JP2020094235A - ANTICORROSIVE ALLOY OF HIGH Ni EXCELLENT IN INTERGRANULAR CORROSION RESISTANCE OR CORROSION RESISTANCE, AND EXCELLENT IN HOT WORKABILITY AND COLD WORKABILITY - Google Patents

ANTICORROSIVE ALLOY OF HIGH Ni EXCELLENT IN INTERGRANULAR CORROSION RESISTANCE OR CORROSION RESISTANCE, AND EXCELLENT IN HOT WORKABILITY AND COLD WORKABILITY Download PDF

Info

Publication number
JP2020094235A
JP2020094235A JP2018231996A JP2018231996A JP2020094235A JP 2020094235 A JP2020094235 A JP 2020094235A JP 2018231996 A JP2018231996 A JP 2018231996A JP 2018231996 A JP2018231996 A JP 2018231996A JP 2020094235 A JP2020094235 A JP 2020094235A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
grain size
crystal grain
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018231996A
Other languages
Japanese (ja)
Other versions
JP7332258B2 (en
Inventor
孝 細田
Takashi Hosoda
孝 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2018231996A priority Critical patent/JP7332258B2/en
Publication of JP2020094235A publication Critical patent/JP2020094235A/en
Application granted granted Critical
Publication of JP7332258B2 publication Critical patent/JP7332258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To provide a high Ni alloy having greatly improving intergranular corrosion resistance, improving corrosion resistance with consideration of use environment, and excellent in hot workability and cold workability.SOLUTION: There is provided a high Ni alloy containing alloy elements of, by mass%, C:0.001 to 0.050%, Si:0.01 to 1.50%, Mn:0.01 to 1.50%, S:≤0.050%, Ni:30.0 to 50.0%, Cr:18.5 to 25.0%, Mo:2.00 to 5.00%, Cu:1.00 to 5.00%, Al:0.01 to 0.50%, Ti:0.5 to 2.0%, N:0.0001 to 0.0500%, Fe:≥20.0%, and inevitable impurities, and having a PRE value of corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N]:≥31.5 Formula (1), and a ratio of crystal particle diameter of an outer surface and a center peripheral part of an alloy bar or an alloy tube consisting of the Ni alloy:≥1.5, and excellent in corrosion resistance of particle boundary corrosion resistance and corrosion resistance, and excellent in hot workability and cold workability.SELECTED DRAWING: None

Description

この出願は化学プラント用の部材、配管あるいは海水を用いた熱交換器などの各種の腐食しやすい環境下で使用する際に、優れた耐粒界腐食性および優れた耐孔食性を有し、かつ熱間加工性および冷間加工性に優れた高Niの耐食合金に関する。 This application has excellent intergranular corrosion resistance and excellent pitting corrosion resistance when used in various corrosive environments such as members for chemical plants, pipes or heat exchangers using seawater, The present invention also relates to a high Ni corrosion-resistant alloy having excellent hot workability and cold workability.

本願出願人は、これまでにも、耐食性に加え、熱間・冷間での加工性に特に着眼した加工性に優れる耐食合金に関する特許を既に取得している(例えば、特許文献1参照。)。しかし、この文献では、材料表面の結晶粒径が耐食性に与える影響については考慮されていなかった。 The applicant of the present application has already obtained a patent for a corrosion-resistant alloy excellent in workability particularly in view of hot and cold workability in addition to corrosion resistance (see, for example, Patent Document 1). . However, this document does not consider the influence of the crystal grain size of the material surface on the corrosion resistance.

さらに、管の軸方向および周方向の引張降伏強度や圧縮降伏強度の比などを調整することで、使用環境に応じて異なる応力分布が負荷されても、耐用可能なオーステナイト系合金管に関する特許が取得されている(例えば、特許文献2参照。)。ただし、この文献は、オーステナイト系合金管およびその製造方法に関するものもあり、材料表面の結晶粒径が耐食性に与える影響については考慮されておらず、記載も示唆もない。 Furthermore, by adjusting the ratio of the tensile yield strength and the compressive yield strength in the axial direction and the circumferential direction of the pipe, etc., even if different stress distributions are loaded depending on the operating environment, there is a patent on austenitic alloy pipe that can withstand. It has been acquired (for example, refer to Patent Document 2). However, this document also relates to an austenitic alloy tube and a method for producing the same, and does not consider, influence or influence the crystal grain size of the material surface on the corrosion resistance, and does not describe or suggest it.

また本願出願人は、耐粒界腐食性および耐孔食性に優れた高Ni合金に関して、特許文献3に記載の発明を提案している。この出願にかかる発明は、材料の成分調整と炭化物の粒界被覆率を制御・制限して耐粒界腐食性を改善させるものであって、結晶粒径による着眼とは異なっている。 Further, the applicant of the present application has proposed the invention described in Patent Document 3 with respect to a high Ni alloy excellent in intergranular corrosion resistance and pitting corrosion resistance. The invention according to this application is intended to improve the intergranular corrosion resistance by controlling the composition of the material and controlling the grain boundary coverage of carbides, which is different from the observation based on the crystal grain size.

