JPH04110419A - Production of high ni stainless steel plate - Google Patents

Production of high ni stainless steel plate

Info

Publication number
JPH04110419A
JPH04110419A JP22898490A JP22898490A JPH04110419A JP H04110419 A JPH04110419 A JP H04110419A JP 22898490 A JP22898490 A JP 22898490A JP 22898490 A JP22898490 A JP 22898490A JP H04110419 A JPH04110419 A JP H04110419A
Authority
JP
Japan
Prior art keywords
less
stainless steel
hot
hot rolling
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22898490A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
信二 柘植
Masao Koike
小池 正夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP22898490A priority Critical patent/JPH04110419A/en
Publication of JPH04110419A publication Critical patent/JPH04110419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a high Ni stainless steel plate minimal in cast-slab crack, edge crack, and inclusion defects by subjecting a cast slab which has a specific composition consisting of Si, Mn, Cr, Ni, Mo, Cu, Al, N, Mg, and Fe and in which impurities are limited to specific hot rolling. CONSTITUTION:A cast slab having a composition which consists of <=2% Si, <=2% Mn, 15-26% Cr, 15-45% Ni, <=5.0% Mo, <=2.0% Cu, 0.005-0.10% Al, <=0.25% N, 0.0005-0.0045% Mg, and the balance Fe with inevitable impurities and further contains, if necessary, one or more kinds among <=1% Ti, <=1% Nb, <=2% V, <=2% W, and <0.01% B and in which the contents of C, P, S, and O among the impurities are limited to <=0.04%, <=0.03%, <=0.001%, and <=0.006%, respectively, is subjected to hot rolling where rolling is finished at <=900 deg.C. By this method, the high Ni stainless steel reduced in cracking at the time of casting even if continuous casting method is applied, remarkably reduced in the occurrence of edge crack at the time of hot rolling and accordingly improved in yield, and further reduced in the occurrence of defects which are caused-by inclusions and become problems at the time of welding can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、高Niステンレス鋼板の製造方法、詳しくは
、Niを多量に含有するステンレス鋼の連続鋳造スラブ
を熱間圧延により鋼板に成形する方法であって、連続鋳
造時の鋳片側れの発生が少な(、かつ熱間圧延時におL
:lる耳割れの発生が少なく歩留りが良好であり、さら
に介在物欠陥が少ない高Niステンレス鋼板の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a high-Ni stainless steel plate, in particular, a continuously cast slab of stainless steel containing a large amount of Ni is formed into a steel plate by hot rolling. It is a method that reduces the occurrence of cast side deviation during continuous casting (and reduces L during hot rolling).
The present invention relates to a method for producing a high-Ni stainless steel sheet that has less occurrence of edge cracks, has a good yield, and has fewer inclusion defects.

(従来の技術) Niを多量に含有するステンレス鋼は硫化水素や塩化物
を含む湿潤環境における孔食、隙間腐食ならびに応力腐
食に対して強いi1食性を備えているうえに、高温酸化
や塩化物による高/!11腐食、υ+IMクリープに対
する抵抗性が高く、油井用配管、化学製造機器、耐熱用
+、I籾等に広く用いられている。
(Prior art) Stainless steel containing a large amount of Ni is highly resistant to pitting corrosion, crevice corrosion, and stress corrosion in humid environments containing hydrogen sulfide and chlorides. High/! It has high resistance to 11 corrosion and υ+IM creep, and is widely used for oil well piping, chemical manufacturing equipment, heat-resistant +, I rice, etc.

一方、このよ・うなNiを多量に含むステンレスIgl
は原料費が高いことに加えて、連続鋳造法(以下、連鋳
法という)に比べて!!!造工稈が多く歩留りの低い鋼
塊法(インゴントとして鋳込んだのら分塊圧延のような
中間工程を経てスラブとし、これを熱間加工する方法)
により製造する場合が多いこと、ならびに熱間加工時に
疵が発生して歩留りが低下しやすいこと、等から非常に
高価な材料となっている。
On the other hand, stainless steel Igl containing a large amount of Ni such as this
In addition to the high cost of raw materials, compared to the continuous casting method (hereinafter referred to as the continuous casting method), ! ! Steel ingot method with many culms and low yield (method of casting as an ingon, then going through an intermediate process such as blooming rolling to form a slab, and then hot working this)
It is a very expensive material because it is often manufactured using the same method, and because it tends to generate flaws during hot processing, resulting in a decrease in yield.

これらのステンレス鋼製品を製造する上で最も問題とな
るのは凝固組織を存する鋼塊や連続鋳造スラブ(以下、
連鋳スラブと略記する)の熱間加工工程である。ごの工
程に:I→いて、熱間加工性の悪いステンレス鋼の場合
は、−度に大きな加工量を与えると大きな割れが発生し
て以後の加工と製品の採取が不可能になるので、これを
避けるために通常は鋼塊法を採用する。ずなわら、−旦
鋼塊に鋳込んだのぢ分塊圧延を行い、段階的に加工を加
えて鋼板などの製品形状とする。
The biggest problem in manufacturing these stainless steel products is steel ingots and continuous casting slabs (hereinafter referred to as
This is a hot working process for continuous casting slabs. In the case of stainless steel with poor hot workability, large cracks will occur if a large amount of processing is applied to the process, making subsequent processing and product collection impossible. To avoid this, the steel ingot method is usually adopted. First, the steel is cast into a steel ingot and then rolled into an ingot, which is then processed in stages to form products such as steel plates.

