JP2020164905A - Stainless steel plate and method for producing the same - Google Patents

Stainless steel plate and method for producing the same Download PDF

Info

Publication number
JP2020164905A
JP2020164905A JP2019064829A JP2019064829A JP2020164905A JP 2020164905 A JP2020164905 A JP 2020164905A JP 2019064829 A JP2019064829 A JP 2019064829A JP 2019064829 A JP2019064829 A JP 2019064829A JP 2020164905 A JP2020164905 A JP 2020164905A
Authority
JP
Japan
Prior art keywords
stainless steel
steel sheet
less
concentration
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064829A
Other languages
Japanese (ja)
Other versions
JP7296756B2 (en
Inventor
一成 今川
Kazunari Imagawa
一成 今川
弘中 明
Akira Hironaka
明 弘中
大智 山本
Daichi Yamamoto
大智 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=72715926&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2020164905(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2019064829A priority Critical patent/JP7296756B2/en
Publication of JP2020164905A publication Critical patent/JP2020164905A/en
Application granted granted Critical
Publication of JP7296756B2 publication Critical patent/JP7296756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To achieve a stainless steel plate having an excellent etching rate.SOLUTION: A stainless steel plate has a segregation layer with segregated Ni. In the segregation layer, an Ni concentration difference between a portion at which Ni concentration becomes maximum and a portion at which Ni concentration becomes minimum is 1.5 mass% or more.SELECTED DRAWING: None

Description

本発明は、ステンレス鋼板およびステンレス鋼板の製造方法に関する。 The present invention relates to a stainless steel sheet and a method for manufacturing a stainless steel sheet.

フォトエッチング加工とは、フォトレジスト法によって金属板表面に所望のパターンを形成した後に不要部分の金属をエッチング液により溶解し、金属板を前記パターンに沿った形状に加工する方法である。当該加工法は、集積回路等を形成する際に用いられるメタルマスクや、高精細ディスプレイに用いられるシャドーマスク等の製造に使用されている。 The photoetching process is a method in which a desired pattern is formed on the surface of a metal plate by a photoresist method, and then the metal in an unnecessary portion is dissolved by an etching solution to process the metal plate into a shape along the pattern. This processing method is used in the manufacture of metal masks used when forming integrated circuits and the like, shadow masks used in high-definition displays, and the like.

フォトエッチング加工に好適なステンレス鋼板として、例えば特許文献1には、エッチング面の平滑性を向上させたステンレス鋼板が開示されている。また特許文献2には、エッチング速度の向上とエッチング面の平滑性とを兼ね備えたステンレス鋼板が開示されている。 As a stainless steel sheet suitable for photo-etching, for example, Patent Document 1 discloses a stainless steel sheet having improved smoothness of an etched surface. Further, Patent Document 2 discloses a stainless steel sheet having both an improvement in etching rate and smoothness of an etching surface.

特開2005−314772号公報Japanese Unexamined Patent Publication No. 2005-314772 特開2003−3244号公報Japanese Unexamined Patent Publication No. 2003-3244

しかしながら、特許文献1に開示されているステンレス鋼板は、平滑な表面を得るためにエッチング加工が均一に施されるため、エッチング速度の向上は望めない。また、特許文献2に開示されているステンレス鋼板は、粗大炭化物の生成と結晶粒の成長抑制を目的としてNbを添加し、粒界のエッチング速度を速めている。しかし、粒界が優先的にエッチングされても母材のエッチング速度は変わらないと考えられるため、ステンレス鋼板全体としてのエッチング速度の向上は望めない可能性がある。また、Nb添加が必須となることから、ステンレス鋼板の製造コストも上昇してしまう。 However, since the stainless steel sheet disclosed in Patent Document 1 is uniformly etched in order to obtain a smooth surface, improvement in etching rate cannot be expected. Further, in the stainless steel sheet disclosed in Patent Document 2, Nb is added for the purpose of producing coarse carbides and suppressing the growth of crystal grains, thereby increasing the etching rate of grain boundaries. However, since it is considered that the etching rate of the base material does not change even if the grain boundaries are preferentially etched, it may not be possible to expect an improvement in the etching rate of the stainless steel sheet as a whole. In addition, since the addition of Nb is indispensable, the manufacturing cost of the stainless steel sheet also increases.

これらの問題点を鑑み、本発明の一態様は、エッチング性に優れたステンレス鋼板を実現することを目的とする。 In view of these problems, one aspect of the present invention is to realize a stainless steel sheet having excellent etching properties.

上記の課題を解決するために、本発明の一態様に係るステンレス鋼板は、Niが偏析した偏析層を有し、前記偏析層において、Ni濃度が最大となる部分と、Ni濃度が最小となる部分とのNi濃度差が1.5質量%以上である。 In order to solve the above problems, the stainless steel sheet according to one aspect of the present invention has a segregation layer in which Ni is segregated, and the portion of the segregation layer where the Ni concentration is maximum and the Ni concentration are minimum. The difference in Ni concentration from the portion is 1.5% by mass or more.

本発明の一態様に係るステンレス鋼板は、下記(1)式により定まるX値が3未満である化学組成を有していてもよい;
X=30(C+N)+0.5Mn+Ni−1.3Cr+11.8 (1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入され、無添加の元素については0(ゼロ)が代入される。
The stainless steel sheet according to one aspect of the present invention may have a chemical composition in which the X value determined by the following equation (1) is less than 3.
X = 30 (C + N) + 0.5Mn + Ni-1.3Cr + 11.8 (1)
Here, the content of the element represented by mass% is substituted in the place of the element symbol in the formula (1), and 0 (zero) is substituted for the element without addition.

