JP2013227669A - Duplex phase stainless steel with good acid resistance - Google Patents

Duplex phase stainless steel with good acid resistance Download PDF

Info

Publication number
JP2013227669A
JP2013227669A JP2013065246A JP2013065246A JP2013227669A JP 2013227669 A JP2013227669 A JP 2013227669A JP 2013065246 A JP2013065246 A JP 2013065246A JP 2013065246 A JP2013065246 A JP 2013065246A JP 2013227669 A JP2013227669 A JP 2013227669A
Authority
JP
Japan
Prior art keywords
less
stainless steel
acid resistance
duplex stainless
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013065246A
Other languages
Japanese (ja)
Other versions
JP6134553B2 (en
Inventor
Yuji Urashima
裕史 浦島
Akira Matsuhashi
亮 松橋
Shinji Tsuge
信二 柘植
Haruhiko Kajimura
治彦 梶村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2013065246A priority Critical patent/JP6134553B2/en
Publication of JP2013227669A publication Critical patent/JP2013227669A/en
Application granted granted Critical
Publication of JP6134553B2 publication Critical patent/JP6134553B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a general-purpose duplex phase stainless steel that achieves cost reduction of alloy elements by reducing Ni content and suppresses deterioration of acid resistance without promoting deposition of nitride.SOLUTION: A duplex phase stainless steel with good acid resistance includes, in mass%, 0.06% or less C, 0.1-1.5% Si, 4.0-10.0% Mn, 0.05% or less P, 0.005% or less S, 20.0-24.0% Cr, 0.5-4.0% Ni, 2.0-4.0% Mo, 0.1-2.5% Cu, 0.003-0.050% Al, 0.007% or less O, 0.10-0.30% N, and the balance being Fe and unavoidable impurities. In the duplex phase stainless steel, an area ratio of the ferrite phase is 40-70%, (1) GI represented in an expression 1 is 50 or more but 200 or less, (2) GIα is 55 or more, (3) GIdif represented in an expression 2 is 0 or more. The expression 1: GI=-Cr+18Ni+30Cu-10Mn+35Mo, the expression 2: GIdif=GIα-GIγ. In the expression 2, GIα and GIγ are the value calculated by the expression 1 using element contents (mass%) in the ferrite phase and austenitic phase respectively.

Description

本発明は、オーステナイト相とフェライト相の二相を持つ二相ステンレス鋼のうち、汎用二相ステンレス鋼において、安価でかつ耐酸性・製造性が良好な汎用二相ステンレス鋼に関するものであって、高価なNiから安価なNへの代替量を増加することができ、低コストながらも、オーステナイト相の優先溶解を利用することでMnによる耐酸性低下を抑制し、低コストかつ耐酸性・製造性を阻害しない耐酸性良好な二相ステンレス鋼に係るものである。   The present invention relates to a general-purpose duplex stainless steel, which is inexpensive and has good acid resistance and manufacturability, among the duplex stainless steels having two phases of an austenite phase and a ferrite phase, The amount of replacement from expensive Ni to cheap N can be increased, and while lowering the cost, acid degradation due to Mn is suppressed by utilizing the preferential dissolution of the austenite phase, resulting in low cost, acid resistance and manufacturability It relates to a duplex stainless steel with good acid resistance that does not impede.

二相ステンレス鋼は鋼の組織にオーステナイト相とフェライト相の両相を持ち、高強度高耐食性の材料として以前から石油化学装置材料、ポンプ材料、ケミカルタンク用材料等に使用されている。更に、二相ステンレス鋼は一般に低Niの成分系であることから、直近の金属原料高騰状況に伴い、ステンレス鋼の主流であるオーステナイト系ステンレス鋼より合金コストが低くかつ変動が少ない材料として注目を浴びている。   Duplex stainless steel has both an austenite phase and a ferrite phase in the steel structure, and has been used for petrochemical equipment materials, pump materials, chemical tank materials, etc. as a material having high strength and high corrosion resistance. Furthermore, since duplex stainless steel is generally a low Ni component system, it has been attracting attention as a material with lower alloy costs and less fluctuation than the austenitic stainless steel, which is the mainstream of stainless steel, due to the recent surge in metal raw materials. I'm bathing.

二相ステンレス鋼の直近のトピックとして低コスト化とその使用量増加がある。低い合金コストのメリットを更に増大させた鋼種で、特許文献1、2等が該当する。いずれもASTM−A240で規格化されており、特許文献1はS32101(代表成分22Cr−1.5Ni−5Mn−0.22N)に対応し、特許文献2はS82441(代表成分24Cr−3.6Ni−3Mn−0.27N)に対応する。いずれも、JIS規格のSUS329J3LやASTM規格のS31803およびS32205のような汎用タイプの二相ステンレス鋼において、高価なNiを安価なMnに代替し、さらに高価なMoを安価なCu、Nの増量で代替することで、低コスト化を図ったものである。また、相間の成分を規定したものに特許文献3があり、該文献によれば、フェライト相とオーステナイト相の耐孔食性の差が小さくなるような規定をすることで、二相ステンレス鋼の耐食性が改善できるとしている。   The latest topics of duplex stainless steel are cost reduction and increased usage. Patents 1, 2 and the like correspond to steel types that further increase the merit of low alloy costs. Both are standardized by ASTM-A240, Patent Document 1 corresponds to S32101 (representative component 22Cr-1.5Ni-5Mn-0.22N), and Patent Document 2 is S82441 (representative component 24Cr-3.6Ni-). 3Mn-0.27N). In either case, in general-purpose type duplex stainless steels such as JIS standard SUS329J3L and ASTM standards S31803 and S32205, expensive Ni is replaced with inexpensive Mn, and expensive Mo is replaced with inexpensive Cu and N. By substituting it, cost reduction was achieved. Further, there is Patent Document 3 that defines the components between the phases. According to the document, by specifying that the difference in pitting corrosion resistance between the ferrite phase and the austenite phase is reduced, the corrosion resistance of the duplex stainless steel is disclosed. Can be improved.

WO2002/27056号公報WO2002 / 27056 WO2010/070202号公報WO 2010/070202 特開2003−293090号公報JP 2003-293090 A

Luhua Zhang et al.:Electrochimica Acta, 54(2009), p5387−5392Luhua Zhang et al. : Electrochimica Acta, 54 (2009), p5387-5392

これらの中で特に酸を使用する環境で用いられ耐食性が要求される汎用型二相ステンレス鋼であるS31803を低コスト化する際に耐酸性の低下および特性の劣化が問題となる。低コスト化のため、高価なNiを低減する成分設計をおこなう場合、その耐酸性向上効果が失われる上、相バランスが崩れることにより、窒化物が析出し、特性の低下をまねくという課題があった。   Among these, when reducing the cost of S31803, which is a general-purpose duplex stainless steel that is used in an environment where an acid is used and requires corrosion resistance, reduction of acid resistance and deterioration of characteristics become problems. When designing a component to reduce expensive Ni for cost reduction, the acid resistance improvement effect is lost, and the phase balance is lost, resulting in precipitation of nitrides, leading to deterioration of properties. It was.

本発明では、高価なNi成分を低減しても耐酸性の低下を押さえ、かつ窒化物の析出を抑制し、酸環境中で使用する際の課題を少なくした経済的な汎用型二相ステンレス鋼を提供することを目的とする。   In the present invention, an economical general-purpose duplex stainless steel that suppresses a decrease in acid resistance even when an expensive Ni component is reduced, suppresses precipitation of nitrides, and reduces problems when used in an acid environment. The purpose is to provide.

本発明者らはCrが24%以下、Moが4.0%以下、Niが4.0%以下の成分系をベースとした、低コスト化による耐酸性の低下を抑制する方法について詳細に調査した結果、改善策について以下の知見を得た。   The present inventors have investigated in detail a method for suppressing a decrease in acid resistance due to cost reduction based on a component system in which Cr is 24% or less, Mo is 4.0% or less, and Ni is 4.0% or less. As a result, the following knowledge about the improvement measures was obtained.

