微小な割れが発生し易くヘゲ疵となる。
The reason why the Ni segregation zone at the valley of the oscillation mark becomes a starting point for the generation of microcracks and further causes bald defects, is that Ni itself reduces ductility.
It was also found that the Ni segregation portion is a concentrated molten steel at the time of solidification, so that the impurities are also concentrated, and the concentration of S is particularly remarkable.
At the same time, S forms concentrated Mn and MnS and segregates at grain boundaries. Therefore, in the Ni segregation zone, the volume fractions of concentrated Ni and MnS are increased and the segregation of concentrated S is also added, so that the ductility is reduced as compared with the portion other than the Ni segregation zone. Therefore, the valley portion of the oscillation mark is locally low ductility in the cast piece stage, and although this degree of segregation is reduced in the heating stage, it is not possible to completely homogenize and minute cracks occur during hot rolling. It is easy to do and it causes baldness.

【0019】CC鋳片のオッシレーションマーク谷部N
i偏析帯の生成については凝固時のシェル再溶解やオッ
シレーション時のオーバーフロー等の機構が挙げられ、
また凝固時のシェルの延性不足によりシェルが部分的に
割れ偏析溶鋼が流れ出たものと考えることができる。従
って、オッシレーションマーク谷部Ni濃化を防止する
には、鋳造条件、特にパウダー、オッシレーション条
件、鋳造速度、湯面変動等を適正化することが重要であ
り、また凝固シェルの割れ防止を図ることが重要であ
る。
Oscillation mark of CC slab Valley N
Regarding the formation of the i segregation zone, there are mechanisms such as shell remelting during solidification and overflow during oscillation,
It can also be considered that the shell partially cracked due to insufficient ductility of the shell during solidification and segregated molten steel flowed out. Therefore, in order to prevent the concentration of Ni in the oscillation mark valley, it is important to optimize the casting conditions, especially the powder, the oscillation conditions, the casting speed, the fluctuation of the molten metal level, etc., and to prevent the solidified shell from cracking. It is important to plan.

【0020】図2はSUS304鋼の融点直下50℃で
の延性に対するδ(cal)の影響を調査したものであるが
δ(cal)が高いほど延性は向上し割れにくくなることが
判明した。この融点直下の延性とδ(cal)の関係を詳細
に検討したところ、融点直下の高温ではオーステナイト
よりS,P等の不純物の固溶度が大きいδ−フェライト
の存在により不純物の無害化は促進される。δ(cal)が
高いほど融点直下50℃におけるδ−フェライトの体積
分率が大きく不純物の影響を無害化し延性が向上するこ
とが判明した。特に連続鋳造時のシェルの延性との関係
では融点直下50℃で20%以上の断面収縮率(絞り)
があればシェルが割れることなく良好に保たれることか
ら、δ(cal)を大きくすることでCC鋳片の鋳造時の割
れを防止することが可能になる。従って、本発明の合金
系でδ(cal)が4以上の合金においてはδ(cal)が大き
いほど凝固時の割れ感受性は小さく、凝固時の割れはほ
とんど問題とならない。しかし、δ(cal)が10を超え
ても凝固時の割れ発生防止効果は変わらないばかりか、
実際にはδ−フェライトが安定になりすぎ加熱時に消え
にくくなり、δ−フェライトの消滅に要する加熱時間が
長時間になり、スケール起因の疵をまねく可能性が大き
くなる。
FIG. 2 shows the effect of δ (cal) on the ductility of SUS304 steel at 50 ° C. just below the melting point. It was found that the higher δ (cal), the higher the ductility and the more difficult it is to crack. A detailed study of the relationship between the ductility just below the melting point and δ (cal) revealed that the presence of δ-ferrite, which has a higher solid solubility for impurities such as S and P than austenite at high temperatures just below the melting point, promotes detoxification of impurities. To be done. It was found that the higher the δ (cal) is, the larger the volume fraction of δ-ferrite at 50 ° C. just below the melting point is, the harmless the influence of impurities and the improved ductility. Especially in relation to the ductility of the shell during continuous casting, the cross-sectional shrinkage ratio (drawing) of 20% or more at 50 ° C just below the melting point
If there is, the shell is kept good without cracking. Therefore, increasing δ (cal) makes it possible to prevent cracking during casting of the CC cast. Therefore, in the alloy system of the present invention where δ (cal) is 4 or more, the larger δ (cal), the smaller the cracking susceptibility during solidification, and the cracking during solidification causes almost no problem. However, even if δ (cal) exceeds 10, the effect of preventing cracking during solidification does not change,
Actually, the δ-ferrite becomes too stable and becomes hard to disappear during heating, the heating time required for the disappearance of the δ-ferrite becomes long, and the possibility of causing defects due to scale increases.