特許第5748216号公報Japanese Patent No. 5748216 特許第5137048号公報Japanese Patent No. 5137048 特開2018−111846号公報JP, 2018-111846, A

化学プラントや熱交換器などのように高耐食性が求められる用途では、優れた耐粒界腐食性および耐孔食性が必要となる。もっとも、従来技術においては、耐粒界腐食性を向上させるメカニズムについては、十分に解明されておらず、全く記載されていない。出願人は、鋭意検討の結果、材料表面のみの結晶粒に着目し、表面のみの結晶粒を異常粒成長させることで、飛躍的に耐食性が向上することを見出したことから、本発明の着想を得た。 In applications requiring high corrosion resistance such as chemical plants and heat exchangers, excellent intergranular corrosion resistance and pitting corrosion resistance are required. However, in the prior art, the mechanism for improving the intergranular corrosion resistance has not been sufficiently clarified and has not been described at all. As a result of diligent study, the applicant has focused on crystal grains only on the surface of the material and found that the corrosion resistance is dramatically improved by abnormally growing crystal grains only on the surface. Got

発明が解決しようとする課題は、化学プラントや熱交換器などの高耐食性が求められる用途の機器の、合金表面の結晶粒径の限定という組織制御を用いた従来技術と異なるアプローチによって、耐粒界腐食性を飛躍的に向上させること、さらに使用環境を考慮して耐孔食性もあわせて向上させること、かつ熱間加工性および冷間加工性に優れた高Ni合金を提供することである。 The problem to be solved by the invention is to improve grain resistance by a different approach from the conventional technique using a structure control of limiting the grain size of the alloy surface of equipment for applications requiring high corrosion resistance such as chemical plants and heat exchangers. It is to provide a high Ni alloy that is excellent in hot workability and cold workability, by dramatically improving intercalation corrosion resistance, further improving pitting corrosion resistance in consideration of use environment. .

上記の課題を解決するための手段では、第1の手段は、質量%で、C:0.001〜0.050%、Si:0.01〜1.50%、Mn:0.01〜1.50%、S:≦0.050%、Ni:30.0〜50.0%、Cr:18.5〜25.0%、Mo:2.00〜5.00%、Cu:1.00〜5.00%、Al:0.01〜0.50%、Ti:0.5〜2.0%、N:0.0001〜0.0500%、Fe:≧20.0%の合金元素、および不可避不純物からなり、
以下の式(1)に示す、耐孔食性指数のPRE値=[%Cr]+3.3[%Mo]+16[%N]:≧31.5・・・式(1)であるNi合金であって、
該Ni合金からなる合金棒または合金管の外表面の結晶粒径(OG)と中周部の結晶粒径(MG)の比であるOG/MG:≧1.5であること
を特徴とする耐粒界腐食性および耐孔食性に優れ、かつ熱間加工性および冷間加工性に優れた高Ni合金である。
なお、上記式(1)における[%元素]には各元素の質量%における値を代入する。また、上記における外表面の結晶粒径(OG)とは外表面から深さ100μmまでの結晶粒径のことであり、上記における中周部の結晶粒径(MG)とは、合金棒であればD/4の位置を中心に、もしくは合金管であれば外表面からの深さが合金管肉厚の半分となる位置を中心に、それぞれ±500μmの範囲の結晶粒径である。
ただし、Dは合金棒の直径である。
In the means for solving the above-mentioned problems, the first means is, in mass %, C: 0.001 to 0.050%, Si: 0.01 to 1.50%, Mn: 0.01 to 1 .50%, S: ≤0.050%, Ni: 30.0 to 50.0%, Cr: 18.5 to 25.0%, Mo: 2.00 to 5.00%, Cu: 1.00. To 5.00%, Al: 0.01 to 0.50%, Ti: 0.5 to 2.0%, N: 0.0001 to 0.0500%, Fe: ≧20.0% alloying element, And inevitable impurities,
PRE value of pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N] shown in the following formula (1):≧31.5... There
OG/MG, which is the ratio of the crystal grain size (OG) of the outer surface of the alloy rod or alloy tube made of the Ni alloy to the crystal grain size (MG) of the middle portion, is ≧1.5. It is a high Ni alloy that has excellent intergranular corrosion resistance and pitting corrosion resistance, as well as hot workability and cold workability.
In addition, the value in mass% of each element is substituted for [% element] in the above formula (1). Further, the crystal grain size (OG) of the outer surface in the above is a crystal grain size from the outer surface to a depth of 100 μm, and the crystal grain size (MG) of the middle portion in the above is an alloy rod. For example, the crystal grain size is in the range of ±500 μm around the position of D/4 or around the position where the depth from the outer surface of the alloy pipe is half the thickness of the alloy pipe.
However, D is the diameter of the alloy rod.

第2の手段は、第1の手段の合金元素に加えて、
熱間加工性を改善するべく、さらに質量%で、B:0.0001〜0.0250%、Ca:0.0001〜0.0250%、Mg:0.0001〜0.0250%の合金元素のうち少なくとも1種以上を含有し、および不可避不純物からなり、
以下の式(1)に示す、耐孔食性指数のPRE値=[%Cr]+3.3[%Mo]+16[%N]:≧31.5・・・式(1)であるNi合金であって、
該Ni合金からなる合金棒または合金管の外表面の結晶粒径(OG)と中周部の結晶粒径(MG)の比であるOG/MG:≧1.5であること
を特徴とする耐粒界腐食性および耐孔食性に優れ、かつ熱間加工性および冷間加工性に優れた高Ni合金である。
なお、上記式(1)における[%元素]には各元素の質量%における値を代入する。また、上記における外表面の結晶粒径(OG)とは外表面から深さ100μmまでの結晶粒径のことであり、上記における中周部の結晶粒径(MG)とは、合金棒であればD/4の位置を中心に、もしくは合金管であれば外表面からの深さが合金管肉厚の半分となる位置を中心に、それぞれ±500μmの範囲の結晶粒径である。
ただし、Dは合金棒の直径である。
The second means is, in addition to the alloy element of the first means,
In order to improve hot workability, B: 0.0001 to 0.0250%, Ca: 0.0001 to 0.0250%, Mg: 0.0001 to 0.0250% of alloying elements in mass% are further included. Containing at least one of these and consisting of unavoidable impurities,
PRE value of pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N] shown in the following formula (1):≧31.5... There
OG/MG, which is the ratio of the crystal grain size (OG) of the outer surface of the alloy rod or alloy tube made of the Ni alloy to the crystal grain size (MG) of the middle portion, is ≧1.5. It is a high Ni alloy that has excellent intergranular corrosion resistance and pitting corrosion resistance, as well as hot workability and cold workability.
In addition, the value in mass% of each element is substituted for [% element] in the above formula (1). Further, the crystal grain size (OG) of the outer surface in the above is a crystal grain size from the outer surface to a depth of 100 μm, and the crystal grain size (MG) of the middle portion in the above is an alloy rod. For example, the crystal grain size is in the range of ±500 μm around the position of D/4 or around the position where the depth from the outer surface of the alloy pipe is half the thickness of the alloy pipe.
However, D is the diameter of the alloy rod.