単相ステンレス鋼の場合、耐酸性および耐孔食性は、添加元素量と対応しているといわれている。そこで、上記ベース成分系において種々添加量を変更して試験鋼片を作成し、腐食試験により耐酸性および耐孔食性におよぼす各元素の抑制効果、促進効果の大きさを具体的に数値化した。その結果、上記環境で使用するためには、(1)式で表されるGI値を50以上にする必要があることが分かった。
GI=−Cr+18Ni+30Cu−10Mn+35Mo・・・・・(1)
但し、式中の各元素名は何れもその含有量を表す(質量%)
また、式中の元素のうち、含有しないものや、その含有量が不明である場合は、当該元素を0として計算する。
In the case of single phase stainless steel, it is said that acid resistance and pitting corrosion resistance correspond to the amount of additive elements. Therefore, test steel slabs were prepared by changing various addition amounts in the above-mentioned base component system, and the magnitude of the suppression effect and acceleration effect of each element on acid resistance and pitting corrosion resistance was specifically quantified by a corrosion test. . As a result, it was found that the GI value represented by the formula (1) needs to be 50 or more in order to use in the above environment.
GI = -Cr + 18Ni + 30Cu-10Mn + 35Mo (1)
However, each element name in the formula represents its content (mass%)
In addition, when an element in the formula is not contained or its content is unknown, the element is calculated as 0.

さらに発明者らは、断面観察をすることで、フェライトとオーステナイトの溶解相が変化することを見出した。特に、個別に分布するオーステナイト相が優先溶解し、母相であるフェライト相が障壁として腐食の進行を防止する場合、耐酸性が良好であることが分かった。すなわち、オーステナイトではなく、フェライトの耐酸性が二相ステンレスの耐酸性に大きく影響し、フェライト相のGI値を制御することが、有効であることを見出した。成分を分析した結果、フェライト中のGI値 GIαが55以上の場合耐酸性は良好となることが分かった。   Furthermore, the inventors have found that the dissolved phase of ferrite and austenite changes by observing the cross section. In particular, it was found that when the austenite phase distributed individually is preferentially dissolved and the ferrite phase as a parent phase serves as a barrier to prevent the progress of corrosion, the acid resistance is good. That is, it has been found that it is effective to control the GI value of the ferrite phase because the acid resistance of ferrite, not austenite, greatly affects the acid resistance of the duplex stainless steel. As a result of analyzing the components, it was found that when the GI value GIα in the ferrite is 55 or more, the acid resistance is good.

また、単にフェライト相の耐酸性を向上させれば良いのではなく、相間の耐酸性差も重要であることを見出した。つまり、前記特許文献3のようにフェライト相とオーステナイト相の差を小さくすれば良いのではなく、逆に相間の耐酸性差を大きくしたほうが耐酸性に有効であることが分かった。この相間の耐酸性差は(2)式で表され、本発明の効果を得るためには、GIdifが0以上必要であり、特に10以上の鋼種では、耐酸効果がさらに高まる傾向があった。
GIdif=GIα−GIγ・・・(2)
但し、式中のGIαは、フェライト相中の元素含有量で計算したGI値を意味し、GIγは、オーステナイト相中の元素含有量で計算したGI値を意味する。
Further, it has been found that the acid resistance of the ferrite phase is not simply improved but the acid resistance difference between the phases is also important. That is, it has been found that it is not necessary to reduce the difference between the ferrite phase and the austenite phase as in Patent Document 3, and conversely, increasing the acid resistance difference between the phases is more effective for acid resistance. The acid resistance difference between the phases is expressed by the formula (2). In order to obtain the effect of the present invention, GIdif is required to be 0 or more, and particularly in steel types of 10 or more, the acid resistance effect tends to be further enhanced.
GIdif = GIα−GIγ (2)
However, GIα in the formula means a GI value calculated by the element content in the ferrite phase, and GIγ means a GI value calculated by the element content in the austenite phase.

本発明者らは、以上の知見を基に、成分組成の設計を行った。上記(1)式を見ると分かるように、GI値は、Ni、Cu、Moの添加量増加と、Cr、Mn量減少により大きな値を取る。その中で、フェライト相に濃縮し、フェライト相の耐酸性を高める効果が大きいMoを減少させることなく、オーステナイト相に濃縮し、フェライト相の耐酸性に与える影響が小さい、高価なNiを低下することでコスト改善を図った。しかしながら、Niの減少にともない、オーステナイト相も減少してしまうため、相バランスの調整が必要となる。低コストながらもオーステナイト相を増やす効果が期待できるものは、N、Cuである。CuはNに比べ、オーステナイト相増加効果が少ない上、多量に添加すると熱間脆性を引き起こしてしまことがあるため、N添加による改善を試みた。   The present inventors designed the component composition based on the above knowledge. As can be seen from the above equation (1), the GI value takes a larger value by increasing the amount of addition of Ni, Cu, and Mo and decreasing the amount of Cr and Mn. Among them, it concentrates in the ferrite phase and does not decrease Mo, which has a large effect of increasing the acid resistance of the ferrite phase, but concentrates in the austenite phase, reducing the effect on the acid resistance of the ferrite phase and lowering expensive Ni In this way, the cost was improved. However, since the austenite phase also decreases as Ni decreases, it is necessary to adjust the phase balance. N and Cu can be expected to increase the austenite phase at a low cost. Since Cu has a smaller effect on increasing the austenite phase than N, and when added in a large amount, it may cause hot brittleness. Therefore, improvement was attempted by adding N.

しかしながら、Nを添加することによりオーステナイト相増加効果は高いものの、製造時に窒化物を析出し、Cr欠乏層の形成による耐食性の低下および靭性の劣化を引き起こしてしまう。そのため、Mn添加により窒化物の析出抑制を図った。前述の様にMnは耐酸性を悪化させる元素であるが、予想よりも耐酸性の悪化が小さかった。この効果の詳細なメカニズムは不明であるが、上述した相間の耐酸性差を制御することによって、これまでの二相鋼と異なり、Mnが濃化しているオーステナイト相が先に溶解するため、表面のMn濃度が低下し、耐酸性に及ぼす悪影響が小さくなるためであると推測される。このようにMnを添加することで、製造時の窒化物析出の抑制と耐酸性の確保を両立させることに成功した。   However, although the effect of increasing the austenite phase is high by adding N, nitrides are precipitated during production, which causes a decrease in corrosion resistance and a deterioration in toughness due to the formation of a Cr-deficient layer. Therefore, the precipitation of nitride was suppressed by adding Mn. As described above, Mn is an element that deteriorates acid resistance, but the deterioration of acid resistance was smaller than expected. The detailed mechanism of this effect is unknown, but by controlling the acid resistance difference between the phases described above, unlike the conventional duplex stainless steel, the austenite phase in which Mn is concentrated dissolves first. This is presumably because the Mn concentration decreases and the adverse effect on acid resistance is reduced. Thus, by adding Mn, it succeeded in making the suppression of nitride precipitation at the time of manufacture and ensuring acid resistance compatible.

以上のように、本発明者らは、新たに得た知見に基づいて成分を規定することで、低コストかつ耐酸性が良好な成分を両立し得る条件を詳細に検討し、本発明の完成に至った。   As described above, the present inventors have studied in detail the conditions under which both low cost and good acid resistance can be achieved by prescribing the components based on the newly obtained knowledge, and the completion of the present invention. It came to.