【0021】本発明においてはδ(cal)を4を超え10
以下としているため、図2に示したように凝固時の割れ
感受性は低く、かつδ(cal)を大きくするほど融点直下
におけるδ−フェライトの体積分率は大きくなり、fc
cに比べ拡散性のよいbcc相であるδ−フェライト相
の体積分率が大きいことで、Niの拡散を促進させ、オ
ッシレーションマーク谷部に形成されるNi偏析帯のN
iの拡散も促進されることになり、Ni偏析帯の偏析程
度も軽減可能となる。
In the present invention, δ (cal) exceeds 4 and 10
As shown in FIG. 2, the crack susceptibility during solidification is low, and the larger δ (cal) is, the larger the volume fraction of δ-ferrite immediately below the melting point is.
Since the volume fraction of the δ-ferrite phase, which is a bcc phase having a better diffusibility than that of c, is large, the diffusion of Ni is promoted, and the N of the Ni segregation zone formed in the valley of the oscillation mark is formed.
The diffusion of i is also promoted, and the degree of segregation of the Ni segregation zone can be reduced.

【0022】以上のように、ヘゲ疵を防止するためには
δ−フェライト起因の微小割れとオッシレーション谷部
Ni偏析部による微小割れを防止することが必要であ
り、δ(cal)が4を超え10以下となるように成分を規
定し、1350〜1000℃の温度域を30℃/S以上で
冷却することがδ−フェライトの微細分散化が可能とな
る。また1000〜500℃を10℃/S以上とすること
でδ−フェライトの凝集粗大化を防止して、さらに圧延
前の加熱条件を適正化することでヘゲ疵の原因となる微
小割れを防止できることとなった。
As described above, in order to prevent bald defects, it is necessary to prevent microcracks caused by δ-ferrite and microcracks caused by the oscillation valley Ni segregation, and δ (cal) is 4 It is possible to finely disperse δ-ferrite by defining the components so as to exceed 10 and not more than 10 and cooling the temperature range of 1350 to 1000 ° C. at 30 ° C./S or more. Further, by setting 1000 to 500 ° C. to 10 ° C./S or more, it is possible to prevent the coagulation and coarsening of δ-ferrite, and by further optimizing the heating conditions before rolling, it is possible to prevent microcracks that cause bald defects. It became possible.