本発明の一態様に係るステンレス鋼板は、質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.50%以下P:0.045%以下、S:0.030%以下、Ni:7.00〜15.00%、およびCr:16.00〜20.00%を含有し、残部がFeおよび不可避的不純物を含むものであってもよい。 The stainless steel sheet according to one aspect of the present invention has a mass% of C: 0.08% or less, Si: 1.00% or less, Mn: 2.50% or less, P: 0.045% or less, S: 0. It may contain 030% or less, Ni: 7.00 to 15.00%, and Cr: 16.0 to 20.00%, and the balance may contain Fe and unavoidable impurities.

本発明の一態様に係るステンレス鋼板は、質量%で、Mo:2.00〜3.00%、Cu:2.50〜4.00%、N:0.06%以下、およびB:0.01%以下のいずれか2種以上をさらに含有していてもよい。 The stainless steel sheet according to one aspect of the present invention has Mo: 2.00 to 3.00%, Cu: 2,500 to 4.00%, N: 0.06% or less, and B: 0. Any two or more of 01% or less may be further contained.

上記の課題を解決するために、本発明の一態様に係るステンレス鋼板の製造方法は、Niが偏析した偏析層を有し、前記偏析層において、Ni濃度が最大となる部分と、Ni濃度が最小となる部分とのNi濃度差が1.5質量%以上であるステンレス鋼板の製造方法であって、巻取り温度を400℃以上700℃以下とし、圧延率を97%以下とする熱間圧延工程と、焼鈍温度を900℃以上1000℃以下とする焼鈍工程と、を含む。 In order to solve the above problems, the method for producing a stainless steel sheet according to one aspect of the present invention has a segregated layer in which Ni is segregated, and the portion of the segregated layer where the Ni concentration is maximum and the Ni concentration are high. A method for manufacturing a stainless steel sheet having a Ni concentration difference of 1.5% by mass or more from the minimum portion, in which the winding temperature is 400 ° C. or higher and 700 ° C. or lower and the rolling ratio is 97% or lower. It includes a step and an annealing step of setting the annealing temperature to 900 ° C. or higher and 1000 ° C. or lower.

本発明の一態様によれば、エッチング性に優れたステンレス鋼板を実現できる。 According to one aspect of the present invention, a stainless steel sheet having excellent etching properties can be realized.

一実施形態に係るステンレス鋼板の表面のマッピング分析結果を示す図である。It is a figure which shows the mapping analysis result of the surface of the stainless steel plate which concerns on one Embodiment. 一実施形態に係るステンレス鋼板の表面のNi濃度ライン分析結果を示す図である。It is a figure which shows the Ni concentration line analysis result of the surface of the stainless steel sheet which concerns on one Embodiment.

以下、本発明の一実施形態について詳細に説明する。なお、以下の記載は発明の趣旨をより良く理解させるためのものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において特記しない限り、数値範囲を表す「A〜B」は、「A以上B以下」を意味する。 Hereinafter, one embodiment of the present invention will be described in detail. The following description is intended to better understand the gist of the invention, and does not limit the present invention unless otherwise specified. Further, unless otherwise specified in the present specification, "A to B" representing a numerical range means "A or more and B or less".

〔Niの偏析層〕
本実施形態に係るステンレス鋼板は、Niが偏析したNi偏析層を有する。本発明におけるNi偏析層とは、Ni濃度が最大となる部分と、Ni濃度が最小となる部分とのNi濃度差が1.5質量%以上であるステンレス鋼板の層と定義される。ここで、Ni濃度が最大となる部分と、Ni濃度が最小となる部分との間の直線距離は300μm以下であることが好ましい。
[Ni segregation layer]
The stainless steel sheet according to the present embodiment has a Ni segregation layer in which Ni is segregated. The Ni segregation layer in the present invention is defined as a layer of a stainless steel sheet in which the difference in Ni concentration between the portion having the maximum Ni concentration and the portion having the minimum Ni concentration is 1.5% by mass or more. Here, the linear distance between the portion where the Ni concentration is maximum and the portion where the Ni concentration is minimum is preferably 300 μm or less.

このようなNi偏析層を有するステンレス鋼板であれば、エッチング加工におけるエッチング性が優れている。なぜならば、Ni偏析層を有するステンレス鋼板は、3次元的には当該偏析層が複数積層しているとともに、Ni濃度の濃度差が存在する領域はずれるように積層している。したがって、Ni濃度が高い部分(すなわち、Cr濃度が低い部分)が優先的にエッチングされるに際して、ステンレス鋼板の板厚方向に比較的速くエッチングが進行するためである。なお、「エッチング性に優れる」とは、エッチング加工による加工速度が速いことを示す。 A stainless steel sheet having such a Ni segregation layer has excellent etching properties in the etching process. This is because the stainless steel sheet having the Ni segregation layer is three-dimensionally laminated with a plurality of the segregation layers and is laminated so as to deviate from the region where the concentration difference of the Ni concentration exists. Therefore, when the portion having a high Ni concentration (that is, the portion having a low Cr concentration) is preferentially etched, the etching proceeds relatively quickly in the thickness direction of the stainless steel sheet. In addition, "excellent in etching property" means that the processing speed by the etching process is high.