以上の知見より、本発明の要旨とするところは以下の通りである。
即ち、
(1)質量%にて、
C:0.06%以下、 Si:0.1〜1.5%、 Mn:4.0〜10.0%、 P:0.05%以下、 S:0.005%以下、 Cr:20.0〜24.0%、
Ni:0.5〜4.0%、Mo:2.0〜4.0%、 Cu:0.1〜2.5%、
Al:0.003〜0.050%、O:0.007%以下、N:0.10〜0.30%を含有し、残部がFeおよび不可避的不純物からなり、且つ、下記(1)〜(3)を満たすとともに、フェライト相面積率が40〜70%であることを特徴とする耐酸性良好な二相ステンレス鋼。
(1)(1)式で表されるGIが50以上200以下
(2)GIαが55以上
(3)(2)式で表されるGIdifが0以上
GI=−Cr+18Ni+30Cu−10Mn+35Mo・・・・(1)
GIdif=GIα−GIγ・・・(2)
但し、上記の式において各元素名は何れもその含有量(質量%)を表す。
また、GIαは、フェライト相中の元素含有量で計算したGI値を意味し、
GIγは、オーステナイト相中の元素含有量で計算したGI値を意味する。
(2)更に、質量%でTi:0.003〜0.050%、Nb:0.01〜0.20%の1種または2種を含有することを特徴とする前記(1)に記載の耐酸性良好な二相ステンレス鋼。
(3)更に、質量%でCa:0.0050以下%、Mg:0.0030以下%、B:0.0005〜0.0050%、REM:0.10%以下の1種または2種以上を含有することを特徴とする前記(1)または(2)に記載の耐酸性良好な二相ステンレス鋼。
(4)更に、質量%でSn:0.03〜0.2%、V:0.05〜0.5%、Co:2.0%以下の1種または2種以上を含有することを特徴とする前記(1)〜(3)の何れかに記載の耐酸性良好な二相ステンレス鋼。
(5)更に、L断面のオーステナイト相の長径Lγの平均が50μm以上かつ(4)式を満たすことを特徴とする前記(1)〜(4)の何れかに記載の耐酸性良好な二相ステンレス鋼。
1000≦Lγ×t≦10000・・・(4)
tは、製品板厚(mm)を示す。
(6)少なくとも熱間圧延工程と最終熱処理工程とを含む二相ステンレス鋼の製造方法であって、該熱間圧延工程において、オーステナイト相が40%以上存在する温度領域Tγ40で、元スラブ厚に対する累積板厚減少率R値が5%〜50%熱間圧延し、該最終熱処理工程において、900〜1100℃で熱処理することを特徴とする前記(1)〜(5)のいずれか1項に記載の耐酸性良好な汎用型二相ステンレス鋼の製造方法。
From the above findings, the gist of the present invention is as follows.
That is,
(1) In mass%,
C: 0.06% or less, Si: 0.1-1.5%, Mn: 4.0-10.0%, P: 0.05% or less, S: 0.005% or less, Cr: 20. 0-24.0%,
Ni: 0.5-4.0%, Mo: 2.0-4.0%, Cu: 0.1-2.5%,
Al: 0.003 to 0.050%, O: 0.007% or less, N: 0.10 to 0.30%, the balance is made of Fe and inevitable impurities, and the following (1) to A duplex stainless steel with good acid resistance characterized by satisfying (3) and having a ferrite phase area ratio of 40 to 70%.
(1) GI represented by formula (1) is 50 or more and 200 or less (2) GIα is 55 or more (3) GIdif represented by formula (2) is 0 or more GI = −Cr + 18Ni + 30Cu-10Mn + 35Mo 1)
GIdif = GIα−GIγ (2)
However, each element name in said formula represents the content (mass%).
GIα means the GI value calculated by the element content in the ferrite phase,
GIγ means a GI value calculated from the element content in the austenite phase.
(2) Further, by mass%, Ti: 0.003 to 0.050%, Nb: 0.01 to 0.20% 1 type or 2 types are contained, The above-mentioned (1) Duplex stainless steel with good acid resistance.
(3) Further, by mass%, one or more of Ca: 0.0050 or less, Mg: 0.0030 or less, B: 0.0005 to 0.0050%, REM: 0.10% or less. The duplex stainless steel with good acid resistance according to (1) or (2), characterized in that it is contained.
(4) Further, it contains one or more of Sn: 0.03 to 0.2%, V: 0.05 to 0.5%, and Co: 2.0% or less in mass%. The duplex stainless steel having good acid resistance according to any one of (1) to (3).
(5) Furthermore, the average of the major axis Lγ of the austenite phase of the L cross section is 50 μm or more and satisfies the formula (4). The two-phase excellent acid resistance according to any one of the above (1) to (4) Stainless steel.
1000 ≦ Lγ × t ≦ 10000 (4)
t represents the product plate thickness (mm).
(6) A method for producing a duplex stainless steel including at least a hot rolling step and a final heat treatment step, in the hot rolling step, in a temperature region Tγ40 in which an austenite phase is present at 40% or more, with respect to the original slab thickness. In any one of the above (1) to (5), the cumulative sheet thickness reduction rate R value is 5% to 50% hot-rolled, and heat-treated at 900 to 1100 ° C in the final heat treatment step. A method for producing a general-purpose duplex stainless steel having good acid resistance as described.

本発明によれば、合金コストを低下した汎用タイプ二相ステンレス鋼において大きな課題の一つである耐酸性低下の抑制を、製造性を阻害することなく解決することが出来る。その結果、合金コストを低下した汎用タイプ二相ステンレス鋼において、耐酸性が課題となっていた用途への拡大が図れ、産業上寄与するところは極めて大である。   ADVANTAGE OF THE INVENTION According to this invention, suppression of the acid-resistant fall which is one of the big problems in the general purpose type duplex stainless steel which reduced the alloy cost can be solved, without inhibiting manufacturability. As a result, general-purpose duplex stainless steel with reduced alloy costs can be expanded to applications where acid resistance has been an issue, and the industrial contribution is extremely large.

以下に本発明を詳細に説明する。
以下に先ず、本発明の請求項1記載の限定理由について説明する。なお、成分についての%は、質量%を意味する。
Cは、ステンレス鋼の耐食性を確保するために、0.06%以下の含有量に制限する。0.06%を越えて含有させるとCr炭化物が生成して、耐食性が劣化する。好ましくは、0.04%以下である。一方、含有量を極端に減ずることは大幅なコストアップになるため、好ましくは下限を0.001%とする。
The present invention is described in detail below.
First, the reason for limitation according to claim 1 of the present invention will be described. In addition,% about a component means the mass%.
C limits the content to 0.06% or less in order to ensure the corrosion resistance of the stainless steel. If the content exceeds 0.06%, Cr carbide is generated and the corrosion resistance is deteriorated. Preferably, it is 0.04% or less. On the other hand, since extremely reducing the content significantly increases the cost, the lower limit is preferably made 0.001%.

Siは、脱酸のため0.1%以上添加する。しかしながら、1.5%を超えて添加すると靱性が劣化する。そのため、上限を1.5%に限定する。好ましい範囲は、0.2〜1.0%である。   Si is added in an amount of 0.1% or more for deoxidation. However, if added over 1.5%, the toughness deteriorates. Therefore, the upper limit is limited to 1.5%. A preferable range is 0.2 to 1.0%.

Mnは、二相ステンレス鋼中の窒化物の析出を抑制することから、4.0%以上添加する。しかしながら、10.0%を超えて添加すると耐酸性が劣化する。そのため、上限を10.0%に限定する。好ましい範囲は、4.0超〜8.0%であり、更に好ましくは5.0〜6.5%である。   Mn is added in an amount of 4.0% or more because it suppresses precipitation of nitrides in the duplex stainless steel. However, if it exceeds 10.0%, the acid resistance deteriorates. Therefore, the upper limit is limited to 10.0%. A preferable range is from more than 4.0 to 8.0%, and more preferably from 5.0 to 6.5%.

Pは、鋼中に不可避的に含有される元素であって、熱間加工性を劣化させるため、0.05%以下に限定する。好ましくは0.03%以下である。一方、含有量を極端に減ずることは大幅なコストアップになるため、好ましい下限は0.005%である。   P is an element inevitably contained in the steel and is limited to 0.05% or less in order to deteriorate the hot workability. Preferably it is 0.03% or less. On the other hand, since reducing the content extremely increases the cost, the preferable lower limit is 0.005%.