【0023】これらのヘゲ疵防止対策は、次の成分系の
Cr−Ni系ステンレス合金で成り立つ。重量%で、
C:0.002〜0.08%、Si:2.0%以下、M
n:10%以下、P:0.040%以下、S:0.00
8%以下、O:0.005%以下、Cr:16〜35
%、Ni:7〜30%、Mo:0.01〜8%、Cu:
0.01〜4%、N:0.003〜0.3%で、必要に
応じてAl:0.05%以下を添加し、選択元素として
Nb:0.01〜1.5%、Ti:0.01〜1.0%
のうち1種または2種を含有し、さらにCa:0.00
1〜0.005%、希土類元素(REM):0.05〜
0.5%のうち1種または2種を含有してもよく、残部
がFeと不可避的不純物からなる合金である。
These measures for preventing bald spots are realized by the Cr-Ni type stainless alloys of the following components. % By weight,
C: 0.002-0.08%, Si: 2.0% or less, M
n: 10% or less, P: 0.040% or less, S: 0.00
8% or less, O: 0.005% or less, Cr: 16 to 35
%, Ni: 7 to 30%, Mo: 0.01 to 8%, Cu:
0.01 to 4%, N: 0.003 to 0.3%, Al: 0.05% or less is added if necessary, and Nb: 0.01 to 1.5% and Ti: are selected elements. 0.01-1.0%
Containing 1 or 2 of them, and further Ca: 0.00
1 to 0.005%, rare earth element (REM): 0.05 to
One or two of 0.5% may be contained, and the balance is Fe and inevitable impurities.

【0024】以下に成分の限定理由を述べる。 C:Cはステンレス合金の耐食性に有害であるが強度の
点からはある程度の含有量は必要である。0.002%
未満の極低炭素量では製造コストが高くなる。また0.
08%を超えると耐食性を大幅に劣化させるため、その
成分範囲を0.002〜0.08%とした。 Si:Siはステンレス合金の脱酸元素として使用され
るが、2%を超えて添加しても脱酸効果が飽和し、また
熱間加工性を劣化させヘゲ疵発生の頻度を増加させるの
で2%以下で添加する。
The reasons for limiting the components will be described below. C: C is harmful to the corrosion resistance of the stainless alloy, but a certain amount of C is necessary in terms of strength. 0.002%
If the carbon content is very low, the production cost will be high. In addition, 0.
If it exceeds 08%, the corrosion resistance is significantly deteriorated, so the component range is set to 0.002 to 0.08%. Si: Si is used as a deoxidizing element for stainless alloys, but even if added in excess of 2%, the deoxidizing effect saturates, and the hot workability deteriorates and the frequency of bald spots increases. Add up to 2%.

【0025】Mn:Mnはγ安定化元素であり、Niの
代替として添加することが可能であり、脱酸効果もある
ので有効な元素であるが、10%を超えて添加してもそ
の効果が飽和し、耐食性も劣化するため10%以下で添
加する。 Cr:Crはステンレス合金の基本成分であり、耐食性
の点から16%以上の添加が必要である。しかし35%
を超えて添加しても耐食性が飽和し、さらに熱間加工性
の点において金属間化合物の析出を促進させ熱間加工性
を劣化させヘゲ疵の原因となるためCrの範囲を16〜
35%とした。
Mn: Mn is a γ-stabilizing element and is an effective element because it can be added as a substitute for Ni and has a deoxidizing effect, but even if added in excess of 10%, its effect is obtained. Is saturated and corrosion resistance is deteriorated, so it is added at 10% or less. Cr: Cr is a basic component of the stainless alloy, and it is necessary to add 16% or more from the viewpoint of corrosion resistance. But 35%
If it is added in excess of 10%, the corrosion resistance will be saturated, and further, in terms of hot workability, precipitation of intermetallic compounds will be promoted and hot workability will be deteriorated, which will cause bald defects, so the range of Cr is 16-.
It was set to 35%.

【0026】Ni:NiはCrとともにステンレス合金
の基本成分であり、本発明ではCr量との関係から7〜
30%の範囲で添加する。7%未満では本発明の合金で
はオーステナイトが不安定となりδ−フェライト量が多
量に存在するようになるため本発明の方法によってもδ
−フェライトを制御できず熱間加工性不良によるヘゲ疵
が発生する。またCr量とδ(cal)の関係から本発明に
おいてはNi量は30%以下で十分であり、これを超え
て添加してもヘゲ疵防止の点で効果は飽和しコストも高
くなるため上限を30%とした。
Ni: Ni is a basic component of a stainless alloy together with Cr.
Add in the range of 30%. If it is less than 7%, austenite becomes unstable in the alloy of the present invention and a large amount of δ-ferrite exists, so that δ can be obtained by the method of the present invention.
-Because the ferrite cannot be controlled and hot workability is poor, bald defects occur. Further, from the relationship between the Cr amount and δ (cal), the Ni amount of 30% or less is sufficient in the present invention, and even if it is added in excess of this amount, the effect is saturated in terms of preventing bald spots and the cost becomes high. The upper limit was 30%.