連鋳法に比してコスト的に不利な鋼塊法を採用すること
が多いことのもう一つの理由は、連鋳法では連続鋳造時
に凝固割れが発生しやすく、健全な鋳片を得ることが困
難なことである。すなわら、Niを多量に含有するステ
ンレス鋼は常温でオーステナイト組織を存し、凝固時に
おいてもオーステナイトを初品として凝固する場合が多
いが、この凝固時に、低融点共晶化合物を形成しゃすい
P、S等の元素が凝固偏析しやすく、高11iステンI
/ス鋼の凝固割れ感受性を増大させる重要な原因の一つ
になっている。
Another reason why the ingot method, which is less cost-effective than the continuous casting method, is often adopted is that the continuous casting method is prone to solidification cracking during continuous casting, and it is difficult to obtain a healthy slab. is difficult. In other words, stainless steel containing a large amount of Ni has an austenitic structure at room temperature, and during solidification, it often solidifies with austenite as the initial material, but during this solidification, low melting point eutectic compounds are formed. Elements such as P and S tend to solidify and segregate, and high 11i stainless steel I
This is one of the important causes of increasing the solidification cracking susceptibility of steel.

従来、このような高Niステンレス鋼板合金の熱間加工
性を改善するための梯ノンな方法が提案されている。中
でも次のよ・うなtl i %合金あるいはステンレス
鋼が提案され、改善効果が得られるとの報告がなされて
いる。
In the past, advanced methods have been proposed for improving the hot workability of such high Ni stainless steel sheet alloys. Among them, the following tl i % alloys or stainless steels have been proposed, and it has been reported that improved effects can be obtained.

(A)  B、 Zr、 Ceを複合添加し、不純物元
素である○(酸素)、N(窒素)をZr、 Ceによっ
て固定してBの熱間加工性向」二効果を有効に利用し熱
間加工性の改善をはかったNi基耐熱合金(特公昭56
−3]、345号公報)。
(A) B, Zr, and Ce are added in combination, and the impurity elements ○ (oxygen) and N (nitrogen) are fixed by Zr and Ce, making effective use of the two effects of B's hot workability. Ni-based heat-resistant alloy with improved workability
-3], Publication No. 345).

(B)iとCaを複合添加し、熱間力]1工性と耐孔食
性を改善したステンレス鋼解 報)。
(B) Stainless steel with improved hot workability and pitting corrosion resistance by adding i and Ca in combination.

(C)  S、0を低減し、さらにCa、 Ceを添加
して各成分をppmで表示した[ S −1−0−0,
8Ca−0,3Ca1式を401ン下とし、あわ−已て
デルタフェライトを活用して凝固偏析を抑制することに
より、連鋳法の適用を可能とした優れた熱間加工性を存
する高合金ステンレス鋼(特公平2−1441.9号公
報)。
(C) S, 0 was reduced, Ca and Ce were added, and each component was expressed in ppm [S-1-0-0,
A high-alloy stainless steel with excellent hot workability that makes it possible to apply the continuous casting method by lowering the 8Ca-0, 3Ca1 formula to 401 degrees and suppressing solidification segregation by utilizing delta ferrite. Steel (Special Publication No. 2-1441.9).

(発明が解決しようとする課題) 前項で例示した(^)のN i 4%耐熱合金や(B)
のステンレス鋼は、熱間加工性が改善されてはいるが、
連鋳法を適用してそれらの鋼板を製造することができる
ほど十り)な改善はなされでL:↓いない。
(Problem to be solved by the invention) Ni 4% heat-resistant alloy of (^) illustrated in the previous section and (B)
Although the hot workability of stainless steel has been improved,
L: ↓No improvement has been made to the extent that these steel plates can be manufactured by applying the continuous casting method.

一方、 (C)の高合金ステンレス鋼については、連鋳
法を適用して熱間圧延鋼板とし、さらに冷間圧延1.た
後バイブ等の形状にするため溶接を行・うと、粗大な介
在物を起点とした溶接欠陥が発生ずるとい・う問題があ
る。
On the other hand, regarding the high alloy stainless steel (C), a continuous casting method is applied to form a hot rolled steel plate, and then cold rolled 1. If welding is then performed to form a shape such as a vibrator, there is a problem in that welding defects may occur due to coarse inclusions.

」二部の1基合金やステンレス鋼の熱間加工性を十分に
高め、さらに連鋳法での熱間加工疵の発生を85さえる
ことができれば、連鋳法の採用が可能上なり、高Niオ
ーステナイト系ステンレス鋼の製品を歩留りよく得るこ
とができる。
” If the hot workability of two-part single-base alloys and stainless steels can be sufficiently improved and the occurrence of hot working defects in continuous casting methods can be reduced, it will be possible to adopt continuous casting methods, and high Ni austenitic stainless steel products can be obtained with a high yield.

本発明は、連鋳法を適用しても鋳造時の鋳片割れの発生
が少なく、かつ熱間圧延時におりる耳割れの発生が少な
く歩留りが良好であり、さらに後の溶接工程で溶接欠陥
の原因となるような介在物欠陥が少ない高Niステンレ
ス鋼板の製造方法を提供することを目的とする。
Even when the continuous casting method is applied, the present invention reduces the occurrence of slab cracks during casting, reduces the occurrence of edge cracks during hot rolling, and has a good yield, and further eliminates weld defects in the subsequent welding process. It is an object of the present invention to provide a method for manufacturing a high-Ni stainless steel sheet with fewer inclusion defects that may cause the defects.

(課題を解決するための手段) ステンレス鋼の熱間力11工性は、鋼中に存在するS、
Oのような不純物元素により悪影響を受りていると考え
られ、このような不純物元素を精錬によって除去するか
、鋼中で硫化物や酸化物として固定して無害化すること
により熱間加工性を向上させ得るとの考え方が一般的で
ある。不純物元素を硫化物や酸化物として固定し得る元
素としては、CaXCe、 Mg、、Zr、 Ti、、
)In、 Si、 Aff等の元素が知られている。
(Means for solving the problem) The hot workability of stainless steel is due to S, which exists in the steel.
It is thought that impurity elements such as O have an adverse effect on the hot workability of the steel. The general idea is that it can improve Elements that can fix impurity elements as sulfides and oxides include CaXCe, Mg, Zr, Ti,...
) In, Si, Aff, and other elements are known.