Sは、Pと同様に鋼中に不可避的に含有される元素であって、熱間加工性および耐食性をも劣化させるため、0.005%以下に限定する。好ましくは、0.002%以下である。一方、含有量を極端に減ずることは大幅なコストアップになるため、好ましくは下限を0.0001%とする。   S is an element inevitably contained in steel like P, and is also limited to 0.005% or less in order to deteriorate hot workability and corrosion resistance. Preferably, it is 0.002% or less. On the other hand, reducing the content extremely increases the cost significantly, so the lower limit is preferably made 0.0001%.

Crは、耐食性を確保するために基本的に必要な元素である上、比較的安価な合金であるため、本発明では20.0%以上含有させる。一方、フェライト相を増加させる元素であり、24.0%を超えて含有させるとフェライト量が過多となり耐食性を害する。好ましくは21.0%以上23.0%以下とする。   Cr is an element that is basically necessary to ensure corrosion resistance, and is a relatively inexpensive alloy. Therefore, in the present invention, Cr is contained in an amount of 20.0% or more. On the other hand, it is an element that increases the ferrite phase. If the content exceeds 24.0%, the amount of ferrite becomes excessive and the corrosion resistance is impaired. Preferably, the content is 21.0% or more and 23.0% or less.

Niは、二相ステンレス鋼中のオーステナイト相を増加させることおよび各種酸に対する耐食性を改善するのに有効な元素であり、0.5%以上添加させるが、高価な合金であるため本発明では可能な限り抑制し、4.0%以下とする。好ましい範囲は、1.0〜3.0%である。   Ni is an element effective for increasing the austenite phase in the duplex stainless steel and improving the corrosion resistance against various acids, and is added in an amount of 0.5% or more. Suppress it as much as possible and make it 4.0% or less. A preferable range is 1.0 to 3.0%.

Moは、ステンレス鋼の耐食性を付加的に高める非常に有効な元素であり2.0%以上添加する。しかしながら、非常に高価な元素であるため本発明では可能な限り抑制し、その上限を4.0%以下と規定した。好ましい範囲は、2.5〜3.5%である。   Mo is a very effective element that additionally increases the corrosion resistance of stainless steel, and is added in an amount of 2.0% or more. However, since it is a very expensive element, it is suppressed as much as possible in the present invention, and the upper limit is defined as 4.0% or less. A preferable range is 2.5 to 3.5%.

CuはNiと同様二相ステンレス鋼中のオーステナイト相を増加させることおよび各種酸に対する耐食性を改善するのに有効な元素であり、かつNiと比べて安価な合金であるため本発明では0.1%以上添加するが、2.5%を越えて含有させると熱間加工性を阻害するので上限を2.5%とした。好ましい範囲は、0.5%〜2.0%である。   Cu is an element effective for increasing the austenite phase in the duplex stainless steel and improving the corrosion resistance against various acids like Ni, and is an inexpensive alloy compared with Ni. However, if the content exceeds 2.5%, the hot workability is impaired, so the upper limit was made 2.5%. A preferred range is 0.5% to 2.0%.

Alは、鋼の脱酸のための重要な元素であり、鋼中の酸素を低減するために0.003%以上の含有が必要である。一方でAlはNとの親和力が比較的大きな元素であり、過剰に添加するとAlNを生じて母材の靭性を阻害する。その程度はN含有量にも依存するが、Alが0.050%を越えると靭性低下が著しくなるためその含有量の上限を0.050%と定めた。好ましくは0.030%以下である。   Al is an important element for deoxidation of steel, and it is necessary to contain 0.003% or more in order to reduce oxygen in the steel. On the other hand, Al is an element having a relatively large affinity with N, and if added excessively, AlN is generated and the toughness of the base material is inhibited. The degree depends on the N content, but when Al exceeds 0.050%, the toughness deteriorates remarkably, so the upper limit of the content is set to 0.050%. Preferably it is 0.030% or less.

Oは、非金属介在物の代表である酸化物を構成する有害な元素であり、過剰な含有は靭性を阻害する。また粗大なクラスター状酸化物が生成すると表面疵の原因となる。このためその含有量の上限を0.007%と定めた。好ましくは0.005%以下である。一方、過度に低減することはコストの増加につながるため、好ましい下限を0.0005%とする。   O is a harmful element constituting an oxide that is representative of nonmetallic inclusions, and excessive inclusion inhibits toughness. In addition, the formation of coarse clustered oxides causes surface defects. For this reason, the upper limit of the content was set to 0.007%. Preferably it is 0.005% or less. On the other hand, since excessive reduction leads to an increase in cost, the preferable lower limit is made 0.0005%.

Nは、オーステナイト相に固溶して強度、耐食性を高めると共に母材および熱影響部のオーステナイト相を増加させる有効な元素である。このために0.10%以上含有させる。一方、0.30%を越えて含有させると製造時にCr窒化物が析出して耐食性の低下を引き起こすため含有量の上限を0.30%とした。好ましい含有量は0.15〜0.25%である。   N is an effective element that dissolves in the austenite phase to increase strength and corrosion resistance and increase the austenite phase of the base material and the heat-affected zone. For this purpose, 0.10% or more is contained. On the other hand, if the content exceeds 0.30%, Cr nitride precipitates at the time of manufacture and causes a decrease in corrosion resistance. Therefore, the upper limit of the content was set to 0.30%. A preferable content is 0.15 to 0.25%.

Ti、Nbは、極微量で窒化物を形成しCr窒化物の析出を抑制する効果があり、必要に応じて1種または2種を添加することが出来る。
Tiに関しては、上記効果を発揮するには0.003%以上の添加が必要である。
一方0.050%を越えて二相ステンレス鋼に含有させると粗大なTiNが生成して鋼の靭性を阻害するようになる。このためその含有量を0.003〜0.050%と定めた。好ましくは、0.003〜0.020%である。
Ti and Nb have an effect of forming a nitride in a very small amount and suppressing the precipitation of Cr nitride, and one or two of them can be added as necessary.
Regarding Ti, 0.003% or more of addition is necessary to exhibit the above effect.
On the other hand, if it exceeds 0.050% and is contained in the duplex stainless steel, coarse TiN is generated and the toughness of the steel is inhibited. For this reason, the content was defined as 0.003 to 0.050%. Preferably, it is 0.003 to 0.020%.

Nbは、上記のCr窒化物の析出を抑制する効果に加え、更に耐食性を高める作用も有する。また、Nbが形成する窒化物、炭化物は熱間加工および熱処理の過程で生成し、結晶粒成長を抑制し、鋼材を強化する作用を有する。このために必要に応じて0.01%以上含有させる。一方過剰な添加は熱間圧延前の加熱時に未固溶析出物として析出するようになって靭性を阻害するようになるためその含有量の上限を0.20%と定めた。好ましくは、0.01%〜0.10%である。   Nb has the effect of further improving corrosion resistance in addition to the effect of suppressing the precipitation of Cr nitride. Further, nitrides and carbides formed by Nb are generated in the course of hot working and heat treatment, and have the action of suppressing crystal grain growth and strengthening the steel material. For this purpose, 0.01% or more is contained as necessary. On the other hand, excessive addition causes precipitation as an undissolved precipitate during heating before hot rolling and impairs toughness, so the upper limit of its content was set to 0.20%. Preferably, it is 0.01% to 0.10%.

Ca,Mg,B,REMは、それぞれ熱間加工性を向上させる元素であり、必要に応じて添加することが出来る。この効果を得るためには、Ca:0.0050%以下、Mg:0.0030%以下、B:0.0005〜0.0050%、REM:0.10%以下の1種または2種以上を添加する必要がある。また、いずれも上限を超えると靭性を低下するため、添加する場合は各上限値までとする。好ましくは、Ca:0.0010〜0.0050%、Mg:0.0001〜0.0015%、B:0.0005〜0.0030%、REM:0.005〜0.05%である。ここでREMはLaやCe等のランタノイド系希土類元素の含有量の総和とする。   Ca, Mg, B, and REM are elements that improve hot workability, and can be added as necessary. In order to obtain this effect, one or more of Ca: 0.0050% or less, Mg: 0.0030% or less, B: 0.0005 to 0.0050%, REM: 0.10% or less are used. It is necessary to add. Moreover, since the toughness will fall when all exceed an upper limit, when adding, it is set to each upper limit. Preferably, they are Ca: 0.0010-0.0050%, Mg: 0.0001-0.0015%, B: 0.0005-0.0030%, REM: 0.005-0.05%. Here, REM is the total content of lanthanoid rare earth elements such as La and Ce.