【0027】Mo:Moは耐食性を確保するための重要
な添加元素であり、0.01%以上の添加で効果がみら
れる。また8%を超えても耐食性は飽和し、さらに金属
間化合物の析出を促進させるため熱間加工性を劣化し本
発明の方法によってもヘゲ疵を防止できなくなるので上
限を8%とした。 N:Nはγ相安定化のために高価なNiの代替として使
用可能で耐食性、強度の観点からも望ましい元素であ
る。しかし0.003%以下にすることは溶製コストを
大きく増加させ、また0.3%を超えて添加してもその
効果は飽和し、さらに固溶度を超えピンホール等をスラ
ブに形成し疵を発生させるため上限を0.3%とした。 P:Pは耐食性及び熱間加工性の観点から有害な元素で
あり、特に鋳造直後の延性を劣化させるためスラブ表層
の割れ防止の観点から極力低減することが望ましく、そ
の成分範囲を0.04%以下とした。 S:Sは耐食性及び熱加工性に対して有害な元素であ
り、鋳造直後のスラブ表層の延性及び熱間圧延時の熱間
加工性に大きく影響し、その量により熱間加工性不良に
よるヘゲ疵を発生させるため、含有量は低いほど望まし
い。本発明の方法によっては0.008%を超えるとS
起因による疵が発生しやすくなるので上限を0.008
%とした。 Cu:Cuはステンレス合金の耐食性を向上させ0.0
1%以上で添加する。しかし4%を超えて添加してもそ
の効果は飽和し、さらに熱間加工性を劣化させ疵を発生
するようになるので、その添加範囲を0.01〜4%と
する。
Mo: Mo is an important additive element for ensuring the corrosion resistance, and an effect can be seen when added in an amount of 0.01% or more. Further, even if it exceeds 8%, the corrosion resistance is saturated, and further, the precipitation of intermetallic compounds is promoted so that the hot workability is deteriorated and the bald defects cannot be prevented even by the method of the present invention, so the upper limit was made 8%. N: N is a desirable element from the viewpoint of corrosion resistance and strength, which can be used as a substitute for expensive Ni for stabilizing the γ phase. However, if it is 0.003% or less, the melting cost will be greatly increased, and even if it is added in excess of 0.3%, its effect will be saturated, and beyond the solid solubility, pinholes etc. will be formed in the slab. The upper limit was set to 0.3% to cause defects. P: P is a harmful element from the viewpoint of corrosion resistance and hot workability, and in particular, it deteriorates the ductility immediately after casting, so it is desirable to reduce it as much as possible from the viewpoint of preventing cracking of the slab surface layer, and its component range is 0.04. % Or less. S: S is an element harmful to the corrosion resistance and the hot workability, and has a great effect on the ductility of the slab surface layer immediately after casting and the hot workability at the time of hot rolling. A lower content is desirable because it causes a flaw. Depending on the method of the present invention, when the content exceeds 0.008%, S
The upper limit is 0.008 because defects are more likely to occur.
%. Cu: Cu improves the corrosion resistance of the stainless alloy to 0.0
Add at 1% or more. However, even if added in excess of 4%, the effect will be saturated, and further the hot workability will be deteriorated and defects will occur, so the addition range is made 0.01 to 4%.