本実施形態に係る、エッチング性に優れるステンレス鋼板は、例えばメタルマスクまたはシャドーマスク等の製造において使用することにより、エッチング加工に要する時間を短縮できる。したがって、本実施形態に係るステンレス鋼板をこれらのエッチング加工品に使用すれば、製造時間を低減し生産性を向上できる。 By using the stainless steel sheet having excellent etching properties according to the present embodiment in the production of, for example, a metal mask or a shadow mask, the time required for etching can be shortened. Therefore, if the stainless steel sheet according to the present embodiment is used for these etched products, the production time can be reduced and the productivity can be improved.

〔化学組成〕
(凝固組織の形態)
本実施形態に係るステンレス鋼板は、凝固組織の形態の指標となる下記(1)式により定まるX値が3未満である化学組成を有することが好ましく、X値が0以下である化学組織を有することがより好ましい。
[Chemical composition]
(Morphology of coagulated tissue)
The stainless steel sheet according to the present embodiment preferably has a chemical composition having an X value of less than 3 determined by the following formula (1), which is an index of the form of the solidified structure, and has a chemical structure having an X value of 0 or less. Is more preferable.

X=30(C+N)+0.5Mn+Ni−1.3Cr+11.8 (1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入され、無添加の元素については0(ゼロ)が代入される。
X = 30 (C + N) + 0.5Mn + Ni-1.3Cr + 11.8 (1)
Here, the content of the element represented by mass% is substituted in the place of the element symbol in the formula (1), and 0 (zero) is substituted for the element without addition.

ステンレス鋼板の凝固組織の形態は、Cr当量およびNi当量の関係から表すことができ、オーステナイト単相凝固組織(Aモード)、初晶オーステナイト+δフェライトの二相凝固組織(AFモード)、初晶δフェライト+オーステナイトの二相凝固組織(FAモード)に大別される。 The morphology of the solidified structure of the stainless steel plate can be expressed from the relationship between Cr equivalent and Ni equivalent, with austenite single-phase solidified structure (A mode), primary crystal austenite + δ ferrite biphase solidified structure (AF mode), and primary crystal δ. It is roughly classified into a ferrite + austenite two-phase solidification structure (FA mode).

エッチング性の向上に重要なNiの成分偏析には、凝固組織がFAモードまたはAモードであることが好ましい。凝固組織中のNiの拡散速度は、オーステナイトとδフェライトとで異なり、オーステナイトの方が当該拡散速度が遅い。FAモードでは、初晶フェライトの晶出によりNiの成分偏析が生じ、その後拡散速度が遅いオーステナイトが晶出することで、Niの成分偏析が保たれやすい。またAモードでは、液相からオーステナイト層が凝固するときに生じるNiの成分偏析が、そのまま保持されやすい。 The solidified structure is preferably FA mode or A mode for segregation of Ni components, which is important for improving the etchability. The diffusion rate of Ni in the solidified structure differs between austenite and δ ferrite, and the diffusion rate of austenite is slower. In the FA mode, the segregation of the Ni component occurs due to the crystallization of the primary crystal ferrite, and then the austenite having a slow diffusion rate crystallizes, so that the Ni component segregation is easily maintained. Further, in the A mode, the segregation of Ni components generated when the austenite layer solidifies from the liquid phase is easily retained as it is.

したがって、上述のX値が3未満となるようなFAモードまたはAモードを有するステンレス鋼板は、Niの成分偏析に好適である。このように、上述の(1)式は本発明者等により調査検討の結果から導き出された関係式であり、ステンレス鋼板の凝固組織を形態制御する上で有効な指標である。 Therefore, a stainless steel sheet having an FA mode or an A mode such that the X value is less than 3 is suitable for segregation of Ni components. As described above, the above-mentioned equation (1) is a relational expression derived from the results of investigation and examination by the present inventor and the like, and is an effective index for morphological control of the solidified structure of the stainless steel sheet.

以下に、本実施形態に係るステンレス鋼板において好ましい成分の含有量を示す。なお、化学組成における「%」は特に断らない限り「質量%」を意味する。 The contents of preferable components in the stainless steel sheet according to the present embodiment are shown below. In addition, "%" in a chemical composition means "mass%" unless otherwise specified.

(C)
C(炭素)は、鋼の強度を向上させる元素である。ただし、C含有量が高くなりすぎると延性・靱性が低下する。また、多量のC添加はエッチング液に溶解しないスマット発生の原因となり、エッチング性を低下させる。そのため、C含有量は0.08%以下に制限されることが好ましい。
(C)
C (carbon) is an element that improves the strength of steel. However, if the C content is too high, ductility and toughness will decrease. Further, the addition of a large amount of C causes the generation of smut that does not dissolve in the etching solution, and reduces the etching property. Therefore, the C content is preferably limited to 0.08% or less.

(Si)
Si(ケイ素)は、製鋼での脱酸作用を有する元素である。ただし、多量のSi含有はSi酸化物を主体とする硬質な介在物の形成を招き、強度、疲労特性、およびエッチング性に悪影響を及ぼす。したがって、Si含有量は1.00%以下に制限されることが好ましい。
(Si)
Si (silicon) is an element that has a deoxidizing effect in steelmaking. However, a large amount of Si content causes the formation of hard inclusions mainly composed of Si oxide, which adversely affects the strength, fatigue characteristics, and etchability. Therefore, the Si content is preferably limited to 1.00% or less.