Sn,V,Coは、それぞれ耐食性を向上させる元素であり、必要に応じて添加することが出来る。この効果を得るためには、Sn:0.03〜0.2%、V:0.05〜0.5%、Co:2.0%以下の1種または2種以上を添加することが必要である。一方、それぞれ上限を超えると、SnおよびVは熱間加工性を阻害し、Coはコストが高くなるため、添加する場合は各上限値までとする。Coの好ましい範囲は、0.03〜1.0%である。   Sn, V, and Co are elements that improve corrosion resistance, and can be added as necessary. In order to obtain this effect, it is necessary to add one or more of Sn: 0.03-0.2%, V: 0.05-0.5%, Co: 2.0% or less It is. On the other hand, if the upper limit is exceeded, Sn and V impair hot workability, and Co increases the cost. A preferable range of Co is 0.03 to 1.0%.

なお、当該二相鋼において良好な特性を得るためにはフェライト相面積率を40〜70%の範囲にすることが必要である。40%未満では靱性不良が、70%超では熱間加工性、応力腐食割れの問題が出てくる。また、何れの場合も耐食性が不良となる。   In addition, in order to obtain a favorable characteristic in the said duplex stainless steel, it is necessary to make a ferrite phase area ratio into the range of 40 to 70%. If it is less than 40%, poor toughness occurs, and if it exceeds 70%, problems of hot workability and stress corrosion cracking occur. In either case, the corrosion resistance is poor.

さらに、本発明ではGIを耐酸性の指標として設定する。GIが大きいほど、金属母地の腐食速度が小さいため、板厚が減少しにくく、GIが小さいほど金属母地の腐食速度が大きく、板厚が減少しやすい。前述のように耐酸性は、合金元素添加量によって決定され、GIによりあらわすことができる。具体的には、下記(1)式で表されるGI値が50以上200以下であればよい。
GI =−Cr+18Ni+30Cu−10Mn+35Mo・・・・・・・(1)
GI値が50未満の場合、金属母地の耐酸性が劣るため、耐酸性を必要とする用途に適用することが出来ない。また、200を超えると効果が飽和し、コストが増大するのみとなるため、上限を200に限定する。好ましくは、75〜175である。
Furthermore, in the present invention, GI is set as an acid resistance index. The larger the GI, the lower the corrosion rate of the metal base, and thus the more difficult the plate thickness decreases. The smaller the GI, the higher the corrosion rate of the metal base and the thickness tends to decrease. As described above, the acid resistance is determined by the amount of alloy element added and can be expressed by GI. Specifically, the GI value represented by the following formula (1) may be 50 or more and 200 or less.
GI = −Cr + 18Ni + 30Cu-10Mn + 35Mo (1)
When the GI value is less than 50, the acid resistance of the metal matrix is inferior, so that it cannot be applied to uses that require acid resistance. Moreover, since an effect will be saturated and only cost will increase when it exceeds 200, an upper limit is limited to 200. Preferably, it is 75-175.

また、本発明においては、上述した知見に基づき、フェライト相の耐酸性を規定する必要がある。フェライト相中の含有元素量にて、上記GI値を計算したものをGIαとした場合に、GIαは55以上必要である。GIαが55未満である場合、フェライト相の耐酸性が十分でなく、耐酸性を必要とする用途に適用することが出来ない。   Moreover, in this invention, it is necessary to prescribe | regulate the acid resistance of a ferrite phase based on the knowledge mentioned above. GIα needs to be 55 or more when GIα is calculated by calculating the GI value based on the amount of elements contained in the ferrite phase. When GIα is less than 55, the ferrite phase has insufficient acid resistance and cannot be applied to uses that require acid resistance.

また、GIdifは、フェライト相とオーステナイト相のGI値の差を示すものであり、GIdifが大きいほど、オーステナイト相の溶解が促進され、フェライト相の耐酸性が向上する。具体的には、下記(2)式で表されるGIdif値が0以上であればよい。好ましくは10以上である。
GIdif=GIα−GIγ・・・(2)
なお、GIα、及びGIγは、それぞれ実施例で後述する方法によって各相中の元素含有量を測定し、GIを求める(1)式にその含有量を代入することで算出することが可能である。また、GIdifを制御する方法、つまり、フェライト相とオーステナイト相にそれぞれ含有する元素量を制御することは、公知の方法を用いることが出来る。例えば、非特許文献1に記載の方法を用いることが出来る。
GIdif indicates the difference between the GI values of the ferrite phase and the austenite phase. The larger the GIdif, the more the dissolution of the austenite phase is promoted and the acid resistance of the ferrite phase is improved. Specifically, the GIdif value expressed by the following formula (2) may be 0 or more. Preferably it is 10 or more.
GIdif = GIα−GIγ (2)
Note that GIα and GIγ can be calculated by measuring the element content in each phase by the method described later in the examples and substituting the contents into equation (1) for obtaining GI. . Further, a known method can be used to control GIdif, that is, to control the amounts of elements contained in the ferrite phase and the austenite phase, respectively. For example, the method described in Non-Patent Document 1 can be used.

さらに、オーステナイト相の形状を制御することで、さらなる耐酸性の向上効果が達成できることが明らかとなった。検討の結果、オーステナイト相がより長く伸展している場合、耐酸性向上効果が見られ、その長さLγは50μm以上であることが分かった。一般的な850〜1150℃で熱処理した場合、Lγは熱処理温度が低いほど大きくなる傾向が見られた。また、オーステナイト相の長さLγと、製品板厚tには相関関係があり、tが小さくなるほど、Lγは大きくなり、その積Lγ×tを製造性の指標とすることができる。検討の結果、Lγ×tが1000以上10000以下の場合、製造性が良好であった。1000≦Lγ×t≦10000とする。   Furthermore, it became clear that the further acid-proof improvement effect can be achieved by controlling the shape of an austenite phase. As a result of the examination, it was found that when the austenite phase was extended for a longer time, an effect of improving acid resistance was observed, and the length Lγ was 50 μm or more. When heat treatment was performed at a general temperature of 850 to 1150 ° C., Lγ tended to increase as the heat treatment temperature decreased. In addition, there is a correlation between the length Lγ of the austenite phase and the product sheet thickness t. As t decreases, Lγ increases and the product Lγ × t can be used as an index of manufacturability. As a result of the examination, when Lγ × t was 1000 or more and 10,000 or less, the productivity was good. It is assumed that 1000 ≦ Lγ × t ≦ 10000.

また、本発明の二相ステンレス鋼を製造する方法は、熱間圧延工程と最終熱処理工程を少なくとも有する。オーステナイト相を伸展させ、Lγを大きくするには、熱間圧延工程において、オーステナイト相が多く存在する温度領域かつ、高い板厚減少率で熱延する必要がある。オーステナイト相が少なくとも40%以上存在する温度領域Tγ40でなければ、Lγが大きくなる効果は小さい。   The method for producing the duplex stainless steel of the present invention includes at least a hot rolling step and a final heat treatment step. In order to extend the austenite phase and increase Lγ, in the hot rolling process, it is necessary to hot-roll in a temperature region where a large amount of austenite phase exists and at a high sheet thickness reduction rate. If the temperature region Tγ40 where at least 40% of the austenite phase exists is not present, the effect of increasing Lγ is small.