本願発明によると、上記構成の高Ni合金とすることによって、化学プラント用の部材や、配管あるいは海水を用いた熱交換器などの用途に使用される、耐粒界腐食性や耐孔食性に優れることに加えて、熱間加工性および冷間加工性に優れた高Niの耐食合金を得ることができる。 According to the invention of the present application, by using the high Ni alloy having the above-mentioned configuration, it is possible to obtain intergranular corrosion resistance and pitting corrosion resistance, which are used for applications such as members for chemical plants, pipes or heat exchangers using seawater. In addition to being excellent, it is possible to obtain a high Ni corrosion-resistant alloy having excellent hot workability and cold workability.

本発明の実施するための形態の記載に先立ち、本願発明の第1の手段および第2の手段における高Ni合金の各化学成分、耐孔食性指数の式(1)および表面結晶粒径(OG)対中周部の結晶粒径(MG)の比の限定理由について、以下に記載する。なお、化学成分における%はいずれも質量%である。 Prior to the description of the embodiment for carrying out the present invention, each chemical component of the high Ni alloy in the first means and the second means of the present invention, the formula (1) of the pitting corrosion resistance index and the surface crystal grain size (OG ) The reason for limiting the ratio of the crystal grain size (MG) to the middle part is described below. All the percentages in the chemical composition are% by mass.

C:0.001〜0.050%
Cは、高Ni合金の強度を高める効果を有し、熱間加工性および冷間加工性、耐粒界腐食性指数、および耐孔食性指数に影響を及ぼす元素である。Cが0.001%未満であると、高Ni合金の強度不足となる。一方、Cが0.050%を超えると、高Ni合金の耐食性が低下し、熱間加工性および冷間加工性が低下する。そこで、Cは0.001〜0.050%とする。
C: 0.001 to 0.050%
C is an element that has the effect of increasing the strength of the high Ni alloy and affects the hot workability and cold workability, the intergranular corrosion resistance index, and the pitting corrosion resistance index. When C is less than 0.001%, the strength of the high Ni alloy becomes insufficient. On the other hand, when C exceeds 0.050%, the corrosion resistance of the high Ni alloy decreases, and the hot workability and cold workability decrease. Therefore, C is set to 0.001 to 0.050%.

Si:0.01〜1.50%
Siは、合金製造時の脱酸剤として作用し、またNi合金の熱間加工性および冷間加工性に影響を及ぼす元素である。Siが0.01%未満であると脱酸剤として不足する。一方、Siが1.50%を超えると高Ni合金の熱間加工性および冷間加工性が低下する。そこで、Siは0.01〜1.50%とする。
Si: 0.01 to 1.50%
Si is an element that acts as a deoxidizing agent during alloy production and also affects the hot workability and cold workability of the Ni alloy. If Si is less than 0.01%, it will be insufficient as a deoxidizing agent. On the other hand, when Si exceeds 1.50%, the hot workability and cold workability of the high Ni alloy deteriorate. Therefore, Si is set to 0.01 to 1.50%.

Mn:0.01〜1.50%
Mnは、熱間加工性に影響を与える元素であり、さらにオーステナイト相に影響を与える元素である。Mnが0.01%未満であると、高Ni合金の熱間加工性が低下するとともに、オーステナイト相が不安定となる。一方、Mnが1.50%を超えると熱間加工性が飽和する。そこで、Mnは0.01〜1.50%とする。
Mn: 0.01 to 1.50%
Mn is an element that affects the hot workability and further an element that affects the austenite phase. If Mn is less than 0.01%, the hot workability of the high Ni alloy deteriorates and the austenite phase becomes unstable. On the other hand, when Mn exceeds 1.50%, the hot workability is saturated. Therefore, Mn is set to 0.01 to 1.50%.

S:≦0.050%
Sは、低融点硫化物を形成して熱間加工性に影響を与える元素である。Sが0.050%より多いと高Ni合金の熱間加工性が低下する。そこで、Sは0.050%以下とする。
S: ≤0.050%
S is an element that forms a low melting point sulfide and affects the hot workability. When S is more than 0.050%, the hot workability of the high Ni alloy deteriorates. Therefore, S is set to 0.050% or less.

Ni:30.0〜50.0%
Niは、高Ni合金の化学成分の残部として不可避不純物とともに、本願の高Ni合金中でもっとも多く含有されるベース元素であり、かつ高Niの表面にNi硫化物皮膜を生成し、その結果、この合金の耐硫化物腐食割れ性を高める元素である。Niが30.0%未満であると高Ni合金のオーステナイト系ベース元素となり得ない。Niが50.0%を超えるとNiの耐硫化物腐食割れ性の効果は飽和する。そこで、Niは30.0〜50.0%とする。
Ni: 30.0-50.0%
Ni is a base element that is contained most in the high Ni alloy of the present application together with inevitable impurities as the balance of the chemical components of the high Ni alloy, and forms a Ni sulfide film on the surface of high Ni, and as a result, It is an element that enhances the sulfide corrosion cracking resistance of this alloy. When Ni is less than 30.0%, it cannot serve as an austenitic base element for high Ni alloys. If the Ni content exceeds 50.0%, the effect of Ni on the sulfide corrosion cracking resistance is saturated. Therefore, Ni is set to 30.0 to 50.0%.