一方、ステンレス鋼の連続鋳造時の鋳片割れには表面縦
割れ、微小ブレークアウト、中心偏析割れ等があり、鋳
片凝固時の延性の低下と、鋳造時の鋳片に働く応力の増
大に伴い発生しやすくなる。
On the other hand, slab cracks during continuous casting of stainless steel include surface vertical cracks, minute breakouts, center segregation cracks, etc., which are caused by a decrease in ductility during slab solidification and an increase in the stress acting on the slab during casting. It is more likely to occur.

鋼の凝固時の延性は、融点を低下させる元素の存在によ
り低下する。凝固が進行しているような固液二相共存温
度域では融点を低下させる元素は液相中に偏析濃化しや
ずく、最終凝固部の融点を低下させる。凝固が完全に終
了していない鋳片に応力が働くと、最終凝固部に沿って
鋳片割れが発生しやすくなる。このよ・うな作用を有す
る元素としてはP、 S、 Ti、 Nb、 Cu、C
,、B等が知られている。
The ductility of steel during solidification is reduced by the presence of elements that lower the melting point. In the solid-liquid two-phase coexistence temperature range where solidification is progressing, elements that lower the melting point will segregate and concentrate in the liquid phase, lowering the melting point of the final solidified portion. When stress is applied to a slab that has not completely solidified, cracks are likely to occur along the final solidified part. Elements that have this kind of action include P, S, Ti, Nb, Cu, and C.
, , B, etc. are known.

本発明者らはこのような一般的な知見を指針としながら
、3!!鋳法を適用しても鋳造時の鋳片割れの発生が少
なく、かつ熱間加工性が良好で熱間圧延時に耳割れの発
生が少なく歩留りが良好であり、さらには後の溶接工程
で不良原因となるような介在物欠陥が少ない高層ステン
レス鋼板の製造方法を確立することを目的として研究を
重ねた結果、以下のような新しい知見を得た。
The present inventors used such general knowledge as a guideline, and 3! ! Even if the casting method is applied, there is little occurrence of slab cracking during casting, and the hot workability is good, there is no occurrence of edge cracking during hot rolling, and the yield is good, and furthermore, it is possible to eliminate the cause of defects in the subsequent welding process. As a result of repeated research aimed at establishing a manufacturing method for high-rise stainless steel sheets with fewer inclusion defects, the following new findings were obtained.

(a)  溶接不良の原因となるような介在物欠陥は、
CaやCe等の強力な脱酸、脱硫元素を添加した場合に
発生しやすいが、向を添加した場合は介在物欠陥の発生
がほとんど見られない。
(a) Inclusion defects that cause welding defects are
Inclusion defects tend to occur when strong deoxidizing and desulfurizing elements such as Ca and Ce are added, but almost no inclusion defects are observed when Ca and Ce are added.

(b)  S、O,、Pを重量%でそれぞれ0.01%
以下、0.006%以下、0.03%以下としたうえで
1を0.0005〜0.0055%含有させることによ
り、凝固割れ感受性が著しく改善される(以下、鋼に含
有される元素の「%」はずべて重■%を意味する)。
(b) 0.01% by weight of each of S, O, and P
Below, solidification cracking susceptibility is significantly improved by containing 0.0005 to 0.0055% of 1 in addition to 0.006% or less and 0.03% or less. "%" means weight ■%).

第1図はS :O,001%、0 :0.003%、P
 :0.015%を含有する20Cr  2ONi系ス
テンレス鋼塊(凝固まま)の縦方向ハレストレイン試験
(歪み]、5%)による高温割れ感受性の試験結果で、
M[含イ:T量が5〜55ppmの範囲で凝固割れ総長
さであられした割れ感受性が著しく低下していることが
わかる。
Figure 1 shows S:O,001%, 0:0.003%, P
: Test results of hot cracking susceptibility by longitudinal Hallestrain test (strain], 5%) of 20Cr 2ONi stainless steel ingot (as solidified) containing 0.015%.
It can be seen that the susceptibility to cracking caused by the total solidification crack length is significantly reduced when the amount of M (containing T) is in the range of 5 to 55 ppm.

(C)  凝固Mi織のままの高Niステンレス鋼の熱
間力[1工性はS10の含有量をそれぞれ0.001%
、0.006%以下に低減し、xgを5〜45ppm含
有させ、さらに熱間圧延を900°C以」二の高温で終
了するごとにより改善される。
(C) Hot stress of high Ni stainless steel with solidified Mi weave [1 workability is 0.001% each with S10 content]
, to 0.006% or less, containing 5 to 45 ppm of xg, and further completing the hot rolling at a high temperature of 900°C or higher.

S、0の含有量が多い場合は、多量の)I[を含有させ
た高Niステンレス鋼の熱間力IIT性は劣化するごと
が知られていた。しかし、Sおよび0がそれぞれ0.0
01%以下、0.006%以下となるような高Niステ
ンレス鋼についてMg添加量の影響を詳細に検討した研
究は見られない。本発明者らはSおよび○の含有量がそ
れぞれ0001%、0.006%(八ρ0 、006〜
0.015%)以下の高層ステンレス鋼に少量の11F
、を添加し、熱間圧延試験を行うとともに、弓張試験に
よって熱間延性(絞り率で評価)を8周査した。
It has been known that when the content of S, 0 is large, the hot stress IIT properties of high Ni stainless steel containing a large amount of I[] deteriorate. However, S and 0 are each 0.0
No research has been found that examines in detail the influence of the Mg addition amount on high-Ni stainless steels with Ni content of 0.01% or less or 0.006% or less. The present inventors found that the S and ○ contents were 0001% and 0.006%, respectively (8ρ0, 006~
0.015%) or less in high-rise stainless steel with a small amount of 11F
, was added, a hot rolling test was carried out, and the hot ductility (evaluated by the reduction of area) was evaluated by a bow tension test for 8 rounds.