さらに、熱延時のTγ40における、元スラブ厚に対する累積板厚減少率R値が重要である。R値が高ければ、オーステナイト相が伸展し、低ければ伸展効果が小さくなる。R値が5%未満であると耐酸性改善効果が小さい。さらに、50%以下の領域では製造性が良好であった。このため、さらなる耐酸性改善のために、オーステナイト相が40%以上存在する温度Tγ40で、R値が5%〜50%で熱間圧延することとする。熱間圧延工程においては、このTγ40におけるR値を制御することが重要であり、Tγ40以外の温度域での圧延率は製品板厚に応じて適宜設定して良い。   Furthermore, the cumulative sheet thickness reduction rate R value relative to the original slab thickness at Tγ40 during hot rolling is important. When the R value is high, the austenite phase is extended, and when it is low, the extension effect is reduced. When the R value is less than 5%, the acid resistance improving effect is small. Furthermore, manufacturability was good in the region of 50% or less. For this reason, in order to further improve acid resistance, hot rolling is performed at an R value of 5% to 50% at a temperature Tγ40 where the austenite phase is present at 40% or more. In the hot rolling process, it is important to control the R value at Tγ40, and the rolling rate in a temperature region other than Tγ40 may be appropriately set according to the product plate thickness.

最終熱処理工程については、900〜1100℃とすることが好ましい。これは、上述したように、熱処理温度が低いほどLγが大きくなる傾向があるが、Lγ×tを1000〜10000の範囲に制御すると製造性が良好になるためである。   About a final heat treatment process, it is preferable to set it as 900-1100 degreeC. This is because, as described above, Lγ tends to increase as the heat treatment temperature decreases, but manufacturability is improved when Lγ × t is controlled in the range of 1000 to 10,000.

以下に実施例について記載する。表1に供試鋼の化学組成を示す。なおこの表1に記載されている含有量は、鋼材に含有されている量であり、後述するフェライト相に含有されている元素量、オーステナイト相に含有されている元素量とは異なる。成分以外はFeおよび不可避的不純物元素である。なお、空欄は当該元素を意図的に添加していないため測定していないことを示す。   Examples are described below. Table 1 shows the chemical composition of the test steel. In addition, content described in this Table 1 is the amount contained in steel materials, and is different from the element amount contained in the ferrite phase mentioned later and the element amount contained in the austenite phase. Other than the components are Fe and inevitable impurity elements. Note that the blank indicates that measurement was not performed because the element was not intentionally added.

これらの成分鋼を実験室の50kg真空誘導炉によりMgOるつぼ中で溶製し、約120mm角の鋼塊に鋳造した。鋼塊の本体部分より80t×110w×lの寸法に鍛造した後、熱間圧延用素材を加工し、1180℃の温度に1〜2h加熱後、仕上温度900℃狙いの条件にて圧延し12mm厚×約700mm長の熱間圧延鋼板を得た。なお圧延直後の鋼材温度が800℃以上の状態より200℃以下までスプレー冷却を実施した。最終の溶体化熱処理は1050℃×20分均熱後水冷の条件で実施した。   These component steels were melted in an MgO crucible by a laboratory 50 kg vacuum induction furnace and cast into a steel ingot of about 120 mm square. After forging to a size of 80tx110wxl from the main body of the steel ingot, the hot rolling material is processed, heated to a temperature of 1180 ° C for 1 to 2 hours, and rolled at a finish temperature of 900 ° C for 12mm. A hot-rolled steel sheet having a thickness of about 700 mm was obtained. Spray cooling was performed from a state where the steel material temperature immediately after rolling was 800 ° C. or higher to 200 ° C. or lower. The final solution heat treatment was carried out under conditions of water cooling after soaking at 1050 ° C. for 20 minutes.

上記により得られた厚鋼板について以下の通り特性評価を行った。
熱間加工性の評価は圧延材約700mmのうち最も長い耳割れの長さを耳割れ長さとし、5mm以上の耳割れが存在する場合は熱間加工性が悪いと判定した。また、耳割れ長さが範囲内であっても、表面疵が見られる場合は同様に熱間加工性が悪いと判定した。耳割れ長さの評価結果は、表2に耳割れ長さを記載した。また、表面疵が見られる場合は、備考欄に記載した。
The characteristic evaluation was performed as follows about the thick steel plate obtained by the above.
In the evaluation of hot workability, the longest ear crack length of about 700 mm of the rolled material was defined as the ear crack length, and when there was an ear crack of 5 mm or more, it was determined that the hot workability was poor. Moreover, even if the ear crack length was within the range, when surface flaws were observed, it was similarly determined that the hot workability was poor. As for the evaluation results of the ear crack length, Table 2 shows the ear crack length. In addition, if surface flaws are seen, they are listed in the remarks column.

耐酸性については、表層から25×25×3mmの試験片を採取し、試験片の表面を#600研磨した試験片を用いた。まず、基本的な耐食性評価として、60℃、10%硫酸中に30min浸漬した。その後、試験前後の重量変化より腐食速度を算出し、鋼種間の耐酸性を比較した。耐酸性用途に必要とされる0.1mm/y以下を良好とした。評価結果は、表2に腐食速度を記載した。また、さらなる特性向上のためのより過酷な試験として、60℃、30%硫酸中に30min浸漬した。その後、同様に試験前後の重量変化より腐食速度を算出し、鋼種間の耐酸性を比較した。耐酸性用途に必要とされる0.1mm/y以下を良好とした。評価結果は、表3に腐食速度を記載した。   For acid resistance, a 25 × 25 × 3 mm test piece was taken from the surface layer, and a test piece whose surface was polished by # 600 was used. First, as a basic corrosion resistance evaluation, the sample was immersed in sulfuric acid at 60 ° C. and 10% for 30 minutes. Thereafter, the corrosion rate was calculated from the weight change before and after the test, and the acid resistance between the steel types was compared. A value of 0.1 mm / y or less required for acid-resistant applications was considered good. The evaluation results are shown in Table 2 with the corrosion rate. In addition, as a more severe test for further improvement of properties, the sample was immersed in 60% 30% sulfuric acid for 30 minutes. Thereafter, similarly, the corrosion rate was calculated from the weight change before and after the test, and the acid resistance between the steel types was compared. A value of 0.1 mm / y or less required for acid-resistant applications was considered good. The evaluation results are shown in Table 3 with the corrosion rate.

また、耐孔食性については、JISG0577に準拠した孔食電位測定をおこなった。具体的には、表層から25×10×2mmの試験片を採取し、1cmの試験面を残し、シリコン被覆材で被覆した試験片を準備した。試験開始直前に#600研磨をし、不動態皮膜を除去した試験片について、50℃、Ar脱気した1.0mol/LのNaCl水溶液中に浸漬して10min後、速度20mV/minで電位を掃印し、電流密度が100μA/cmを示した際の電位を孔食電位とした。0.40V以上を良好と判定した。評価結果は、表2に孔食電位を記載した。 Moreover, about pitting corrosion resistance, the pitting potential measurement based on JISG0577 was performed. Specifically, a 25 × 10 × 2 mm test piece was collected from the surface layer, and a test piece coated with a silicon coating material was prepared leaving a 1 cm 2 test surface. The test piece that had been polished # 600 immediately before the start of the test to remove the passive film was immersed in a 1.0 mol / L NaCl aqueous solution degassed at 50 ° C. for 10 minutes, and then the potential was applied at a speed of 20 mV / min. The potential when the current density was 100 μA / cm 2 after sweeping was defined as the pitting potential. 0.40V or more was determined to be good. As a result of the evaluation, the pitting corrosion potential is shown in Table 2.