【0028】Nb:NbはCを固定し耐食性を向上させ
る効果があるために、必要に応じて0.01%以上1.
5%以下で添加することができる。1.5%を超えて添
加してもその改善効果は飽和し、また熱間加工性を劣化
させ熱間加工性不良による疵を発生させる0.01〜
1.5%で選択添加する。 Ti:TiはNbと同様にCを固定し耐食性を向上させ
る。またCaと共存してOを固定しSi,Mnの酸化物
の生成を抑制する効果があるために、0.01%以上で
添加することができる。また1.0%を超えて添加する
とTiの酸化物による表面疵が多発するので、その範囲
を0.01〜1.0%とした。
Nb: Nb has the effect of fixing C and improving corrosion resistance, so 0.01% or more of 1.
It can be added at 5% or less. Even if added over 1.5%, the improvement effect is saturated, and the hot workability is deteriorated to cause defects due to poor hot workability.
Selective addition at 1.5%. Ti: Ti fixes C like Nb and improves corrosion resistance. Moreover, since it has an effect of fixing O in coexistence with Ca and suppressing the formation of oxides of Si and Mn, it can be added in an amount of 0.01% or more. Further, when added in excess of 1.0%, surface defects due to Ti oxide frequently occur, so the range was made 0.01 to 1.0%.

【0029】Al:Alは強力な脱酸剤として、脱酸を
強化する場合に添加する。しかし0.05%を超えて添
加をしてもその効果は飽和し、さらにAlの酸化物によ
る表面疵が発生しやすくなるため、その添加量を0.0
5%以下とした。 Ca:Caは強力な脱酸、脱硫剤であり熱間加工性を改
善するのに有効な元素であり、必要に応じて0.005
%の範囲で選択添加される。0.001%以下ではその
効果は顕著でなく、0.005%以上添加しても効果は
飽和する。 O:Oは熱間加工性に著しく有害な元素であり、その含
有量は極力低減することが望ましいために、その含有量
を0.005%以下とした。
Al: Al is a strong deoxidizer and is added to enhance deoxidation. However, even if added over 0.05%, the effect is saturated, and surface defects due to the oxide of Al are more likely to occur.
It was set to 5% or less. Ca: Ca is a strong deoxidizing and desulfurizing agent and is an element effective for improving hot workability.
It is selectively added in the range of%. If the content is 0.001% or less, the effect is not remarkable, and the effect is saturated even if 0.005% or more is added. O: O is an element that is extremely harmful to hot workability, and it is desirable to reduce the content thereof as much as possible, so the content was made 0.005% or less.

【0030】[0030]

【実施例】本発明の実施例としてA〜Uに示す合金につ
いて表1に示すプロセス条件でCC鋳片を製造しさらに
表中の加熱条件で加熱後通常条件で熱間圧延し捲取り〜
酸洗〜冷却による薄板とする方法、また厚板圧延を行い
酸洗を通常の方法で実施しヘゲ疵の発生状況を評価し
た。
EXAMPLES As examples of the present invention, CC cast pieces were manufactured under the process conditions shown in Table 1 for the alloys shown in A to U, further heated under the heating conditions shown in the table, and then hot rolled under normal conditions and wound up.
The state of occurrence of bald spots was evaluated by a method of forming a thin plate by pickling to cooling, or a method of rolling a thick plate and performing pickling by a usual method.