第2図はその結果を示すグラフである。この図に見られ
るように、Mgの添加によって1000〜1200°C
の温度域での熱間延性は向」ニするが、25ppm以上
の肝を含有させることによって800°C〜900°C
の温度域での熱間延性が低下し始めること、M[(を5
〜45ppm含有させた鋼では900“C以上で熱間圧
延を終了するごとにより熱間延性が向」二し、耳割れを
防止し得ることが明らかになった。
FIG. 2 is a graph showing the results. As seen in this figure, by adding Mg, the temperature
Although hot ductility is poor in the temperature range of 800°C to 900°C, it
The hot ductility begins to decrease in the temperature range of M[(5
It has been revealed that in steel containing up to 45 ppm, hot ductility is improved and edge cracking can be prevented by completing hot rolling at 900"C or higher.

(d)  、、]:記(a)〜(C)の結果を実機に適
用した結果、連鋳ノ、ラブの凝固割れおよび熱間圧延時
の耳割れを許容範囲内におさえ、かつ、介在物欠陥の少
ない高層ステンレス鋼板を得ることが可能であることを
確認した。
(d) ,, ]: As a result of applying the results of (a) to (C) to actual equipment, it was found that solidification cracking in continuous casting and rubs and edge cracking during hot rolling were suppressed within the allowable range, and that no interference was observed. It was confirmed that it is possible to obtain high-rise stainless steel sheets with few defects.

本発明は上記知見に基づいてなされたもので、その要旨
は下記■および■の高Niステンレス鋼板の製造方法に
ある。
The present invention has been made based on the above findings, and its gist lies in the following methods for producing high-Ni stainless steel sheets (1) and (2).

■ Si:2%以下、Mn:2%以下、Cr : 15
〜26%、N口]5〜45%、)lo : 5.0%以
下、Cu:2.0%以下、八ff:o、005〜0.1
0%、N・0,25%以下、’Kg : 0.0005
〜0.0045%を含有し、残部がFGおよび不可避不
純物からなり、不純物中のCが0.04%以下、Pが0
,03%以下、Sが0.001%以下、0が0.006
%以下である鋳片に、900℃以上で終了する熱間圧延
を施すことを特徴とする高Niステンレス鋼板の製造方
法。
■ Si: 2% or less, Mn: 2% or less, Cr: 15
~26%, N port] 5-45%, ) lo: 5.0% or less, Cu: 2.0% or less, 8ff: o, 005-0.1
0%, N・0.25% or less, 'Kg: 0.0005
~0.0045%, the remainder consists of FG and unavoidable impurities, C in the impurities is 0.04% or less, P is 0.
,03% or less, S is 0.001% or less, 0 is 0.006
% or less, a method for producing a high Ni stainless steel sheet, characterized in that hot rolling is completed at 900° C. or higher.

(2)前記■記載の成分に力■えて、更にTi11%以
下、Nb:1%以下、■、2%以下、W−2%以下、r
t:o、ot%未満の・うち1種以」二を含有し、残部
がFeおよび不可避不純物からなり、不純物中のCが0
.04%以下、Pが0.03%以下、Sが0.001%
以下、Oが0.006%以下である鋳片に、900℃以
上で終了する熱間圧延を施すことを特徴とする筒N i
ステンレス鋼板の製造方法。
(2) In addition to the ingredients described in (1) above, Ti is 11% or less, Nb: 1% or less, ■, 2% or less, W-2% or less, r
t: o, contains less than ot% of one or more of the following, the remainder consists of Fe and unavoidable impurities, and C in the impurities is 0.
.. 04% or less, P 0.03% or less, S 0.001%
Hereinafter, a cylinder N i characterized by subjecting a slab containing O to 0.006% or less to hot rolling that ends at 900°C or higher.
Method of manufacturing stainless steel plate.

(作用) まず、本発明方法により製造される高Niステンレス鋼
板に含有される各成分の作用効果とそれらの含有量の限
定理由について述べる。
(Function) First, the function and effect of each component contained in the high Ni stainless steel sheet produced by the method of the present invention and the reason for limiting their content will be described.

SiおよびMnはいずれも鋼の)容製時に脱酸剤として
使用される元素であるが、過剰な添加は鋼1の靭性を劣
化さ−Uる。従ってその含有量をそれぞれ2%以下と定
めた。
Both Si and Mn are elements used as deoxidizing agents during the production of steel, but excessive addition deteriorates the toughness of Steel 1. Therefore, their content was determined to be 2% or less.

Crは鋼の一般耐食性を向」二さ−)lる重要な元素で
あり、ステンレス鋼に求められる所望の耐食性を確保す
るには15%以上含有させることが必要である。しかし
、26%を超えてCrを含有させると力[1工性、溶接
性が劣化することがら、Cr含有量は15〜26%と定
めた。
Cr is an important element that improves the general corrosion resistance of steel, and must be contained in an amount of 15% or more to ensure the desired corrosion resistance required for stainless steel. However, if Cr content exceeds 26%, the strength, workability, and weldability deteriorate, so the Cr content was set at 15 to 26%.

Niは鋼の機械的性質、加工性および一般耐食性を向上
させるとともに、鋼の組織をオーステナイト組織とする
ために不可欠な成分であるが、その含有量が15%未満
ではその効果が十分ではなく、一方、45%を超えて含
有させても、−1ス[・に見合うだりの改善効果が得ら
れないことから、旧含有■は15〜45%と定めた。
Ni improves the mechanical properties, workability, and general corrosion resistance of steel, and is an essential component for making the steel structure austenitic. However, if its content is less than 15%, its effect is not sufficient. On the other hand, even if the content exceeds 45%, an improvement effect commensurate with -1 s[.

Moは鋼の局部耐食性を著しく向上させる作用を有して
いるので、必要に応じて添加する。この場合、5%を超
えて含有さ−)lるとコスト−1−昇に見合うだりの効
果が確保できないばかりか、高温でのσ杜の析出を促進
して耐食性および靭性に悪影響を及ぼず懸念があるため
、門0含有量(315%以下と定めた。
Since Mo has the effect of significantly improving the local corrosion resistance of steel, it is added as necessary. In this case, if the content exceeds 5%, not only will it not be possible to ensure an effect commensurate with the cost increase, but it will also promote the precipitation of sulfur at high temperatures and have a negative impact on corrosion resistance and toughness. Due to concerns, the content has been set at 315% or less.