相中の元素の分析は、EPMAにより実施した。ビーム系を1μmに絞り、フェライト相およびオーステナイト相の中央部を点分析することにより、それぞれの相の合金元素濃度を測定した。この方法で得られたフェライト相中、オーステナイト相中にそれぞれ含有される合金元素量を用いて、GIα、及びGIγを算出した。算出方法は、上記の通り、GIを求める(1)式にそれぞれの相中の元素含有量を代入することで算出した。また、GIαとGIγを(2)式に代入することにより、GIdifを算出した。これらのうち、GIαとGIdifの算出値を表1に記載した。   Analysis of the elements in the phase was performed by EPMA. The beam system was narrowed down to 1 μm, and the central portion of the ferrite phase and austenite phase was point analyzed to measure the alloy element concentration of each phase. GIα and GIγ were calculated using the amounts of alloy elements contained in the ferrite phase and the austenite phase obtained by this method. As described above, the calculation method was calculated by substituting the element content in each phase into the equation (1) for obtaining GI. Moreover, GIdif was calculated by substituting GIα and GIγ into the equation (2). Among these, the calculated values of GIα and GIdif are shown in Table 1.

評価結果を表2に示す。
本発明鋼では、圧延材の耳割れおよび耐酸性はいずれも良好な値を示した。
The evaluation results are shown in Table 2.
In the steel according to the present invention, both the edge crack and acid resistance of the rolled material showed good values.

熱間加工性については、Si、P、S、Cu、Al、Sn、V、Ca、Mg、REM、B、Ti、Nb添加量多過のそれぞれNo.D、G、H、P、Q、U、V、X、Y、Z、AA、AB、ACで熱延板の耳割れが5mmを超える結果となった。   Regarding hot workability, each of Si, P, S, Cu, Al, Sn, V, Ca, Mg, REM, B, Ti, and Nb addition amount excessive No. D, G, H, P, Q, U, V, X, Y, Z, AA, AB, and AC resulted in a result that the ear crack of the hot-rolled sheet exceeded 5 mm.

耐酸性については、GIが50未満のNo.A、F、I、M、OおよびGIdifが0未満のNo.Bで腐食速度が0.1mm/yを超え、耐酸性は劣位であった。耐孔食性については、Cが多いNo.C、Mnが少ないNo.E、Crが少ないNo.K、Nが多いNo.S、Moが少ないNo.M、およびα量多過により耐食性の低下がみられるNo.L、Rで孔食電位が0.40Vを下回り、耐孔食性は劣位であった。また、表面の疵よりNo.Tが劣位であった。コストの観点からNo.J、N、Wは対象外とした。   For acid resistance, No. GI is less than 50. No. A, F, I, M, O and GIdif are less than 0. In B, the corrosion rate exceeded 0.1 mm / y, and the acid resistance was inferior. Regarding pitting corrosion resistance, No. with a large amount of C. No. with less C and Mn No. with less E and Cr No. with many K and N No. with less S and Mo No. in which corrosion resistance is reduced due to excessive amounts of M and α. The pitting corrosion potential was less than 0.40 V for L and R, and the pitting corrosion resistance was inferior. In addition, No. T was inferior. No. from the viewpoint of cost. J, N, and W were excluded.

R値とLγ×tとの関係は、ラボにおいて、R値が2〜70%、tが2〜50mmまで変化させた試験片を作成し、最終の溶体化熱処理は1050℃×20分均熱後水冷の条件とした。Lγは、サンプルL断面のミクロ試験片を加工し、シュウ酸電解エッチングにより粒界を現出させ、光学顕微鏡により長さを測定した。   The relationship between the R value and Lγ × t is as follows: In the laboratory, a test piece with an R value of 2 to 70% and t of 2 to 50 mm was prepared, and the final solution heat treatment was performed at 1050 ° C. for 20 minutes. The condition was post-water cooling. For Lγ, a micro test piece with a sample L cross section was processed, grain boundaries were revealed by oxalic acid electrolytic etching, and the length was measured with an optical microscope.

評価結果を表3に示す。
R値が5%未満のNo.a、f、kは、Lγが50μm以下となり、腐食速度が0.1mm/y超となった。熱処理温度が900〜1100℃、1000≦Lγ×t≦10000かつR≦50%を満たすNo.a、b、c、d、f、h、i、k、m、nは、製造性が良好であった。
The evaluation results are shown in Table 3.
An R value of less than 5% For a, f, and k, Lγ was 50 μm or less, and the corrosion rate was more than 0.1 mm / y. The heat treatment temperature is 900-1100 ° C., 1000 ≦ Lγ × t ≦ 10000 and R ≦ 50%. a, b, c, d, f, h, i, k, m, and n had good manufacturability.

以上の実施例からわかるように本発明により耐酸性に優れた汎用二相ステンレス鋼が得られることが明確となった。   As can be seen from the above examples, it has been clarified that a general-purpose duplex stainless steel excellent in acid resistance can be obtained by the present invention.

本発明により、汎用二相ステンレス鋼において、Ni低減により低合金コスト化を図り、かつ大きな課題の一つである耐酸性の劣化および製造性の悪化を抑制でき、その結果、低合金コスト化を図った汎用二相ステンレス鋼の用途のうち耐酸性が課題となっていた用途への適用範囲拡大によるコスト削減が図れ、産業上寄与するところは極めて大である。   According to the present invention, in general-purpose duplex stainless steel, it is possible to reduce the cost of the alloy by reducing Ni, and to suppress the deterioration of acid resistance and manufacturability, which are one of the major problems, and as a result, the cost of the alloy can be reduced. Of the intended use of the general-purpose duplex stainless steel, the cost can be reduced by expanding the application range to the use for which acid resistance has been an issue, and the industrial contribution is extremely large.

Figure 2013227669
Figure 2013227669

Figure 2013227669
Figure 2013227669

Figure 2013227669
Figure 2013227669

Claims (6)