(Mn)
Mn(マンガン)は、製鋼での脱酸作用を有する元素である。ただし、多量のMn含有はMn系の硬質な介在物の形成を招き、強度およびエッチング性が低下する要因となるため、Mn含有量は2.50%以下に制限されることが好ましい。
(Mn)
Mn (manganese) is an element that has a deoxidizing effect in steelmaking. However, since a large amount of Mn content causes the formation of Mn-based hard inclusions and causes a decrease in strength and etchability, the Mn content is preferably limited to 2.50% or less.

(P、S)
P(リン)およびS(硫黄)は、ステンレス鋼板の靱性を低下させる元素である。そのため、Pは0.045%以下に、Sは0.030%以下にそれぞれ制限されることが好ましい。
(P, S)
P (phosphorus) and S (sulfur) are elements that reduce the toughness of stainless steel sheets. Therefore, it is preferable that P is limited to 0.045% or less and S is limited to 0.030% or less.

(Ni)
Ni(ニッケル)は、偏析によってステンレス鋼板のエッチング性を向上させる元素である。また、靱性向上にも有効である。Ni濃度の偏析を大きくするため、Ni含有量は7.00%以上であることが好ましい。ただし、Niは高価な元素であるため、製造コストの観点から15.00%以下に制限されてもよい。
(Ni)
Ni (nickel) is an element that improves the etchability of stainless steel sheets by segregation. It is also effective in improving toughness. The Ni content is preferably 7.00% or more in order to increase the segregation of the Ni concentration. However, since Ni is an expensive element, it may be limited to 15.00% or less from the viewpoint of manufacturing cost.

(Cr)
Cr(クロム)は、ステンレス鋼板の耐食性向上に有効な元素である。Crの含有量は、16.00%以上であることが好ましい。ただし多量のCrは靱性低下の要因となるため、Crの含有量は20.00%以下に制限されることが好ましい。
(Cr)
Cr (chromium) is an element effective for improving the corrosion resistance of stainless steel sheets. The Cr content is preferably 16.00% or more. However, since a large amount of Cr causes a decrease in toughness, the Cr content is preferably limited to 20.00% or less.

(Mo)
Mo(モリブデン)は、耐食性向上に有効な元素である。Mo含有量は、2.00%以上であること好ましい。ただし、Moは高価な元素であるためコスト上昇を招くことから、Mo含有量は3.00%以下に制限されることが好ましい。
(Mo)
Mo (molybdenum) is an element effective for improving corrosion resistance. The Mo content is preferably 2.00% or more. However, since Mo is an expensive element and causes an increase in cost, the Mo content is preferably limited to 3.00% or less.

(Cu)
Cu(銅)は、オーステナイト層の安定化に有効な元素である。Cu含有量は、2.50%以上であることが好ましい。ただし、過度のCu添加は製造性の低下を招くので、Cu含有量は4.00%以下であることが好ましい。
(Cu)
Cu (copper) is an element effective for stabilizing the austenite layer. The Cu content is preferably 2.50% or more. However, since excessive addition of Cu causes a decrease in manufacturability, the Cu content is preferably 4.00% or less.

(N)
N(窒素)は、Cと同様、鋼の強度向上に寄与する元素である。ただし、過度にNを含有させると表面欠陥が生じやすくなるため、N含有量は0.06%以下に制限されることが好ましい。
(N)
Like C, N (nitrogen) is an element that contributes to improving the strength of steel. However, if N is excessively contained, surface defects are likely to occur, so the N content is preferably limited to 0.06% or less.

(B)
B(ホウ素)は、熱間加工性向上に有効な元素である。ただし、多量の添加は延性に悪影響を及ぼすので、B含有量は0.01%以下に制限されることが好ましい。
(B)
B (boron) is an element effective for improving hot workability. However, since a large amount of addition adversely affects ductility, the B content is preferably limited to 0.01% or less.

本実施形態に係るステンレス鋼板は、上述の式(1)によって定まるX値が3未満であり、好適な態様としてはC、Si、Mn、P、S、Ni、およびCrを含有し、残部がFeからなるものである。さらに別の態様では、上述の式(1)によって定まるX値が3未満であり、C、Si、Mn、P、S、Ni、およびCrを含有し、さらに、Mo、Cu、N、およびBのうちのいずれか2種以上を含有し、残部がFeおよび不可避的不純物を含むものである。 The stainless steel sheet according to the present embodiment has an X value of less than 3 determined by the above formula (1), and preferably contains C, Si, Mn, P, S, Ni, and Cr, and the balance is It is composed of Fe. In yet another embodiment, the X value determined by the above formula (1) is less than 3, contains C, Si, Mn, P, S, Ni, and Cr, and further contains Mo, Cu, N, and B. It contains any two or more of them, and the balance contains Fe and unavoidable impurities.

〔ステンレス鋼板の製造方法〕
本実施形態に係るステンレス鋼板の製造方法について説明する。当該製造方法は、熱間圧延工程と、焼鈍工程とを含む。なお、熱間圧延工程および焼鈍工程以外の工程については、従来一般的なステンレス鋼板の製造方法に従って実施してよい。
[Manufacturing method of stainless steel sheet]
A method for manufacturing a stainless steel sheet according to the present embodiment will be described. The manufacturing method includes a hot rolling step and an annealing step. The steps other than the hot rolling step and the annealing step may be carried out according to a conventional general method for manufacturing a stainless steel sheet.