Cuは鋼の一般耐食性および局Ql(耐食11を向上さ
)士る作用を有しており、ステンレス鋼の配食性をさら
に改善する必要のある場合に話力Hする。しかし、2%
を超えて含有させると凝固割れ感受性を増大させるので
、その含有量を2%以下と定めた。
Cu has the effect of improving general corrosion resistance and corrosion resistance (Improving corrosion resistance 11) of steel, and increases speaking force H when it is necessary to further improve the corrosion distribution property of stainless steel. However, 2%
If the content exceeds 2%, the susceptibility to solidification cracking increases, so the content was set at 2% or less.

A℃は脱酸のために必J“添加する元素であるが、その
含有量が0.005%未満であると0含有量を0.00
6%以下に低減することができず、本発明の目的とする
優れた熱間加工性を(’]与することができない。
A℃ is an element that must be added for deoxidation, but if its content is less than 0.005%, the 0 content will be reduced to 0.00
It is not possible to reduce the amount to 6% or less, and it is not possible to provide the excellent hot workability (') that is the objective of the present invention.

一方、0.10%を超えて含有さ−Uると逆Q二靭性の
低下をもたらすことからへ!含有量は0.005〜0.
1O%と定めた。
On the other hand, if the content exceeds 0.10%, it will cause a decrease in reverse Q2 toughness! The content is 0.005-0.
It was set at 10%.

Nは強度および而・1食性を高める必要がある場合に話
力nする。しかし、その含有量が0.25%を超えると
両温変形抵抗が増大し、熱間加工性が劣化して、本発明
方法を適用1.でも熱間圧延時の割れの発生を防止でき
なくなることから、その含有量を0.25%以下と定め
た。
N increases the speaking power when it is necessary to increase the strength and monotony. However, if the content exceeds 0.25%, the deformation resistance at both temperatures increases and the hot workability deteriorates, so that the method of the present invention is not applied. However, since the occurrence of cracks during hot rolling cannot be prevented, the content was set at 0.25% or less.

閃gは本発明方法における重要な元素であって、熱間力
11工性、連続鋳造時の鋳造性および介在物形態を良好
に保つために添加する。醜を添加することにより、Mg
S、 Mg(+−A f 20.等の微細な硫化物、酸
化物が鋼中に生成して、鋼中のS、○を固定し、熱間加
工性および凝固割れ感受性を改善する。しかし、hgの
含有量が5 ppm未満であると熱間加工性および鋳造
性を本発明が目標とする良好な範囲に保つことができず
、一方、d5ppmを超えて含有さ−l゛ると900℃
以上の温度域で熱間圧延を終了しても耳割れの発41ミ
を防+L L得ない。さらに、Mgの過剰な話力[1は
800〜900°Cの温度域での熱間延性を著しく低下
させる。また、MP、含有量が5〜45ppmの範囲内
であれば、介在物の形態は良好な状態にあり、溶接不良
の原因となることがないので、I含有量を5 ppm以
」二45ppm以下と定めた。
Ag is an important element in the method of the present invention, and is added to maintain good hot workability, castability during continuous casting, and inclusion morphology. By adding ugliness, Mg
Fine sulfides and oxides such as S, Mg (+-A f 20.) are generated in the steel, fixing the S and ○ in the steel and improving hot workability and solidification cracking susceptibility. If the content of hg is less than 5 ppm, hot workability and castability cannot be maintained within the good range targeted by the present invention, while if the content exceeds 5 ppm, the ℃
Even if hot rolling is completed in the above temperature range, the occurrence of edge cracking cannot be prevented. Furthermore, excessive talking power [1] of Mg significantly reduces hot ductility in the temperature range of 800 to 900°C. In addition, if the MP content is within the range of 5 to 45 ppm, the morphology of inclusions is in good condition and will not cause welding defects, so the I content should be 5 ppm or more and 45 ppm or less. It was determined that

前記■の発明は、上記の成分以外、残部がFeと不可避
の不純物からなる鋳片に熱間圧延を施す高Niステンレ
ス鋼である。不純物としてはC,P。
The invention (2) above is a high-Ni stainless steel produced by hot rolling a cast slab consisting of the above-mentioned components and the remainder consisting of Fe and unavoidable impurities. Impurities include C and P.

Sおよび0の」二限を抑えることが重要である。It is important to suppress the two limits of S and 0.

Cはできるだけ少ない方が好ましい。C含有量が0.0
4%を超えると炭化物が粒界に析出し易くなり、耐粒界
腐食性が劣化する。
It is preferable that C be as small as possible. C content is 0.0
When it exceeds 4%, carbides tend to precipitate at grain boundaries, resulting in deterioration of intergranular corrosion resistance.

Pは凝固割れ感受性を増大させる元素であり、連鋳スラ
ブの割れを防止するためにその含有量を0.03%以下
とした。
P is an element that increases susceptibility to solidification cracking, and its content was set to 0.03% or less in order to prevent cracking of the continuously cast slab.

Sおよび0は鋼の熱間加工性を害する元素として知られ
ているが、凝固組織を有する鋼を熱間加工する場合の加
工性を十分高めるためには、その含有量をそれぞれ0.
001%以下、0.006%以下に制限する必要がある
S and 0 are known to be elements that impair the hot workability of steel, but in order to sufficiently improve the workability when hot working steel with a solidified structure, their content should be adjusted to 0.
It is necessary to limit it to 0.001% or less and 0.006% or less.