【0031】本発明法によるA〜N鋼はヘゲ疵の発生が
なく良好な成品が得られた。これに対し、O合金はδ(c
al)が本発明の条件からはずれ、δ−フェライト起因の
ヘゲ疵が生じた。P合金はδ(cal)が本発明の条件から
はずれNi偏析起因のヘゲ疵が発生した。Q合金は13
50〜1000℃の冷却速度が小さくヘゲ疵が発生し
た。R合金は1000〜500℃の冷却速度が小さくδ
−フェライトが粗大化し、δ−フェライト起因のヘゲ疵
が生じた。S合金は加熱温度が高くδ−フェライトが析
出してヘゲ疵が発生した。T合金、U合金はオッシレー
ションマーク谷部のNi偏析帯が大きく、オッシレーシ
ョンマーク谷部延性不良によるヘゲ疵を生じた。これら
O〜U合金はヘゲ疵が両サイドに著しく発生したことに
より、成品歩留まりの低下ならびにグラインダー等の救
済工程が必要になる等本発明との差が著しいことが明確
になり、本発明の効果が明らかとなった。
The steels A to N produced by the method of the present invention did not cause bald marks and good products were obtained. On the other hand, O alloy has δ (c
al) deviated from the conditions of the present invention, and bald defects due to δ-ferrite occurred. The δ (cal) of the P alloy deviated from the condition of the present invention, and a bald defect caused by Ni segregation occurred. Q alloy is 13
The cooling rate at 50 to 1000 ° C. was small, and bald defects occurred. The R alloy has a low cooling rate of 1000 to 500 ° C.
-Ferrite was coarsened and bald defects due to δ-ferrite occurred. The S alloy had a high heating temperature and δ-ferrite was precipitated to cause bald defects. In the T alloy and the U alloy, the Ni segregation zone in the valley portion of the oscillation mark was large, and a dent defect was generated due to poor ductility of the valley portion of the oscillation mark. It is clear that these O to U alloys are significantly different from the present invention in that the yield loss is remarkably generated on both sides, the product yield is lowered, and a repair process such as a grinder is required. The effect became clear.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】本発明によれば、従来熱延工程では発見
されにくく歩留まり低下の大きな原因であった微小割れ
によるヘゲ疵の発生を防止することが可能になった。
According to the present invention, it has become possible to prevent the occurrence of bald defects due to microcracks, which were difficult to find in the conventional hot rolling process and were a major cause of yield reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】連続鋳造スラブの外観概略とオッシレーション
マーク谷部のNi偏析帯を示す模式図である。
FIG. 1 is a schematic view showing an outline appearance of a continuously cast slab and a Ni segregation zone at a valley portion of an oscillation mark.