Cr:18.5〜25.0%
Crは、耐粒界腐食性指数および耐孔食性に影響を及ぼす元素であり、また、熱間加工性および冷間加工性に影響を及ぼす元素である。Crが18.5%未満であると耐粒界腐食性指数が低下し、かつ耐孔食性指数が低下する。一方、Crが25.0%より多く含有されると熱間加工性および冷間加工性が低下する。そこで、Crは18.5〜25.0%とする。
Cr: 18.5 to 25.0%
Cr is an element that affects the intergranular corrosion resistance index and pitting corrosion resistance, and is an element that affects hot workability and cold workability. If Cr is less than 18.5%, the intergranular corrosion resistance index decreases and the pitting corrosion resistance index decreases. On the other hand, when Cr is contained in an amount of more than 25.0%, hot workability and cold workability are deteriorated. Therefore, Cr is set to 18.5 to 25.0%.

Mo:2.00〜5.00%
Moは、耐孔食性に影響を与える元素であり、また、熱間加工性および冷間加工性に影響する元素である。Moが2.00%未満では耐食性が低下する。一方、Moが5.00%を超えると、熱間加工性および冷間加工性が低下し、かつコストアップとなる。そこで、Moは2.00〜5.00%とする。
Mo: 2.00-5.00%
Mo is an element that affects pitting corrosion resistance, and also an element that affects hot workability and cold workability. If Mo is less than 2.00%, the corrosion resistance decreases. On the other hand, when Mo exceeds 5.00%, hot workability and cold workability are deteriorated and the cost is increased. Therefore, Mo is set to 2.00 to 5.00%.

Cu:1.00〜5.00%
Cuは、耐食性に影響を与える元素であり、さらにオーステナイト相に影響する元素である。さらに、Cuは熱間加工性にも影響する元素である。Cuが1.00%未満では耐食性が低下し、かつオーステナイト相が不安定となる。一方、Cuが5.00%を超えると熱間加工性が低下しコストアップとなる。そこで、Cuは1.00〜5.00%とする。
Cu: 1.00 to 5.00%
Cu is an element that affects the corrosion resistance and also an element that affects the austenite phase. Further, Cu is an element that also affects hot workability. If Cu is less than 1.00%, the corrosion resistance decreases and the austenite phase becomes unstable. On the other hand, if the Cu content exceeds 5.00%, the hot workability is lowered and the cost is increased. Therefore, Cu is 1.00 to 5.00%.

Al:0.01〜0.50%
Alは、製錬時の脱酸材として作用し、高Ni合金の強度および靭性に有効な元素である。Alが0.01%より少ないと脱酸材として不足し、かつ高Ni合金の強度および靭性が不足する。一方、Alが0.50%より多いと、耐食性が低下し、かつ熱間加工性および冷間加工性が低下する。そこで、Alは0.01〜0.50%とする。
Al: 0.01 to 0.50%
Al acts as a deoxidizing material during smelting and is an element effective for the strength and toughness of the high Ni alloy. When Al is less than 0.01%, it is insufficient as a deoxidizing material, and the strength and toughness of the high Ni alloy are insufficient. On the other hand, when Al is more than 0.50%, the corrosion resistance decreases, and the hot workability and cold workability decrease. Therefore, Al is set to 0.01 to 0.50%.

Ti:0.5〜2.0%
Tiは、耐粒界腐食性指数に影響を及ぼす元素であり、さらに熱間加工性および冷間加工性に影響する元素である。Tiが0.5%より少ないと耐粒界腐食性指数が低下する。一方、Tiが2.0%を超えると、熱間加工性および冷間加工性が低下し、かつ耐食性が低下する。そこで、Tiは0.5〜2.0%とする。
Ti: 0.5-2.0%
Ti is an element that affects the intergranular corrosion resistance index, and also an element that affects hot workability and cold workability. If Ti is less than 0.5%, the intergranular corrosion resistance index decreases. On the other hand, when Ti exceeds 2.0%, hot workability and cold workability are deteriorated, and corrosion resistance is deteriorated. Therefore, Ti is set to 0.5 to 2.0%.

N:0.0001〜0.0500%
Nは、オーステナイト相を安定化する元素である。Nが0.0001%より少ないとオーステナイト相が不安定となる。一方、Nが0.0500%より多いと窒化物の生成により、耐食性と冷間加工性が低下する。そこで、Nは0.0001〜0.0500%とする。
N: 0.0001 to 0.0500%
N is an element that stabilizes the austenite phase. If N is less than 0.0001%, the austenite phase becomes unstable. On the other hand, when N is more than 0.0500%, the corrosion resistance and cold workability are deteriorated due to the formation of nitrides. Therefore, N is set to 0.0001 to 0.0500%.

Fe:≧20.0%
Feは、熱間加工および冷間加工の際の変形抵抗に影響する元素である。Feが20.0%未満であると熱間加工性および冷間加工性が低下する。そこで、Feは20.0%以上とする。
Fe: ≧20.0%
Fe is an element that affects the deformation resistance during hot working and cold working. When Fe is less than 20.0%, hot workability and cold workability are deteriorated. Therefore, Fe is set to 20.0% or more.

耐孔食性指数のPRE=[%Cr]+3.3[%Mo]+16[%N]・・・式(1):≧31.5
耐孔食性指数のPRE=[%Cr]+3.3[%Mo]+16[%N]・・・式(1)は、31.5未満だと、高Ni合金材の表面層に孔食が発生する。そこで、耐孔食性とするためには、耐孔食性指数のPRE=[%Cr]+3.3[%Mo]+16[%N]である式(1)の値は31.5以上とする。
PRE of pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N]... Formula (1): ≧31.5
PRE of pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N]... If the expression (1) is less than 31.5, pitting corrosion will occur in the surface layer of the high Ni alloy material. appear. Therefore, in order to obtain the pitting corrosion resistance, the value of the equation (1) of PRE=[%Cr]+3.3[%Mo]+16[%N] of the pitting corrosion resistance index is set to 31.5 or more.