前記■の発明は、■の発明で製造される高Niステンレ
ス鋼板の成分に加えて、さら6:二T i、1りl〕、
■、WおよびBのうし1種以」二を含有し、残部がFe
と不可避の不純物からなる鋳片に熱間圧延を施す高Ni
ステンレス鋼板の製造方法である。
Invention (2) above, in addition to the components of the high Ni stainless steel sheet produced by invention (2), further comprises:
■Contains one or more of W and B, with the remainder being Fe.
High-Ni steel is hot-rolled on slabs containing unavoidable impurities.
This is a method for manufacturing stainless steel sheets.

TiおよびNi1は鋼中で炭窒化物を形成し固溶C1N
を固定するとともに、鋼中に固溶することにより耐食性
を向−ヒさせる。しかし、多量に添加すると凝固割れ感
受性を高めるので、その含有量はそれぞれ1%以下とし
た。
Ti and Ni1 form carbonitrides in steel and form solid solution C1N.
In addition to fixing the metal, it also improves corrosion resistance by solid solution in the steel. However, if added in large amounts, the susceptibility to solidification cracking increases, so the content was set to 1% or less, respectively.

■およびWはステンレス鋼の局部腐食性を改善する効果
を有するためCr、 Moとともに添加される。
(2) and W are added together with Cr and Mo because they have the effect of improving the local corrosion resistance of stainless steel.

しかし、■の過剰添加は靭性の劣化を招き、また、Wは
高価であるため、その含有量はいずれも2%以下とした
However, excessive addition of (2) causes deterioration of toughness, and since W is expensive, the content thereof was set to 2% or less in both cases.

Bは鋼の熱間加工性、クリープ特性を向」ニさせるため
に添加される場合があるが、一方で凝固割れ感受性を高
める傾向を有するので、その含有量は0.01%未満と
した。
B is sometimes added to improve the hot workability and creep properties of steel, but on the other hand, it tends to increase susceptibility to solidification cracking, so its content was set to less than 0.01%.

次に、本発明方法におりる熱間圧延条件について述べる
Next, the hot rolling conditions used in the method of the present invention will be described.

−に記の各成分を含有する高Niステンレス鋼のスラブ
を熱間圧延するに区1し、その終了温度を900°C以
」二と規定したのは、本発明方法力<JJgの微量添加
による熱間加工性の向上を特徴としているからである。
The reason for hot rolling a slab of high Ni stainless steel containing each of the components listed in -1 and specifying the finishing temperature as 900°C or higher is because the method of the present invention This is because it is characterized by improved hot workability.

すなわぢ、hを5〜45ppm含有させた鋼は1000
℃以上の温度域で良好な熱間jJIl工性を有している
反面、このhの添加によって900〜ROO℃の温度域
で熱間延性が低下する傾向を有しているからである。ど
gの含有量を上記範囲内とし、900°C以上で熱間圧
延を終了するごとにより、凝固糸[]織を有する鋳片を
用いた場合でも耳割れを許容範囲内に低減することがで
きる。
In other words, steel containing 5 to 45 ppm of h is 1000
This is because, although it has good hot workability in the temperature range of 900 to ROO<0>C, the hot ductility tends to decrease in the temperature range of 900 to ROO<0>C due to the addition of h. By keeping the content of molten g within the above range and completing hot rolling at 900°C or higher, edge cracking can be reduced to within the allowable range even when using slabs with coagulated thread [ ] weave. can.

(実施例) 試験用真空溶解炉により、第1表に示す化学成分を有す
る高Niステンレス1(No1〜8)を溶製して鋳片と
し、凝固割れ性、熱間Jj■工性および溶接性(溶接欠
陥の有無)を調査した。なお、No、 9は実機で熔解
した高Niステンレス鋼である。
(Example) In a test vacuum melting furnace, high Ni stainless steel 1 (No. 1 to 8) having the chemical composition shown in Table 1 was melted into slabs, and the solidification crackability, hot workability, and welding were evaluated. (presence or absence of welding defects). Note that No. 9 is high Ni stainless steel that was melted in the actual machine.

No、 ]〜8の鋳片について、凝固割れ性の調査は縦
方向ハレストレイン試験(歪み1.5%)により行った
。用いた試験片は」二部の鋳片から採取した厚さ9 m
m、幅5Q+nmOもので、この試験片に対しTlGな
めつけ溶接中断直後に300mm Rの曲げを加え、発
生した凝固割れの総長さにより評価した。
Regarding the slabs No. 1 to 8, the solidification cracking property was investigated by a vertical Harestrain test (strain 1.5%). The test piece used was a 9 m thick specimen taken from two cast slabs.
Immediately after the TlG lick welding was interrupted, a bending radius of 300 mm was applied to this test piece, and evaluation was made based on the total length of the solidification crack that occurred.

熱間別口[性の調査は、高温引張試験による絞り率の測
定と、熱間圧延試験による耳割れ発生状況の調査により
行った。絞り率測定の試験片としては上記の鋳片から採
取した直径10mmの引張り試験片を用い、900°C
で歪速度1./sで変形を与えた。
The investigation of hot separation properties was carried out by measuring the reduction ratio through a high-temperature tensile test and investigating the occurrence of edge cracking through a hot rolling test. A tensile test piece with a diameter of 10 mm taken from the above slab was used as the test piece for measuring the reduction ratio, and was heated at 900°C.
and the strain rate is 1. Deformation was given at /s.

熱間圧延試験の素材は上記の鋳片を44mm X 10
5mmX 135mmの寸法に機械加工したもので、1
250’cに1時間加熱した後1]50°Cから圧延を
開始し、7バスで厚さ6mmに仕上げた。このときの仕
上温度(熱間圧延の終了温度)を第2表に示すように8
50〜]050℃に変化させた。
The material for the hot rolling test was the above slab 44mm x 10
Machined to dimensions of 5mm x 135mm, 1
After heating to 250°C for 1 hour, rolling was started at 1]50°C and finished to a thickness of 6mm in 7 passes. The finishing temperature (hot rolling end temperature) at this time was 8 as shown in Table 2.
50~]050°C.