【図2】融点直下における延性に対するδ(cal)の影響
を示す図である。
FIG. 2 is a diagram showing an influence of δ (cal) on ductility just below a melting point.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C :0.002〜0.08%、 Si:2.0%以下、 Mn:10%以下、 P :0.040%以下、 S :0.008%以下、 O :0.005%以下、 Cr:16〜35%、 Ni:7〜30%、 Mo:0.01〜8%、 Cu:0.01〜4%、 N :0.003〜0.3%、 残部がFeと不可避的不純物からなり、δ(cal)=3
(Cr+1.5×Si+Mo+0.5×Nb+0.5×
Ti)−2.8(Ni+0.5×Mn+0.5×Cu)
−84(C+N)−19.8で示されるδ(cal)が4を
超え10以下で、連続鋳造時のスラブ表面の冷却が13
50℃から1000℃までを平均冷却速度で30℃/Sを
超え、1000℃から500℃までの平均冷却速度を1
0℃/S以上とし、スラブ表層のオッシレーションマーク
谷部に存在する平均Ni濃度より1.15倍以上濃化し
たNi偏析帯深さがオッシレーションマーク谷から20
0μm以下であるスラブを、熱間圧延に際し1000℃
以上かつTγ(℃)=(105+Nieq−3.9×Cr
eq)/(0.07−1.95×10-3×Creq)以下の
温度T(℃)に加熱した後、熱間圧延することを特徴と
する熱間圧延での微小割れを防止するCr−Ni系ステ
ンレス合金の製造方法。 (ここでCreq=Cr(%)+1.5×Si(%)+M
o(%)+0.5×Nb(%)+0.5×Ti(%) Nieq=Ni(%)+0.5×Mn(%)+0.5×C
u(%)+30×C(%)+30×N(%))
1. By weight%, C: 0.002-0.08%, Si: 2.0% or less, Mn: 10% or less, P: 0.040% or less, S: 0.008% or less, O: 0.005% or less, Cr: 16 to 35%, Ni: 7 to 30%, Mo: 0.01 to 8%, Cu: 0.01 to 4%, N: 0.003 to 0.3% The balance consists of Fe and inevitable impurities, and δ (cal) = 3
(Cr + 1.5 × Si + Mo + 0.5 × Nb + 0.5 ×
Ti) -2.8 (Ni + 0.5xMn + 0.5xCu)
-84 (C + N) -19.8 has a δ (cal) of more than 4 and 10 or less, and cooling of the slab surface during continuous casting is 13
The average cooling rate from 50 ° C to 1000 ° C exceeds 30 ° C / S, and the average cooling rate from 1000 ° C to 500 ° C is 1
The Ni segregation zone depth, which was 1.15 times or more higher than the average Ni concentration existing in the oscillation mark valley portion of the slab surface layer, was 20 ° C or more from the oscillation mark valley.
A slab of 0 μm or less is heated to 1000 ° C.
Above and Tγ (° C.) = (105 + Nieq-3.9 × Cr
eq) / (0.07-1.95 × 10 −3 × Cr eq) or less and then hot-rolled, which prevents microcracking in hot-rolling. -A method for producing a Ni-based stainless alloy. (Here, Creq = Cr (%) + 1.5 × Si (%) + M
o (%) + 0.5 × Nb (%) + 0.5 × Ti (%) Nieq = Ni (%) + 0.5 × Mn (%) + 0.5 × C
u (%) + 30 x C (%) + 30 x N (%))
【請求項2】 請求項1記載のスラブにさらにAl:
0.05%以下を含有したことを特徴とする熱間圧延で
の微小割れを防止するCr−Ni系ステンレス合金の製
造方法。
2. The slab according to claim 1, further comprising Al:
A method for producing a Cr-Ni-based stainless alloy for preventing microcracking in hot rolling, characterized by containing 0.05% or less.
【請求項3】 請求項1記載のスラブにさらにAl:
0.05%以下、Ca:0.001〜0.005%を含
有したことを特徴とする熱間圧延での微小割れを防止す
るCr−Ni系ステンレス合金の製造方法。
3. The slab according to claim 1, further comprising Al:
0.05% or less, Ca: 0.001-0.005% was contained, The manufacturing method of the Cr-Ni type | system | group stainless alloy which prevents the microcrack in hot rolling characterized by the above-mentioned.
【請求項4】 請求項1,2或いは3のそれぞれに記載
のスラブをさらにNb:0.01〜1.5%、Ti:
0.01〜1.0%のうち1種または2種を含有するス
ラブを用いた請求項1ないし3記載の熱間圧延での微小
割れを防止するCr−Ni系ステンレス合金の製造方
法。
4. The slab according to claim 1, further comprising Nb: 0.01 to 1.5% and Ti:
The method for producing a Cr-Ni-based stainless alloy for preventing microcracking in hot rolling according to claim 1, wherein a slab containing one or two of 0.01 to 1.0% is used.
JP5940794A 1994-03-29 1994-03-29 Production of cr-ni stainless alloy free from microracking in hot rolling Pending JPH07268455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5940794A JPH07268455A (en) 1994-03-29 1994-03-29 Production of cr-ni stainless alloy free from microracking in hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5940794A JPH07268455A (en) 1994-03-29 1994-03-29 Production of cr-ni stainless alloy free from microracking in hot rolling

Publications (1)

Publication Number Publication Date
JPH07268455A true JPH07268455A (en) 1995-10-17

Family

ID=13112403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5940794A Pending JPH07268455A (en) 1994-03-29 1994-03-29 Production of cr-ni stainless alloy free from microracking in hot rolling

Country Status (1)