(熱間圧延工程)
熱間圧延工程では、ステンレス鋼板の素材となる素材スラブに熱間圧延処理を施した後に、得られた熱延鋼板をコイル状に巻取る。ここで、熱間圧延処理における圧延率は97%以下とする。このような圧延率であれば、熱間圧延処理において発生するひずみの蓄積が緩和され、Ni偏析消失のための駆動力が低下する。そのため、熱延鋼板が有するNi偏析が熱間圧延処理によって消失しにくい。
(Hot rolling process)
In the hot rolling step, the material slab, which is the material of the stainless steel sheet, is hot-rolled, and then the obtained hot-rolled steel sheet is wound into a coil. Here, the rolling ratio in the hot rolling process is 97% or less. With such a rolling ratio, the accumulation of strain generated in the hot rolling process is alleviated, and the driving force for eliminating Ni segregation is reduced. Therefore, the Ni segregation of the hot-rolled steel sheet is unlikely to disappear by the hot rolling process.

また、熱延鋼板の巻取りは、400℃以上700℃以下の巻取り温度まで冷却した後に行う。巻取り温度がこのような温度であれば、熱による熱延鋼板のNi偏析消失を低減できる。また、熱間圧延後における巻取り温度までの冷却は水冷であることが好ましい。水冷によって熱延鋼板を熱間圧延終了時の温度から巻取り温度まで急速に冷却することで、熱間圧延処理後に熱延鋼板が熱を保持する時間がより短くなる。そのため、熱延鋼板のNi偏析消失をより低減できる。 Further, the hot-rolled steel sheet is wound after being cooled to a winding temperature of 400 ° C. or higher and 700 ° C. or lower. When the winding temperature is such a temperature, the disappearance of Ni segregation of the hot-rolled steel sheet due to heat can be reduced. Further, the cooling to the winding temperature after hot rolling is preferably water cooling. By rapidly cooling the hot-rolled steel sheet from the temperature at the end of hot rolling to the winding temperature by water cooling, the time for the hot-rolled steel sheet to retain heat after the hot rolling process becomes shorter. Therefore, the disappearance of Ni segregation of the hot-rolled steel sheet can be further reduced.

(焼鈍工程)
次に、熱延鋼板を軟質化するために、当該熱延鋼板に焼鈍を施す焼鈍工程を実施する。焼鈍工程における焼鈍温度は、900℃以上1000℃以下とする。このように、焼鈍温度を金属組織の再結晶に必要な最低限の温度範囲に設定することにより、焼鈍工程におけるNi偏析消失を低減できる。
(Annealing process)
Next, in order to soften the hot-rolled steel sheet, an annealing step of annealing the hot-rolled steel sheet is carried out. The annealing temperature in the annealing step is 900 ° C. or higher and 1000 ° C. or lower. By setting the annealing temperature to the minimum temperature range required for recrystallization of the metal structure in this way, it is possible to reduce the disappearance of Ni segregation in the annealing step.

〔エッチング処理〕
本実施形態に係るステンレス鋼板をエッチング加工する場合に用いられるエッチング液の種類および濃度には特に制限がない。エッチング液は例えば、通常用いられる塩化第二鉄水溶液または塩化第二鉄を含む塩酸溶液等であってよい。また、エッチング加工の方法についても、ステンレス鋼板表面へのエッチング液のスプレーまたはステンレス鋼板のエッチング液への浸潤等、通常用いられる方法を用いてよい。
[Etching process]
There is no particular limitation on the type and concentration of the etching solution used when etching the stainless steel sheet according to the present embodiment. The etching solution may be, for example, a commonly used ferric chloride aqueous solution or a hydrochloric acid solution containing ferric chloride. Further, as the etching processing method, a commonly used method such as spraying an etching solution on the surface of the stainless steel sheet or infiltration of the stainless steel sheet into the etching solution may be used.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.

本発明の一実施例について、図1および図2を参照して以下に説明する。 An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

〔鋼種および製造方法〕
以下の表1に示す化学成分を有する素材スラブを用いてステンレス鋼板を製造した。このとき、熱間圧延工程における巻取り温度および焼鈍工程における焼鈍温度については、以下の表2に示す巻取り温度および焼鈍温度を用いた。
[Steel grade and manufacturing method]
A stainless steel sheet was produced using a material slab having the chemical components shown in Table 1 below. At this time, as the winding temperature in the hot rolling process and the annealing temperature in the annealing process, the winding temperature and annealing temperature shown in Table 2 below were used.

なお、鋼種AおよびCについては、2種類の仕上げ条件を試行した。表2に示す仕上げ条件における「熱延焼鈍鋼板」は、熱間圧延工程および焼鈍工程を実施したステンレス鋼板である。また、「冷延焼鈍鋼板」はこれらの工程の後にさらに従来一般的な冷間圧延工程を実施したステンレス鋼板である。なお、鋼種Bは熱延焼鈍鋼板条件のみ実施した。 For steel types A and C, two types of finishing conditions were tried. The "hot-rolled annealed steel sheet" under the finishing conditions shown in Table 2 is a stainless steel sheet that has undergone a hot rolling process and an annealing process. Further, the "cold-rolled annealed steel sheet" is a stainless steel sheet in which a conventional cold rolling process is further performed after these steps. For steel type B, only the hot-rolled annealed steel sheet condition was carried out.

Figure 2020164905
Figure 2020164905

Figure 2020164905
Figure 2020164905

実施例1〜4は本発明の規定範囲内の製造方法によって得られたステンレス鋼板であるのに対し、比較例1は巻取り温度が700℃より高く、焼鈍温度が1000℃より高い条件であり、本発明の規定範囲外の製造方法によって得られたステンレス鋼板である。 Examples 1 to 4 are stainless steel sheets obtained by a manufacturing method within the specified range of the present invention, whereas Comparative Example 1 has a winding temperature higher than 700 ° C. and an annealing temperature higher than 1000 ° C. , A stainless steel sheet obtained by a manufacturing method outside the specified range of the present invention.