高Ni合金からなる合金管における外表面の結晶粒径(OG)と中周部の結晶粒径(MG)との比:≧1.5
OG/MGの比の値は、高Ni合金からなる合金管の粒界腐食の進行度合いに影響する値である。高Ni合金からなる合金管における外表面の結晶粒径(OG)と中周部の結晶粒径(MG)との比が1.5より小さいと粒界腐食が進行する。そこで、高Ni合金からなる合金管における外表面の結晶粒径(OG)と中周部の結晶粒径(MG)との比は1.5以上とする。
Ratio of the crystal grain size (OG) of the outer surface and the crystal grain size (MG) of the middle part in the alloy tube made of a high Ni alloy: ≧1.5
The value of the ratio OG/MG is a value that influences the degree of progress of intergranular corrosion of an alloy tube made of a high Ni alloy. If the ratio of the crystal grain size (OG) of the outer surface and the crystal grain size (MG) of the middle portion of the alloy tube made of a high Ni alloy is smaller than 1.5, intergranular corrosion proceeds. Therefore, the ratio of the crystal grain size (OG) of the outer surface and the crystal grain size (MG) of the middle portion of the alloy tube made of a high Ni alloy is set to 1.5 or more.

B:0.0001〜0.0250%、Ca:0.0001〜0.0250%、Mg:0.0001〜0.0250%の合金元素のうち少なくとも1種以上を含有すること
これらの元素は本発明における選択的・付加的成分であって、いずれの元素も材料の熱間加工性に影響を及ぼす元素である。Bは粒界偏析し易く、SやP等の有害元素の粒界偏析を妨げ、CaおよびMgはSと結合して粒内に固定することでSの粒界偏析を妨げるため、添加によって熱間加工性が改善する元素である。いずれも0.0001%未満ではその効果が十分には得られないが、0.0250%を超えると過剰であり、材料自体の融点を下げる、あるいは低融点化合物の形成を促して熱間加工性に悪影響を及ぼす。そこで、付加する場合は、いずれの元素も0.0001〜0.0250%とする。
B: 0.0001 to 0.0250%, Ca: 0.0001 to 0.0250%, Mg: 0.0001 to 0.0250% At least one or more of the alloying elements are contained. Any of the elements that are selective and additional components in the invention are elements that affect the hot workability of the material. B tends to segregate at the grain boundaries and prevents grain boundary segregation of harmful elements such as S and P. Ca and Mg bind to S and fix in the grains to prevent segregation of S at the grain boundaries. It is an element that improves inter-workability. If the content is less than 0.0001%, the effect is not sufficiently obtained, but if it exceeds 0.0250%, the effect is excessive and the melting point of the material itself is lowered, or the formation of a low-melting compound is promoted, and hot workability is increased. Adversely affect. Therefore, when adding, all the elements are made 0.0001 to 0.0250%.

次いで、本願発明の実施をするための形態について、以下に実施例を通じて記載することとする。 Next, modes for carrying out the present invention will be described below through examples.

表1に示す化学成分からなる発明例のNo.1〜25の高Ni合金および比較例のNo.26〜39の高Ni合金の、各No.のそれぞれの化学成分からなる100kgの高Ni合金をVIMにて溶解し、それらをインゴットに鋳造した。次いで、それらのインゴットを熱間での鍛造および圧延である熱間加工および機械加工を行ない、さらに冷間での圧延である冷間加工を行なって、外径25mm、内径20mmのそれぞれの高Niの合金管を製造した。 No. 1 of the invention examples having the chemical components shown in Table 1. Nos. 1 to 25 of high Ni alloy and Comparative Example No. No. 26 to 39 high Ni alloys. 100 kg of high Ni alloys consisting of the respective chemical components were melted by VIM and cast into ingots. Then, these ingots are subjected to hot forging and rolling, which is hot working and machining, and cold working, which is cold rolling, to obtain high Ni of 25 mm outside diameter and 20 mm inside diameter. Alloy pipes were manufactured.

Figure 2020094235
Figure 2020094235

Figure 2020094235
Figure 2020094235

上記で得られたこれらの高Niの合金管を評価対象材とした。続いて、これらの評価対象材の合金管は、冷間加工にて形成した加工組織を解消するために、900〜1000℃で5〜30分程度の溶体化処理を施した。その後、これらの合金管の熱処理曲りを矯正機で矯正し、最後に仕上げの安定化処理を900〜1000℃で5〜120分間実施して評価用の試験片とした。 These high Ni alloy tubes obtained above were used as materials to be evaluated. Subsequently, the alloy tubes of these evaluation target materials were subjected to solution treatment at 900 to 1000° C. for about 5 to 30 minutes in order to eliminate the processed structure formed by cold working. Then, the heat treatment bending of these alloy tubes was corrected by a straightening machine, and finally, stabilization treatment for finishing was carried out at 900 to 1000° C. for 5 to 120 minutes to obtain test pieces for evaluation.

その後、試験片のL面(すなわち長手方向の断面であるL断面)のミクロ組織観察を行い、外表面から深さ100μmまでの範囲における結晶粒径(OG)と、合金管の平均的な結晶粒径を有する部位である合金管中周部(合金管外表面からの深さが合金管肉厚の半分となる位置を中心に、±500μmの範囲内)の結晶粒径(MG)の両方を切断法にて測定した。これらの測定結果を、表1および表2に示した。 After that, microstructure observation of the L surface of the test piece (that is, the L section which is the cross section in the longitudinal direction) is performed, and the crystal grain size (OG) in the range from the outer surface to the depth of 100 μm and the average crystal of the alloy tube Both of the crystal grain size (MG) in the middle part of the alloy pipe (within a range of ±500 μm around the position where the depth from the outer surface of the alloy pipe is half the thickness of the alloy pipe) which is the part having the grain size Was measured by the cutting method. The results of these measurements are shown in Tables 1 and 2.