溶接性の調査(溶接欠陥の有無)は、上記の素材を終了
温度950℃で熱間圧延して厚さ6開の鋼板とし、この
鋼板を焼鈍し、冷間圧延して0.5mmの薄板とした後
、ごの薄板」二にTIG溶接により長さ1mのビードを
おいて、ヒート形状を観察し、大型介在物に起因するり
l/−ター状の溶接欠陥の有無を調査した。
Weldability investigation (presence or absence of welding defects) was carried out by hot rolling the above material at a finishing temperature of 950°C to make a 6 mm thick steel plate, annealing this steel plate, and cold rolling it into a 0.5 mm thin plate. After that, a 1 m long bead was placed on the thin plate 2 by TIG welding, and the heat shape was observed to investigate the presence or absence of l/-tar-shaped welding defects caused by large inclusions.

調査結果を第1表および第2表に示す。The survey results are shown in Tables 1 and 2.

第1表の「絞り率」は、70%以上であれば熱間延性が
良好であるとみなすことができる。「凝固割れ」は、凝
固割れ総長さが0.5mm未満のものを○、0.5mm
以」二のものを×として示した。また、「溶接欠陥」は
、クレータ−状の溶接欠陥の無いものを○、存るものを
×とした。第2表の「耳割れ」は、熱間圧延鋼板の左右
の最大耳側れ深さを測定し、左右の和がllnm以下の
ものを○、1mmを超えるものを×とし人:。
If the "reduction ratio" in Table 1 is 70% or more, it can be considered that the hot ductility is good. "Solidification cracks" are those with a total solidification crack length of less than 0.5 mm, ○, 0.5 mm.
The following two items are indicated as ×. In addition, for "welding defects", those without crater-shaped welding defects were rated as ○, and those with crater-like welding defects were rated as ×. For "edge cracking" in Table 2, the maximum depth of left and right edges of a hot-rolled steel plate was measured, and those where the sum of the left and right sides was less than 100 nm were marked as ○, and those exceeding 1 mm were marked as ×.

第1表および第2表の調査結果によれば、本発明方法で
用いる高Niステンレス鋼鋳片はいずれも凝固割れ感受
性が小さく、かつ900℃での絞り率カフ0%以」−ヲ
示シ、90(]]°C以−ニー1−テIHすることによ
り耳割れを著しく小さくできることが明らかである。
According to the investigation results shown in Tables 1 and 2, all the high Ni stainless steel slabs used in the method of the present invention have low susceptibility to solidification cracking and have a drawing ratio of 0% or less at 900°C. It is clear that edge cracking can be significantly reduced by performing IH at 90(]]°C or higher.

No. 9の直(4 Hステンレス鋼については、厚さ
200mmの連鋳スラブとし、2mm深さのグラインダ
ー手入れした後の疵チlツクを行った結果、鋳片割れは
皆無であった。この連鋳スラブを終了温度935°Cで
熱間圧延して厚さ6mmの鋼板としたが、耳割れの発生
もなかった。また、この鋼板を冷間圧延して得られた厚
さ0.5mmの薄板を溶接する際、介在物に起因する溶
接欠陥の発生もみられなかった。
No. As for the 9 straight (4H stainless steel), a continuous cast slab with a thickness of 200 mm was inspected for defects after cleaning with a 2 mm deep grinder, and as a result, there were no cracks in the slab. A steel plate with a thickness of 6 mm was obtained by hot rolling at a finishing temperature of 935°C, and no edge cracking occurred.Also, a thin plate with a thickness of 0.5 mm obtained by cold rolling this steel plate was During welding, no welding defects caused by inclusions were observed.

絞り率の測定は前述の鋳片の場合と同様の方法で行った
が良好な結果が得られた。
The reduction ratio was measured in the same manner as in the case of the slab described above, and good results were obtained.

(以下、余白) (mlJJ) ;’¥道イ1偉(至) (発明の効果) 本発明方法によれば、連鋳法を適用しても鋳造時の割れ
の発生が少なく、かつ熱間圧延時にお1ノる耳割れの発
生が著しく少なく歩留りが良好であり、さらに溶接時に
問題と4ζる介在物に起因する欠陥の発生が少ない高1
1iステンレス鋼板を得ることが可能である。これによ
って、良好な特性を有する高Niステンレス鋼板を安価
に供給することができる。
(Hereinafter, the margins) (mlJJ) ;'¥道い1い (Effects of the invention) According to the method of the present invention, even if a continuous casting method is applied, the occurrence of cracks during casting is small, and The yield rate is good with very little edge cracking during rolling, and there are also fewer defects caused by inclusions that cause problems during welding.
It is possible to obtain a 1i stainless steel plate. As a result, a high-Ni stainless steel plate having good properties can be supplied at a low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、高Niステンレス鋼の凝固割れ感受性とmg
含有量の関係を示すグラフである。 第2図は、高Niステンレス鋼の熱間引張試験における
絞り率の温度依存性とh含存量の影響を示すグラフであ
る。
Figure 1 shows the solidification cracking susceptibility and mg of high Ni stainless steel.
It is a graph showing the relationship between contents. FIG. 2 is a graph showing the temperature dependence of the reduction ratio and the influence of the h content in a hot tensile test of high Ni stainless steel.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、Si:2%以下、Mn:2%以下、C
r:15〜26%、Ni:15〜45%、Mo:5.0
%以下、Cu:2.0%以下、Al:0.005〜0.
10%、N:0.25%以下、Mg:0.0005〜0
.0045%を含有し、残部がFeおよび不可避不純物
からなり、不純物中のCが0.04%以下、Pが0.0
3%以下、Sが0.001%以下、Oが0.006%以
下である鋳片に、900℃以上で終了する熱間圧延を施
すことを特徴とする高Niステンレス鋼板の製造方法。
(1) In weight%, Si: 2% or less, Mn: 2% or less, C
r: 15-26%, Ni: 15-45%, Mo: 5.0
% or less, Cu: 2.0% or less, Al: 0.005 to 0.
10%, N: 0.25% or less, Mg: 0.0005-0
.. 0.045%, the remainder consists of Fe and unavoidable impurities, C in the impurities is 0.04% or less, P is 0.0
3% or less, S is 0.001% or less, and O is 0.006% or less. A method for producing a high-Ni stainless steel sheet, which comprises subjecting a slab containing S to 0.001% or less and O to 0.006% or less to hot rolling that ends at 900° C. or higher.
(2)請求項(1)記載の成分に加えて、更に、重量%
で、Ti:1%以下、Nb:1%以下、V:2%以下、
W:2%以下、B:0.01%未満のうち1種以上を含
有し、残部がFeおよび不可避不純物からなり、不純物
中のCが0.04%以下、Pが0.03%以下、Sが0
.001%以下、Oが0.006%以下である鋳片に、
900℃以上で終了する熱間圧延を施すことを特徴とす
る高Niステンレス鋼板の製造方法。
(2) In addition to the components described in claim (1), furthermore, % by weight
and Ti: 1% or less, Nb: 1% or less, V: 2% or less,
Contains one or more of W: 2% or less, B: less than 0.01%, the remainder consists of Fe and unavoidable impurities, C in the impurities is 0.04% or less, P is 0.03% or less, S is 0
.. 0.001% or less, O is 0.006% or less,
A method for producing a high-Ni stainless steel sheet, comprising hot rolling that ends at 900°C or higher.
JP22898490A 1990-08-29 1990-08-29 Production of high ni stainless steel plate Pending JPH04110419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22898490A JPH04110419A (en) 1990-08-29 1990-08-29 Production of high ni stainless steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22898490A JPH04110419A (en) 1990-08-29 1990-08-29 Production of high ni stainless steel plate