質量%にて、
C:0.06%以下、
Si:0.1〜1.5%、
Mn:4.0〜10.0%、
P:0.05%以下、
S:0.005%以下、
Cr:20.0〜24.0%、
Ni:0.5〜4.0%、
Mo:2.0〜4.0%、
Cu:0.1〜2.5%、
Al:0.003〜0.050%、
O:0.007%以下、
N:0.10〜0.30%
を含有し、残部がFeおよび不可避的不純物からなり、且つ、下記(1)〜(3)を満たすとともにフェライト相面積率が40〜70%であることを特徴とする耐酸性良好な二相ステンレス鋼。
(1)(1)式で表されるGIが50以上200以下
(2)GIαが55以上
(3)(2)式で表されるGIdifが0以上
GI=−Cr+18Ni+30Cu−10Mn+35Mo・・・・・・(1)
GIdif=GIα−GIγ・・・(2)
但し、上記の式において各元素名は何れもその含有量(質量%)を表す。
また、GIαは、フェライト相中の元素含有量で計算したGI値を意味し、
GIγは、オーステナイト相中の元素含有量で計算したGI値を意味する。
In mass%
C: 0.06% or less,
Si: 0.1 to 1.5%,
Mn: 4.0 to 10.0%,
P: 0.05% or less,
S: 0.005% or less,
Cr: 20.0 to 24.0%,
Ni: 0.5 to 4.0%,
Mo: 2.0 to 4.0%,
Cu: 0.1 to 2.5%,
Al: 0.003 to 0.050%,
O: 0.007% or less,
N: 0.10 to 0.30%
In which the balance is Fe and inevitable impurities, satisfies the following (1) to (3), and has a ferrite phase area ratio of 40 to 70%. steel.
(1) GI represented by formula (1) is 50 or more and 200 or less (2) GIα is 55 or more (3) GIdif represented by formula (2) is 0 or more GI = −Cr + 18Ni + 30Cu-10Mn + 35Mo・ (1)
GIdif = GIα−GIγ (2)
However, each element name in said formula represents the content (mass%).
GIα means the GI value calculated by the element content in the ferrite phase,
GIγ means a GI value calculated from the element content in the austenite phase.
更に、質量%で
Ti:0.003〜0.050%、
Nb:0.01〜0.20%
の1種または2種を含有することを特徴とする請求項1に記載の耐酸性良好な二相ステンレス鋼。
Furthermore, Ti: 0.003 to 0.050% by mass%,
Nb: 0.01-0.20%
The duplex stainless steel with good acid resistance according to claim 1, comprising one or two of the following:
更に、質量%で
Ca:0.0050%以下、
Mg:0.0030%以下、
B:0.0005〜0.0050%、
REM:0.10%以下
の1種または2種以上を含有することを特徴とする請求項1または2に記載の耐酸性良好な二相ステンレス鋼。
Furthermore, by mass% Ca: 0.0050% or less,
Mg: 0.0030% or less,
B: 0.0005 to 0.0050%,
The duplex stainless steel with good acid resistance according to claim 1 or 2, characterized by containing one or more of REM: 0.10% or less.
更に、質量%で
Sn:0.03〜0.2%、
V:0.05〜0.5%、
Co:2.0%以下
の1種または2種以上を含有することを特徴とする請求項1〜3の何れかに記載の耐酸性良好な二相ステンレス鋼。
Furthermore, Sn: 0.03-0.2% by mass%
V: 0.05-0.5%
Co: 2.0% or less of one type or two or more types, Duplex stainless steel with good acid resistance according to any one of claims 1 to 3.
更に、L断面のオーステナイト相の長径Lγの平均が50μm以上かつ(4)式を満たすことを特徴とする請求項1〜4の何れかに記載の耐酸性良好な二相ステンレス鋼。
1000≦Lγ×t≦10000・・・(4)
tは、製品板厚(mm)を示す。
Furthermore, the average of the long diameter L (gamma) of the austenite phase of a L cross section is 50 micrometers or more, and satisfy | fills (4) Formula, The duplex stainless steel with favorable acid resistance in any one of Claims 1-4 characterized by the above-mentioned.
1000 ≦ Lγ × t ≦ 10000 (4)
t represents the product plate thickness (mm).
少なくとも熱間圧延工程と最終熱処理工程とを含む二相ステンレス鋼の製造方法であって、
該熱間圧延工程において、オーステナイト相が40%以上存在する温度領域Tγ40で、元スラブ厚に対する累積板厚減少率R値が5%〜50%熱間圧延し、
該最終熱処理工程において、900〜1100℃で熱処理することを特徴とする請求項1〜5のいずれか1項に記載の耐酸性良好な汎用型二相ステンレス鋼の製造方法。
A method for producing a duplex stainless steel including at least a hot rolling step and a final heat treatment step,
In the hot rolling step, in the temperature region Tγ40 where the austenite phase is present at 40% or more, the cumulative sheet thickness reduction rate R value with respect to the original slab thickness is hot rolled 5% to 50%,
The method for producing a general-purpose duplex stainless steel with good acid resistance according to any one of claims 1 to 5, wherein heat treatment is performed at 900 to 1100 ° C in the final heat treatment step.
JP2013065246A 2012-03-28 2013-03-26 Duplex stainless steel with good acid resistance Active JP6134553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013065246A JP6134553B2 (en) 2012-03-28 2013-03-26 Duplex stainless steel with good acid resistance

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012073551 2012-03-28
JP2012073551 2012-03-28
JP2013065246A JP6134553B2 (en) 2012-03-28 2013-03-26 Duplex stainless steel with good acid resistance

Publications (2)

Publication Number Publication Date
JP2013227669A true JP2013227669A (en) 2013-11-07
JP6134553B2 JP6134553B2 (en) 2017-05-24

Family

ID=49675574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013065246A Active JP6134553B2 (en) 2012-03-28 2013-03-26 Duplex stainless steel with good acid resistance

Country Status (1)

Country Link
JP (1) JP6134553B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197376A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
JP2018197377A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
CN112086142A (en) * 2020-09-10 2020-12-15 成都积微物联电子商务有限公司 Selection and calculation method of converter steelmaking and alloy addition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006193823A (en) * 2004-03-16 2006-07-27 Jfe Steel Kk Ferritic-austenitic stainless steel excellent in corrosion resistance of welded zone
JP2007146202A (en) * 2005-11-25 2007-06-14 Sumitomo Metal Ind Ltd Two-phase stainless steel for urea production plant, welding material and urea production plant
US20080112840A1 (en) * 2004-12-27 2008-05-15 Kim Kwang-Tae Duplex Stainless Steel Having Excellent Corrosion Resistance with Low Nickel
JP2010084220A (en) * 2008-10-02 2010-04-15 Nippon Steel & Sumikin Stainless Steel Corp Two phase stainless hot-rolled steel having excellent impact toughness and method for producing the same
JP2011105973A (en) * 2009-11-13 2011-06-02 Sumitomo Metal Ind Ltd Duplex stainless steel having excellent alkali resistance

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169622A (en) * 2004-01-29 2006-06-29 Jfe Steel Kk Austenitic-ferritic stainless steel with excellent formability
JP2006193823A (en) * 2004-03-16 2006-07-27 Jfe Steel Kk Ferritic-austenitic stainless steel excellent in corrosion resistance of welded zone
US20080112840A1 (en) * 2004-12-27 2008-05-15 Kim Kwang-Tae Duplex Stainless Steel Having Excellent Corrosion Resistance with Low Nickel
JP2008525636A (en) * 2004-12-27 2008-07-17 ポスコ Nickel reduced type high corrosion resistance duplex stainless steel
JP2007146202A (en) * 2005-11-25 2007-06-14 Sumitomo Metal Ind Ltd Two-phase stainless steel for urea production plant, welding material and urea production plant
JP2010084220A (en) * 2008-10-02 2010-04-15 Nippon Steel & Sumikin Stainless Steel Corp Two phase stainless hot-rolled steel having excellent impact toughness and method for producing the same
JP2011105973A (en) * 2009-11-13 2011-06-02 Sumitomo Metal Ind Ltd Duplex stainless steel having excellent alkali resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197376A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
JP2018197377A (en) * 2017-05-24 2018-12-13 Jfeスチール株式会社 Two-phase stainless steel having excellent corrosion resistance and hydrogen brittleness resistance
CN112086142A (en) * 2020-09-10 2020-12-15 成都积微物联电子商务有限公司 Selection and calculation method of converter steelmaking and alloy addition

Also Published As

Publication number Publication date
JP6134553B2 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5500960B2 (en) Fine grain austenitic stainless steel sheet with excellent stress corrosion cracking resistance and workability
JP4903915B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
JP6004653B2 (en) Ferritic stainless steel wire, steel wire, and manufacturing method thereof
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP5888476B2 (en) Material for stainless cold-rolled steel sheet and manufacturing method thereof
CN103857812B (en) The excellent ferrite-group stainless steel hot rolled steel plate of cold crack and its manufacture method
JP6385507B2 (en) Nb-containing ferritic stainless steel sheet and method for producing the same
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
WO2017043660A1 (en) Steel sheet and enameled product
KR101850231B1 (en) Ferritic stainless steel and method for producing same
JP6229794B2 (en) Seamless stainless steel pipe for oil well and manufacturing method thereof
JP6520546B2 (en) Austenitic heat-resistant alloy member and method of manufacturing the same
JP2019189889A (en) Austenitic stainless steel
JP6134553B2 (en) Duplex stainless steel with good acid resistance
WO2018146783A1 (en) Austenitic heat-resistant alloy and method for producing same
JPWO2019054390A1 (en) Austenitic stainless steel and manufacturing method thereof
JP6635890B2 (en) Martensitic stainless steel sheet for cutting tools with excellent manufacturability and corrosion resistance
JP5836619B2 (en) Duplex stainless steel with good acid resistance
JP2008156678A (en) High-strength bolt excellent in delayed fracture resistance and corrosion resistance
JP5474616B2 (en) Ferritic stainless free-cutting steel rod with excellent forgeability
KR101940427B1 (en) Ferritic stainless steel sheet
JP5921352B2 (en) Ferritic stainless steel sheet with excellent ridging resistance and method for producing the same
JP2013185195A (en) Free-cutting martensitic stainless steel rod wire and method for producing the same
JP6809325B2 (en) Duplex stainless steel shaped steel and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170424

R150 Certificate of patent or registration of utility model

Ref document number: 6134553

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250