Country Link
JP (1) JPH07268455A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106872A (en) * 1997-09-30 1999-04-20 Nkk Corp Stainless steel for sulfuric acid dew point corrosion resistance excellent in hot workability
CN103014552A (en) * 2011-09-22 2013-04-03 兴化市新迅达不锈钢标准件有限公司 Novel corrosion-resisting special fastener
WO2018117683A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor
KR20180074590A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenitic stainless steel having excellent formability and surface properties and manufacturing method of the same
EP3561125A4 (en) * 2016-12-23 2019-10-30 Posco Austenitic stainless steel processed product having excellent surface characteristics, and manufacturing method therefor
JP2020164905A (en) * 2019-03-28 2020-10-08 日鉄ステンレス株式会社 Stainless steel plate and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11106872A (en) * 1997-09-30 1999-04-20 Nkk Corp Stainless steel for sulfuric acid dew point corrosion resistance excellent in hot workability
CN103014552A (en) * 2011-09-22 2013-04-03 兴化市新迅达不锈钢标准件有限公司 Novel corrosion-resisting special fastener
WO2018117683A1 (en) * 2016-12-23 2018-06-28 주식회사 포스코 Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor
KR20180074590A (en) * 2016-12-23 2018-07-03 주식회사 포스코 Austenitic stainless steel having excellent formability and surface properties and manufacturing method of the same
EP3561127A4 (en) * 2016-12-23 2019-10-30 Posco Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor
EP3561125A4 (en) * 2016-12-23 2019-10-30 Posco Austenitic stainless steel processed product having excellent surface characteristics, and manufacturing method therefor
JP2020509212A (en) * 2016-12-23 2020-03-26 ポスコPosco Austenitic stainless steel with excellent workability and surface properties and method for producing the same
US11299799B2 (en) 2016-12-23 2022-04-12 Posco Austenitic stainless steel product having excellent surface properties and manufacturing method of the same
US11542569B2 (en) 2016-12-23 2023-01-03 Posco Co., Ltd. Austenitic stainless steel having excellent processability and surface characteristics, and manufacturing method therefor
JP2020164905A (en) * 2019-03-28 2020-10-08 日鉄ステンレス株式会社 Stainless steel plate and method for producing the same

Similar Documents

Publication Publication Date Title
EP0320820B1 (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
WO2010008019A1 (en) Continuously cast slab and process for production of same
JP3964537B2 (en) Austenitic stainless steel with excellent hot workability
JPH08337840A (en) Titanium-containing rolled steel sheet having high strength and excellent drawability and its production
JP2765392B2 (en) Method for manufacturing hot-rolled duplex stainless steel strip
JPH07268455A (en) Production of cr-ni stainless alloy free from microracking in hot rolling
JPH0583610B2 (en)
JPS5915979B2 (en) Stainless steel alloy with fewer rolling defects during hot rolling
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
CN117836455A (en) Precipitation hardening martensitic stainless steel excellent in weldability and method for producing same
JPH0463146B2 (en)
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JP2838467B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws
JPH07268453A (en) Production of cr-ni stainless alloy free from generation of surface flaw by hot rolling
JP2987732B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws by hot rolling
US4657066A (en) Method of continuous casting slabs to produce good surface quality hot-rolled band
JP3543200B2 (en) Manufacturing method of steel sheet for metal saw substrate
JP4190617B2 (en) Method for producing hot rolled sheet of stainless steel
JP2020109198A (en) Ni-BASED ALLOY AND Ni-BASED ALLOY SHEET
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
JPH07292418A (en) Production of chromium-nickel stainless steel free from occurrence of surface flaw at hot rolling
JP6954976B2 (en) High oxidation resistance Ni-Cr-Al alloy with excellent laser cutting properties and its manufacturing method
JPS59177352A (en) Low-decarburization spring steel for continuous casting
JP2971292B2 (en) Manufacturing method of austenitic stainless steel with few surface defects
WO2023228699A1 (en) AUSTENITIC Fe-Ni-Cr ALLOY HAVING EXCELLENT OXIDATION RESISTANCE AND METHOD FOR PRODUCING SAME

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030819