以上の測定結果から得られた、表1における、式(1)の欄には、耐孔食性指数のPRE値=[%Cr]+3.3[%Mo]+16[%N]が31.5以上となる本願の発明の値を満足するもので、その値 を表記した。さらに表1における、OG/MGの欄には、OG/MGの比の値が1.5以上となる本願の発明の値を満足するもので、その値を表記した。ただし、表1の比較例においてOG/MGの比の値が1.5未満のものは、その実測値に下線を付して表記した。 The PRE value of the pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N] is 31.5 in the column of formula (1) in Table 1 obtained from the above measurement results. The above values of the invention of the present application are satisfied, and the values are shown. Further, in Table 1, the column of OG/MG satisfies the value of the invention of the present application in which the value of the ratio of OG/MG is 1.5 or more, and the value is shown. However, in the comparative examples of Table 1, those in which the ratio of OG/MG is less than 1.5 are shown by underlining the measured values.

その他の測定における評価項目としては、表2に示す、熱間加工性、冷間加工性、耐孔食性(これはASTM G48−A法に準拠し、表2に孔食重量減(g/cm2)で示す。)、および耐粒界腐食性(ASTM A262−C法に準拠し、表2に粒界腐食度(mm/year)で示す。)である。 The evaluation items in the other measurements include hot workability, cold workability, and pitting corrosion resistance shown in Table 2 (this is based on the ASTM G48-A method, and Table 2 shows pitting corrosion weight loss (g/cm). 2 )) and intergranular corrosion resistance (in accordance with ASTM A262-C method, shown in Table 2 as intergranular corrosion degree (mm/year)).

これらの評価項目の評価方法については、以下に順次記載する。
熱間加工性は、評価対象となる合金管製造時の熱間加工において、キズや割れが発生する場合がある。そこで、熱間加工においてキズや割れの発生が無く、次工程の冷間加工に進めたものを、表2に○と表記した。一方、キズや割れが多発し、次の工程の冷間加工に進めなかったものを、表2に×と表記し下線を付した。さらに、この次工程に進めなかった例のそれ以降の工程の欄には−を表記した。
なお、表1の比較例においてOG/MGの欄に−と表記したものは、表2における熱間加工ができなかったことから、比を算定するに至らなかったものを意味する。
The evaluation methods for these evaluation items are described below in order.
The hot workability may cause scratches and cracks in the hot work during the production of the alloy pipe to be evaluated. Therefore, in the hot working, there are no scratches or cracks, and the cold working in the next step is indicated by "O" in Table 2. On the other hand, those in which scratches and cracks frequently occurred and which could not proceed to the cold working in the next step were marked with X in Table 2 and underlined. Furthermore, in the column of the subsequent steps of the example in which the next step was not proceeded, − was described.
In addition, in the comparative example of Table 1, what is written in the column of OG/MG as-means that the ratio could not be calculated because hot working in Table 2 could not be performed.

冷間加工性は、評価対象となる合金管製造時の冷間加工においても、キズや割れが発生する場合がある。そこで、冷間加工においてキズや割れの発生が無く、次工程に進めたものを、表2に○と表記した。一方、キズや割れが多発し、次の工程の耐孔食性の評価に進めなかったものを、表2に下線を付した×で表記した。さらに、この次工程に進めなかった場合は、それ以降の工程の欄には、測定結果がないので、−を表記した。 The cold workability may cause scratches and cracks even in the cold work at the time of manufacturing the alloy pipe to be evaluated. Therefore, in the cold working, there were no scratches and cracks, and those that proceeded to the next step were marked with ◯ in Table 2. On the other hand, those with many scratches and cracks that could not be evaluated for pitting corrosion resistance in the next step are shown in Table 2 with an underlined x. Furthermore, when the process could not be proceeded to the next step, there was no measurement result in the column of the subsequent steps, so − was described.

次工程での耐孔食性の評価は、ASTM G48−A法に準拠し、孔食重量減で表記するために、次の実験を行なった。供試材のNi合金管の表面のスケール除去のために、このNi合金管の全表面を湿式エメリーペーパーで研磨し、ASTM G48−A法に則って孔食試験を実施した。具体的には、Ni合金管から切り出した試験片の初期重量と表面積を測定した後、試験片を6%塩化第二鉄の22℃の溶液中に72時間浸漬させた後、洗浄して再度試験片の重量を測定した。試験片の得られた重量減から腐食度を、孔食重量減と称してg/cm2として算出した。孔食重量減が1.0g/cm2以下の数値を、表2の孔食重量減の欄に表記し、それに続く評価の欄に○と表記した。一方、孔食重量減が1.0g/cm2より大きな数値に下線を付し、表2の孔食重量減の欄に表記し、それに続く評価の欄に下線を付して×と表記した。さらに、この次工程に進めなかった場合、以降の工程の欄には−を表記した。 The evaluation of the pitting corrosion resistance in the next step was based on the ASTM G48-A method, and the following experiment was performed in order to express it by the weight loss of the pitting corrosion. In order to remove the scale on the surface of the Ni alloy tube as the test material, the entire surface of this Ni alloy tube was polished with wet emery paper, and a pitting corrosion test was carried out according to the ASTM G48-A method. Specifically, after measuring the initial weight and surface area of the test piece cut out from the Ni alloy tube, the test piece was immersed in a 6% ferric chloride solution at 22° C. for 72 hours, washed, and then again. The weight of the test piece was measured. From the obtained weight loss of the test piece, the corrosion degree was calculated as g/cm 2 , which is referred to as pitting weight loss. Numerical values of pitting corrosion weight loss of 1.0 g/cm 2 or less are shown in the column of pitting corrosion weight loss in Table 2, and are shown as ◯ in the subsequent evaluation column. On the other hand, numerical values with a pitting weight loss of more than 1.0 g/cm 2 are underlined, and are written in the column of pitting weight loss in Table 2, followed by underlining in the column of evaluation and are written as x. .. Furthermore, when the next step could not be proceeded to, − was written in the column of the subsequent steps.