〔偏析層のマッピング分析〕
実施例1〜4および比較例1のステンレス鋼板表面における偏析層を把握するために、EPMA(Electron Probe Micro Analyzer)によって各ステンレス鋼板表面の分析を行った。EPMAは、日本電子株式会社製のJXA-8530F Plusを使用した。より具体的には、各ステンレス鋼板におけるFe、Cr、Ni、およびCuの濃度について、EPMAを使用した各ステンレス鋼板表面のマッピング分析を行った。マッピング分析の測定範囲は1000μmとした。
[Mapping analysis of segregation layer]
In order to grasp the segregated layer on the surface of the stainless steel sheets of Examples 1 to 4 and Comparative Example 1, the surface of each stainless steel sheet was analyzed by EPMA (Electron Probe Micro Analyzer). For EPMA, JXA-8530F Plus manufactured by JEOL Ltd. was used. More specifically, the mapping analysis of the surface of each stainless steel sheet using EPMA was performed for the concentrations of Fe, Cr, Ni, and Cu in each stainless steel sheet. The measurement range of the mapping analysis was 1000 μm 2 .

図1に示すように、実施例1〜4および比較例1のステンレス鋼板の表面について、それぞれFe、Cr、Ni、およびCuの濃度分布を分析した。いずれの条件においても、Niの偏析が確認された。特に、実施例1〜4のステンレス鋼板については、Niの強い偏析が見られた。 As shown in FIG. 1, the concentration distributions of Fe, Cr, Ni, and Cu were analyzed on the surfaces of the stainless steel sheets of Examples 1 to 4 and Comparative Example 1, respectively. Segregation of Ni was confirmed under all conditions. In particular, strong segregation of Ni was observed in the stainless steel sheets of Examples 1 to 4.

〔Ni濃度ライン分析〕
次に、実施例1〜4および比較例1のステンレス鋼板の表面におけるNi濃度のライン分析を行った。ライン分析にも、上述のEPMAを用いた。ライン分析では、上述のマッピング分析によりNiの偏析が確認された部分について、ステンレス鋼板の圧延方向に対し垂直方向に300μmの直線を設定し、当該直線上におけるNi濃度を分析した。同様の分析を10視野について行い、各視野について、得られたNi濃度が最大となる部分と、Ni濃度が最小となる部分とのNi濃度差を求め、当該Ni濃度差について10視野の平均値を算出した。得られた平均値を、表2の「偏析層の濃度差(質量%)」に示した。
[Ni concentration line analysis]
Next, a line analysis of the Ni concentration on the surfaces of the stainless steel sheets of Examples 1 to 4 and Comparative Example 1 was performed. The EPMA described above was also used for line analysis. In the line analysis, a straight line of 300 μm was set in the direction perpendicular to the rolling direction of the stainless steel sheet for the portion where the segregation of Ni was confirmed by the above mapping analysis, and the Ni concentration on the straight line was analyzed. The same analysis was performed for 10 visual fields, and for each visual field, the Ni concentration difference between the portion where the obtained Ni concentration was maximum and the portion where the Ni concentration was minimum was obtained, and the average value of the 10 visual fields was obtained for the Ni concentration difference. Was calculated. The obtained average values are shown in "Difference in concentration (mass%) of segregated layer" in Table 2.

図2および表2に示すように、実施例1〜4のステンレス鋼板については、Ni濃度差が1.5質量%以上のNi偏析層が確認された。一方、比較例1のステンレス鋼板では、Ni濃度差が1.5質量%未満であった。 As shown in FIGS. 2 and 2, in the stainless steel sheets of Examples 1 to 4, a Ni segregation layer having a Ni concentration difference of 1.5% by mass or more was confirmed. On the other hand, in the stainless steel sheet of Comparative Example 1, the difference in Ni concentration was less than 1.5% by mass.

〔エッチング速度〕
実施例1〜4および比較例1のステンレス鋼板に対して、エッチング処理を実施し、各ステンレス鋼板のエッチング性を調査した。まず、各ステンレス鋼板を5質量%オルソケイ酸ナトリウムに浸漬し、60℃条件下でアノード電流を5A/dmとなるように10秒流すことで、アルカリ電解脱脂処理を行った。その後、各ステンレス鋼板を30℃条件下で5質量%塩酸に10秒浸漬して中和処理を行った。そして、40g/L塩酸を含む14質量%塩化第二鉄溶液をエッチング液として、中和処理後の各ステンレス鋼板を当該エッチング液に浸漬し、55℃条件下で4時間反応させることでエッチング処理を行った。エッチング処理後の各ステンレス鋼板について、板厚の減少量(μm)を測定した。
[Etching speed]
Etching treatments were carried out on the stainless steel sheets of Examples 1 to 4 and Comparative Example 1, and the etching properties of each stainless steel sheet were investigated. First, each stainless steel sheet was immersed in 5% by mass sodium orthosilicate, and an anode current of 5 A / dm 2 was passed for 10 seconds under the condition of 60 ° C. to perform an alkaline electrolytic degreasing treatment. Then, each stainless steel sheet was immersed in 5 mass% hydrochloric acid for 10 seconds under the condition of 30 ° C. for neutralization treatment. Then, using a 14% by mass ferric chloride solution containing 40 g / L hydrochloric acid as an etching solution, each stainless steel sheet after the neutralization treatment is immersed in the etching solution and reacted under 55 ° C. conditions for 4 hours for etching treatment. Was done. The amount of decrease in plate thickness (μm) was measured for each stainless steel sheet after the etching treatment.