Publications (1)

Publication Number Publication Date
JPH04110419A true JPH04110419A (en) 1992-04-10

Family

ID=16884949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22898490A Pending JPH04110419A (en) 1990-08-29 1990-08-29 Production of high ni stainless steel plate

Country Status (1)

Country Link
JP (1) JPH04110419A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777314A1 (en) * 2004-06-30 2007-04-25 Sumitomo Metal Industries, Ltd. RAW PIPE OF Fe-Ni ALLOY AND METHOD FOR PRODUCTION THEREOF
KR101356930B1 (en) * 2012-03-27 2014-02-03 주식회사 포스코 Method of manufacturing stainless steel
JP2020094235A (en) * 2018-12-11 2020-06-18 山陽特殊製鋼株式会社 ANTICORROSIVE ALLOY OF HIGH Ni EXCELLENT IN INTERGRANULAR CORROSION RESISTANCE OR CORROSION RESISTANCE, AND EXCELLENT IN HOT WORKABILITY AND COLD WORKABILITY
CN111893392A (en) * 2020-08-12 2020-11-06 宝武集团鄂城钢铁有限公司 Smelting method for reducing edge crack incidence rate of 45 steel plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1777314A1 (en) * 2004-06-30 2007-04-25 Sumitomo Metal Industries, Ltd. RAW PIPE OF Fe-Ni ALLOY AND METHOD FOR PRODUCTION THEREOF
EP1777314A4 (en) * 2004-06-30 2008-01-09 Sumitomo Metal Ind RAW PIPE OF Fe-Ni ALLOY AND METHOD FOR PRODUCTION THEREOF
AU2005258506B2 (en) * 2004-06-30 2008-11-20 Nippon Steel Corporation Raw pipe of Fe-Ni alloy and method for production thereof
US8784581B2 (en) 2004-06-30 2014-07-22 Nippon Steel & Sumitomo Metal Corporation Fe-Ni alloy pipe stock and method for manufacturing the same
EP2682494A3 (en) * 2004-06-30 2018-02-21 Nippon Steel & Sumitomo Metal Corporation Raw pipe of Fe-Ni Alloy and method for production thereof
KR101356930B1 (en) * 2012-03-27 2014-02-03 주식회사 포스코 Method of manufacturing stainless steel
JP2020094235A (en) * 2018-12-11 2020-06-18 山陽特殊製鋼株式会社 ANTICORROSIVE ALLOY OF HIGH Ni EXCELLENT IN INTERGRANULAR CORROSION RESISTANCE OR CORROSION RESISTANCE, AND EXCELLENT IN HOT WORKABILITY AND COLD WORKABILITY
CN111893392A (en) * 2020-08-12 2020-11-06 宝武集团鄂城钢铁有限公司 Smelting method for reducing edge crack incidence rate of 45 steel plate

Similar Documents

Publication Publication Date Title
EP2199419B1 (en) Austenitic stainless steel
US8137613B2 (en) Austenitic stainless steel welded joint and austenitic stainless steel welding material
KR101838424B1 (en) High toughness and high tensile strength thick steel plate and production method therefor
CA2969200C (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
TWI460293B (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP6441909B2 (en) Duplex ferrite and austenitic stainless steel
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
WO2018003521A1 (en) Ferritic stainless steel sheet
GB2131832A (en) Steel material exhibiting superior hydrogen cracking resistance in a wet sour gas environment
JPH0443977B2 (en)
JPH04110419A (en) Production of high ni stainless steel plate
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JPH03291358A (en) Duplex stainless steel excellent in toughness and hot workability and its production
CN110551951B (en) Ultralow-carbon high-temperature-resistant welding wire and preparation method thereof
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
WO2023286338A1 (en) Ni-cr-mo-based alloy for welded pipe having excellent workability and corrosion resistance
JP3210255B2 (en) Ferritic stainless steel with excellent corrosion resistance and manufacturability
JPH05179378A (en) Ni-base alloy excellent in room temperature and high temperature strength
JPH057457B2 (en)
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
EP3797013B1 (en) An austenitic nickel-base alloy
JP2759678B2 (en) Stainless steel with excellent hot workability
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP2002173720A (en) Ni BASED ALLOY EXCELLENT IN HOT WORKABILITY
JP4013515B2 (en) Structural stainless steel with excellent intergranular corrosion resistance