さらに、次工程の耐粒界腐食性は、ASTM A262−C法に準拠し、粒界腐食度で表記するために、次の実験を行なった。供試材のNi合金管に追加で、鋭敏化熱処理として675℃で60分加熱保持して空冷した後、供試材のNi合金管の表面のスケール除去のために、このNi合金管の全表面を湿式エメリーペーパーで研磨し、ASTM A262−C法に則って粒界腐食試験を実施した。具体的には、Ni合金管から切り出した試験片の初期重量と表面積を測定した後、試験片を65%沸騰硝酸に48時間浸漬させた後、洗浄して再度試験片の重量を測定した。試験片の表面積や合金の密度、そして得られた重量減から浸食度を、粒界腐食度と称してmm/yearとして算出した。この操作を5回繰り返し、各回の浸食度である粒界腐食度および初期重量と最終重量から導き出されるトータルの試食度である粒界腐食度を算出した。
なお、この試験では、基本的に5回目の粒界腐食度が最も大きくなる傾向がある。そこで、5回目のみの粒界腐食度で比較、評価し、粒界腐食度が0.75mm/year以下となるものを、表2の粒界腐食度の欄に表記し、それに続く評価の欄に○と表記した。一方、粒界腐食度が0.75mm/yearより大きい数値に下線を付し、表2の粒界腐食度の欄に表記し、それに続く評価の欄に下線を付して×と表記した。
Further, the intergranular corrosion resistance in the next step was based on the ASTM A262-C method, and the following experiment was conducted in order to express it in terms of the intergranular corrosion degree. In addition to the Ni alloy pipe of the test material, after heating and holding at 675° C. for 60 minutes as a sensitizing heat treatment and air cooling, all of the Ni alloy pipe of the test material was removed in order to remove the scale of the surface of the Ni alloy pipe. The surface was ground with a wet emery paper, and an intergranular corrosion test was carried out according to the ASTM A262-C method. Specifically, after measuring the initial weight and surface area of the test piece cut out from the Ni alloy tube, the test piece was immersed in 65% boiling nitric acid for 48 hours, washed, and the weight of the test piece was measured again. From the surface area of the test piece, the density of the alloy, and the obtained weight loss, the erosion degree was calculated as mm/year, which is called the intergranular corrosion degree. This operation was repeated 5 times, and the intergranular corrosion degree, which is the erosion degree at each time, and the intergranular corrosion degree, which is the total corrosion degree derived from the initial weight and the final weight, were calculated.
In this test, basically, the intergranular corrosion degree at the fifth time tends to be the largest. Therefore, the intergranular corrosion degree of only the fifth time is compared and evaluated, and the intergranular corrosion degree of 0.75 mm/year or less is described in the intergranular corrosion degree column of Table 2 and the subsequent evaluation column. Is marked with a circle. On the other hand, the numerical value of the intergranular corrosion degree larger than 0.75 mm/year is underlined, and is written in the column of the intergranular corrosion degree in Table 2, and the column of the evaluation that follows is underlined and is written as x.

Claims (2)

質量%で、C:0.001〜0.050%、Si:0.01〜1.50%、Mn:0.01〜1.50%、S:≦0.050%、Ni:30.0〜50.0%、Cr:18.5〜25.0%、Mo:2.00〜5.00%、Cu:1.00〜5.00%、Al:0.01〜0.50%、Ti:0.5〜2.0%、N:0.0001〜0.0500%、Fe:≧20.0%の合金元素、および不可避不純物からなり、
以下の式(1)に示す、耐孔食性指数のPRE値=[%Cr]+3.3[%Mo]+16[%N]:≧31.5・・・式(1)であるNi合金であって、
該Ni合金からなる合金棒または合金管の外表面の結晶粒径(OG)と中周部の結晶粒径(MG)の比であるOG/MG:≧1.5であること
を特徴とする耐粒界腐食性および耐孔食性に優れ、かつ熱間加工性および冷間加工性に優れた高Ni合金。
なお、上記式(1)における[%元素]には各元素の質量%における値を代入する。また、上記における外表面の結晶粒径(OG)とは外表面から深さ100μmまでの結晶粒径のことであり、上記における中周部の結晶粒径(MG)とは、合金棒であればD/4の位置を中心に、もしくは合金管であれば外表面からの深さが合金管肉厚の半分となる位置を中心に、それぞれ±500μmの範囲の結晶粒径である。
ただし、Dは合金棒の直径である。
In mass %, C: 0.001 to 0.050%, Si: 0.01 to 1.50%, Mn: 0.01 to 1.50%, S: ≦0.050%, Ni: 30.0. ~ 50.0%, Cr: 18.5 to 25.0%, Mo: 2.00 to 5.00%, Cu: 1.00 to 5.00%, Al: 0.01 to 0.50%, Ti: 0.5 to 2.0%, N: 0.0001 to 0.0500%, Fe: ≧20.0% of alloy elements and inevitable impurities,
PRE value of pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N] shown in the following formula (1):≧31.5... There
OG/MG, which is the ratio of the crystal grain size (OG) of the outer surface of the alloy rod or alloy tube made of the Ni alloy to the crystal grain size (MG) of the middle portion, is ≧1.5. High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance as well as hot workability and cold workability.
In addition, the value in mass% of each element is substituted for [% element] in the above formula (1). The above-mentioned crystal grain size (OG) of the outer surface means the crystal grain size from the outer surface to a depth of 100 μm, and the above-mentioned crystal grain size (MG) of the middle portion is an alloy rod. For example, the crystal grain size is in the range of ±500 μm around the position of D/4 or around the position where the depth from the outer surface of the alloy pipe is half the thickness of the alloy pipe.
However, D is the diameter of the alloy rod.
請求項1に記載の合金元素に加えて、さらに質量%で、B:0.0001〜0.0250%、Ca:0.0001〜0.0250%、Mg:0.0001〜0.0250%の合金元素のうち少なくとも1種以上を含有し、および不可避不純物からなり、
以下の式(1)に示す、耐孔食性指数のPRE値=[%Cr]+3.3[%Mo]+16[%N]:≧31.5・・・式(1)であるNi合金であって、
該Ni合金からなる合金棒または合金管の外表面の結晶粒径(OG)と中周部の結晶粒径(MG)の比であるOG/MG:≧1.5であること
を特徴とする耐粒界腐食性および耐孔食性に優れ、かつ熱間加工性および冷間加工性に優れた高Ni合金。
なお、上記式(1)における[%元素]には各元素の質量%における値を代入する。また、上記における外表面の結晶粒径(OG)とは外表面から深さ100μmまでの結晶粒径のことであり、上記における中周部の結晶粒径(MG)とは、合金棒であればD/4の位置を中心に、もしくは合金管であれば外表面からの深さが合金管肉厚の半分となる位置を中心に、それぞれ±500μmの範囲の結晶粒径である。
ただし、Dは合金棒の直径である。
In addition to the alloy element according to claim 1, further, in mass%, B: 0.0001 to 0.0250%, Ca: 0.0001 to 0.0250%, and Mg: 0.0001 to 0.0250%. Contains at least one of alloying elements and consists of unavoidable impurities,
PRE value of pitting corrosion resistance index=[%Cr]+3.3[%Mo]+16[%N] shown in the following formula (1):≧31.5... There
OG/MG, which is the ratio of the crystal grain size (OG) of the outer surface of the alloy rod or alloy tube made of the Ni alloy to the crystal grain size (MG) of the middle portion, is ≧1.5. High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance as well as hot workability and cold workability.
In addition, the value in mass% of each element is substituted for [% element] in the above formula (1). Further, the crystal grain size (OG) of the outer surface in the above is a crystal grain size from the outer surface to a depth of 100 μm, and the crystal grain size (MG) of the middle portion in the above is an alloy rod. For example, the crystal grain size is in the range of ±500 μm around the position of D/4 or around the position where the depth from the outer surface of the alloy pipe is half the thickness of the alloy pipe.
However, D is the diameter of the alloy rod.
JP2018231996A 2018-12-11 2018-12-11 High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability Active JP7332258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018231996A JP7332258B2 (en) 2018-12-11 2018-12-11 High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018231996A JP7332258B2 (en) 2018-12-11 2018-12-11 High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability

Publications (2)

Publication Number Publication Date
JP2020094235A true JP2020094235A (en) 2020-06-18
JP7332258B2 JP7332258B2 (en) 2023-08-23

Family

ID=71084632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018231996A Active JP7332258B2 (en) 2018-12-11 2018-12-11 High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability

Country Status (1)

Country Link
JP (1) JP7332258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498416B1 (en) 2023-03-28 2024-06-12 日本製鉄株式会社 Cr-Ni alloy tube

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297505A (en) * 1990-04-13 1991-12-27 Nippon Steel Corp Drawing method for seamless steel pipe of austenitic high alloy superior in sour resistance
JPH04110419A (en) * 1990-08-29 1992-04-10 Sumitomo Metal Ind Ltd Production of high ni stainless steel plate
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
WO2017168904A1 (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Ni-Fe-Cr ALLOY
JP2018111846A (en) * 2017-01-10 2018-07-19 山陽特殊製鋼株式会社 HIGH Ni ALLOY EXCELLENT IN INTERGRANULAR CORROSION RESISTANCE AND CORROSION RESISTANCE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03297505A (en) * 1990-04-13 1991-12-27 Nippon Steel Corp Drawing method for seamless steel pipe of austenitic high alloy superior in sour resistance
JPH04110419A (en) * 1990-08-29 1992-04-10 Sumitomo Metal Ind Ltd Production of high ni stainless steel plate
JP2010159438A (en) * 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
WO2017168904A1 (en) * 2016-03-31 2017-10-05 新日鐵住金株式会社 Ni-Fe-Cr ALLOY
JP2018111846A (en) * 2017-01-10 2018-07-19 山陽特殊製鋼株式会社 HIGH Ni ALLOY EXCELLENT IN INTERGRANULAR CORROSION RESISTANCE AND CORROSION RESISTANCE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7498416B1 (en) 2023-03-28 2024-06-12 日本製鉄株式会社 Cr-Ni alloy tube

Also Published As

Publication number Publication date
JP7332258B2 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
JP6766887B2 (en) High-strength stainless seamless steel pipe for oil wells and its manufacturing method
JP5211841B2 (en) Manufacturing method of duplex stainless steel pipe
CN109642282B (en) Duplex stainless steel and method for producing same
JP6369662B1 (en) Duplex stainless steel and manufacturing method thereof
KR102124914B1 (en) Austenitic stainless steel
JPWO2004001082A1 (en) Stainless steel pipe for oil well and manufacturing method thereof
JP6409827B2 (en) Manufacturing method of seamless stainless steel pipe for oil well
JP2010209402A (en) High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
JP6680142B2 (en) High-strength seamless oil country tubular good and method for manufacturing the same
JP5842769B2 (en) Duplex stainless steel and manufacturing method thereof
KR101539520B1 (en) Duplex stainless steel sheet
JP5217277B2 (en) Manufacturing method of high alloy pipe
JP6672620B2 (en) Stainless steel for oil well and stainless steel tube for oil well
KR20180125566A (en) Ni-Fe-Cr alloy
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP5224780B2 (en) High strength stainless steel pipe
JP2019065343A (en) Steel pipe for oil well and manufacturing method therefor
JP7332258B2 (en) High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability
JP7002197B2 (en) High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance
JP7046800B2 (en) New austenitic stainless steel alloy
JPWO2019098233A1 (en) Duplex Stainless Steel and Duplex Stainless Steel Manufacturing Methods
JP7415144B2 (en) austenitic stainless steel
JP7277731B2 (en) Duplex stainless steel and method for producing duplex stainless steel
JP7333327B2 (en) new duplex stainless steel
JP5365499B2 (en) Duplex stainless steel and urea production plant for urea production plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230809

R150 Certificate of patent or registration of utility model

Ref document number: 7332258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150