表2に示すように、Ni濃度差が1.5質量%以上のNi偏析層が確認された実施例1〜4のステンレス鋼板における板厚減少量と、当該Ni偏析層が確認されなかった比較例1の板厚減少量とは、少なくとも5倍以上の大きな差が見られた。また、実施例1〜4の中でも上述のX値が0以下である鋼種AまたはBを用いた実施例1〜3と、X値が0以上3未満である実施例4との間には、2倍以上の板厚減少量の差が見られた。 As shown in Table 2, the amount of decrease in the thickness of the stainless steel sheets of Examples 1 to 4 in which the Ni segregation layer having a Ni concentration difference of 1.5% by mass or more was confirmed and the comparison in which the Ni segregation layer was not confirmed. A large difference of at least 5 times or more was observed from the amount of decrease in plate thickness of Example 1. Further, among Examples 1 to 4, between Examples 1 to 3 using the steel type A or B having an X value of 0 or less and Example 4 having an X value of 0 or more and less than 3. A difference of more than 2 times in the amount of plate thickness reduction was observed.

以上の結果から、Ni偏析層を有するステンレス鋼板は、エッチング性に優れることが示された。また、Ni偏析層を有するステンレス鋼板の中でも、上述のX値が0以下であれば、より優れたエッチング性が得られることが示された。 From the above results, it was shown that the stainless steel sheet having the Ni segregation layer is excellent in etching property. Further, it was shown that even among the stainless steel sheets having a Ni segregation layer, when the above-mentioned X value is 0 or less, better etching properties can be obtained.

Claims (5)

Niが偏析した偏析層を有し、
前記偏析層において、Ni濃度が最大となる部分と、Ni濃度が最小となる部分とのNi濃度差が1.5質量%以上である、ステンレス鋼板。
It has a segregation layer in which Ni segregates.
A stainless steel sheet having a Ni concentration difference of 1.5% by mass or more between a portion having a maximum Ni concentration and a portion having a minimum Ni concentration in the segregation layer.
下記(1)式により定まるX値が3未満である化学組成を有する、請求項1に記載のステンレス鋼板。
X=30(C+N)+0.5Mn+Ni−1.3Cr+11.8 (1)
ここで、(1)式の元素記号の箇所には質量%で表される当該元素の含有量が代入され、無添加の元素については0(ゼロ)が代入される。
The stainless steel sheet according to claim 1, which has a chemical composition in which the X value determined by the following formula (1) is less than 3.
X = 30 (C + N) + 0.5Mn + Ni-1.3Cr + 11.8 (1)
Here, the content of the element represented by mass% is substituted in the place of the element symbol in the formula (1), and 0 (zero) is substituted for the element without addition.
質量%で、C:0.08%以下、Si:1.00%以下、Mn:2.50%以下P:0.045%以下、S:0.030%以下、Ni:7.00〜15.00%、およびCr:16.00〜20.00%を含有し、残部がFeおよび不可避的不純物を含む、請求項1または2に記載のステンレス鋼板。 By mass%, C: 0.08% or less, Si: 1.00% or less, Mn: 2.50% or less P: 0.045% or less, S: 0.030% or less, Ni: 7.00 to 15 The stainless steel sheet according to claim 1 or 2, which contains 0.00% and Cr: 16.0 to 20.00%, and the balance contains Fe and unavoidable impurities. 質量%で、Mo:2.00〜3.00%、Cu:2.50〜4.00%、N:0.06%以下、およびB:0.01%以下のいずれか2種以上をさらに含有する、請求項3に記載のステンレス鋼板。 In terms of mass%, Mo: 2.00 to 3.00%, Cu: 2.50 to 4.00%, N: 0.06% or less, and B: 0.01% or less, any two or more of them are further added. The stainless steel sheet according to claim 3, which is contained. Niが偏析した偏析層を有し、前記偏析層において、Ni濃度が最大となる部分と、Ni濃度が最小となる部分とのNi濃度差が1.5質量%以上であるステンレス鋼板の製造方法であって、
巻取り温度を400℃以上700℃以下とし、圧延率を97%以下とする熱間圧延工程と、
焼鈍温度を900℃以上1000℃以下とする焼鈍工程と、を含む、ステンレス鋼板の製造方法。
A method for producing a stainless steel sheet having a segregated layer in which Ni is segregated, and the difference in Ni concentration between the portion having the maximum Ni concentration and the portion having the minimum Ni concentration in the segregated layer is 1.5% by mass or more. And
A hot rolling process in which the winding temperature is 400 ° C or higher and 700 ° C or lower and the rolling ratio is 97% or lower.
A method for manufacturing a stainless steel sheet, which comprises an annealing step of setting the annealing temperature to 900 ° C. or higher and 1000 ° C. or lower.
JP2019064829A 2019-03-28 2019-03-28 Stainless steel plate and its manufacturing method Active JP7296756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064829A JP7296756B2 (en) 2019-03-28 2019-03-28 Stainless steel plate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064829A JP7296756B2 (en) 2019-03-28 2019-03-28 Stainless steel plate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2020164905A true JP2020164905A (en) 2020-10-08
JP7296756B2 JP7296756B2 (en) 2023-06-23

Family

ID=72715926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064829A Active JP7296756B2 (en) 2019-03-28 2019-03-28 Stainless steel plate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7296756B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173243A (en) * 1988-12-24 1990-07-04 Nippon Mining Co Ltd Stainless steel excellent in etching workability
JPH07268455A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Production of cr-ni stainless alloy free from microracking in hot rolling
JPH07292438A (en) * 1994-04-26 1995-11-07 Nippon Steel Corp Austenitic stainless cold rolled steel sheet excellent in oxidation resistance and its production
JPH08281305A (en) * 1995-04-10 1996-10-29 Nippon Steel Corp Manufacture of cr-ni base stainless steel without generating surface defect in hot rolling
JPH09279248A (en) * 1996-04-18 1997-10-28 Nippon Steel Corp Production of chrome-nickel stainless hot rolled steel sheet and cold rolled steel sheet excellent in surface quality and workability
JPH10204586A (en) * 1997-01-21 1998-08-04 Hitachi Ltd Austenitic stainless steel excellent in stress corrosion cracking resistance, and its production
JP2000328142A (en) * 1999-05-11 2000-11-28 Nisshin Steel Co Ltd Production of stainless steel strip small in unevenness of gloss
JP2003313643A (en) * 2002-04-24 2003-11-06 Nippon Steel Corp Cr-Ni STAINLESS STEEL THIN-SHEET
JP2005314772A (en) * 2004-04-30 2005-11-10 Nippon Yakin Kogyo Co Ltd Stainless steel sheet to be photo-etched and manufacturing method therefor
KR20110069602A (en) * 2009-12-17 2011-06-23 주식회사 포스코 A method of manufacturing ostenite-origin stainless steel plate by using twin roll strip caster and austenite stainless steel plate manufactured thereby

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02173243A (en) * 1988-12-24 1990-07-04 Nippon Mining Co Ltd Stainless steel excellent in etching workability
JPH07268455A (en) * 1994-03-29 1995-10-17 Nippon Steel Corp Production of cr-ni stainless alloy free from microracking in hot rolling
JPH07292438A (en) * 1994-04-26 1995-11-07 Nippon Steel Corp Austenitic stainless cold rolled steel sheet excellent in oxidation resistance and its production
JPH08281305A (en) * 1995-04-10 1996-10-29 Nippon Steel Corp Manufacture of cr-ni base stainless steel without generating surface defect in hot rolling
JPH09279248A (en) * 1996-04-18 1997-10-28 Nippon Steel Corp Production of chrome-nickel stainless hot rolled steel sheet and cold rolled steel sheet excellent in surface quality and workability
JPH10204586A (en) * 1997-01-21 1998-08-04 Hitachi Ltd Austenitic stainless steel excellent in stress corrosion cracking resistance, and its production
JP2000328142A (en) * 1999-05-11 2000-11-28 Nisshin Steel Co Ltd Production of stainless steel strip small in unevenness of gloss
JP2003313643A (en) * 2002-04-24 2003-11-06 Nippon Steel Corp Cr-Ni STAINLESS STEEL THIN-SHEET
JP2005314772A (en) * 2004-04-30 2005-11-10 Nippon Yakin Kogyo Co Ltd Stainless steel sheet to be photo-etched and manufacturing method therefor
KR20110069602A (en) * 2009-12-17 2011-06-23 주식회사 포스코 A method of manufacturing ostenite-origin stainless steel plate by using twin roll strip caster and austenite stainless steel plate manufactured thereby

Also Published As

Publication number Publication date
JP7296756B2 (en) 2023-06-23

Similar Documents

Publication Publication Date Title
KR101528084B1 (en) High strength hot rolled steel sheet having excellent blanking workability and method for manufacturing the same
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP6842546B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2016510361A (en) 780 MPa class cold rolled duplex steel and method for producing the same
JP2008163452A (en) Martensitic stainless steel excellent in corrosion resistance
JP5843019B2 (en) Stainless steel sheet and its manufacturing method
JP2015004081A (en) High-yield-ratio high-strength hot-rolled steel sheet which is reduced in variation of strength in coil width direction and is excellent in toughness and production method thereof
JP2023507594A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2013185183A (en) Soft magnetic stainless steel fine wire and method for producing the same
JP2020020024A (en) Austenite stainless steel sheet and manufacturing method therefor
JPWO2019054390A1 (en) Austenitic stainless steel and manufacturing method thereof
JP5311942B2 (en) Stainless steel for brazing
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP6093063B1 (en) High-strength stainless steel material excellent in workability and its manufacturing method
JP2023507436A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7296756B2 (en) Stainless steel plate and its manufacturing method
JP4469269B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and manufacturing method thereof
JP2023554663A (en) Non-oriented electrical steel sheet and its manufacturing method
JP6816844B1 (en) Austenitic stainless steel plate
KR20140032061A (en) Method of manufacturing duplex stainless steel using post heat treatment
JP2013227669A (en) Duplex phase stainless steel with good acid resistance
JP5831196B2 (en) Manufacturing method of thick taper plate with tensile strength of 510 MPa or more and thickness part of 60 mm or more
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method
KR20170029601A (en) Ferritic stainless steel sheet
CN112955577B (en) Austenitic high-manganese steel material for ultralow temperature having excellent scale peelability and method for producing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230613

R150 Certificate of patent or registration of utility model

Ref document number: 7296756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150