JP7002197B2 - High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance - Google Patents

High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance Download PDF

Info

Publication number
JP7002197B2
JP7002197B2 JP2017001801A JP2017001801A JP7002197B2 JP 7002197 B2 JP7002197 B2 JP 7002197B2 JP 2017001801 A JP2017001801 A JP 2017001801A JP 2017001801 A JP2017001801 A JP 2017001801A JP 7002197 B2 JP7002197 B2 JP 7002197B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
alloy
intergranular corrosion
mass
pitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017001801A
Other languages
Japanese (ja)
Other versions
JP2018111846A (en
Inventor
太一 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2017001801A priority Critical patent/JP7002197B2/en
Publication of JP2018111846A publication Critical patent/JP2018111846A/en
Application granted granted Critical
Publication of JP7002197B2 publication Critical patent/JP7002197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

この出願は、化学プラント用部材、配管および海水を用いた熱交換器などに用いる、耐粒界腐食性および耐孔食性に優れる高Ni基合金に関する。 This application relates to a high Ni-based alloy having excellent intergranular corrosion resistance and pitting corrosion resistance, which is used for chemical plant members, pipes, heat exchangers using seawater, and the like.

金属材料の結晶粒界に沿って進行する腐食が粒界腐食であるが、これは不純物または合金元素の結晶粒界への偏析などが原因となって局所的な腐食を生じることで起こる。オーステナイト系ステンレス鋼を例に挙げると、不適切な再加熱もしくは使用環境温度によっては結晶粒界にクロム炭化物が生じ、これが周辺のクロム欠乏域をつくるため、しばしば粒界腐食を起こすことがある。すなわち、炭化物の粒界被覆率が大きいと周辺のクロム欠乏域が増加し、耐食性の低下が大となると考えられる。 Intergranular corrosion is corrosion that progresses along the grain boundaries of a metallic material, and this occurs due to local corrosion caused by impurities or segregation of alloying elements into the grain boundaries. Taking austenitic stainless steel as an example, intergranular corrosion often occurs because chromium carbides are generated at the grain boundaries due to improper reheating or the operating environment temperature, which creates a chromium-deficient area around them. That is, it is considered that if the grain boundary coverage of the carbide is large, the surrounding chromium-deficient region increases and the corrosion resistance is greatly reduced.

先行特許には、 化学プラント用部材、配管、および海水を用いた熱交換器などの各種腐食環境下で優れた耐食性を有する合金が提案されている(例えば、特許文献1参照。)。この特許は、耐食性に加え、熱間および冷間での加工性に特に着眼したものである。しかし、この特許文献1には、炭化物の粒界被覆率が耐食性に与える影響については記載されていない。 Previous patents have proposed alloys having excellent corrosion resistance in various corrosive environments such as chemical plant members, pipes, and heat exchangers using seawater (see, for example, Patent Document 1). This patent focuses specifically on hot and cold processability in addition to corrosion resistance. However, Patent Document 1 does not describe the effect of the grain boundary coverage of carbides on corrosion resistance.

さらにオーステナイト系合金からなる金属管およびその製造方法に関する特許が提案されている(例えば、特許文献2参照。)。この特許は金属管の軸方向および周方向の引張降伏強度や圧縮降伏強度の比などを調整することで、この金属管の使用環境に応じて異なる応力分布が負荷されても、耐用可能なオーステナイト合金からなる金属管に関するものである。しかし、この特許文献2には、特許文献1と同様に、炭化物の粒界被覆率が耐食性に与える影響について記載されていない。 Further, a patent relating to a metal tube made of an austenitic alloy and a method for producing the same has been proposed (see, for example, Patent Document 2). This patent adjusts the ratio of tensile yield strength and compressive yield strength in the axial and circumferential directions of the metal pipe, so that austenite can withstand different stress distributions depending on the usage environment of the metal pipe. It relates to a metal tube made of an alloy. However, this Patent Document 2 does not describe the influence of the grain boundary coverage of carbides on the corrosion resistance, as in Patent Document 1.

特許第5748216号公報Japanese Patent No. 5748216 特許第5137048号公報Japanese Patent No. 5137048

化学プラントや熱交換器などの高耐食性が求められる用途では、優れた耐粒界腐食性、耐孔食性が必要となる。従来技術に関する文献では耐粒界腐食性向上のメカニズムについて言及されたものは見出せないが、本願発明では、炭化物の粒界被覆率が耐粒界腐食性に影響することを見出したことから着想を得たものである。 For applications that require high corrosion resistance, such as chemical plants and heat exchangers, excellent intergranular corrosion resistance and pitting corrosion resistance are required. Although no reference has been made to the mechanism for improving intergranular corrosion resistance in the literature on the prior art, the present invention was inspired by the finding that the intergranular corrosion resistance of carbides affects the intergranular corrosion resistance. I got it.

そこで、本願発明が解決しようとする課題は、化学プラントや熱交換器などの用途における合金において、耐粒界腐食性および耐孔食性に優れた高ニッケル合金を提供することである。 Therefore, an object to be solved by the present invention is to provide a high nickel alloy having excellent intergranular corrosion resistance and corrosion resistance in alloys in applications such as chemical plants and heat exchangers.

本願の発明の課題を解決するための手段は、第1の手段では、質量%で、C:0.001~0.100%、Si:0.01~1.50%、Mn:0.01~1.50%、Ni:30.00~50.00%、Cr:18.50~25.00%、Mo:2.00~10.00%、Cu:0.10~5.00%、Al:0.010~2.500%、Ti:0.010~2.500%、Fe:≧20.00%を含有し、その他不可避不純物を含めて100%からなるNi合金であり、耐粒界腐食性指数IRE値:式(1)=1.08([%Cr]+[%Ti])-4.34[%C]:≧22、耐孔食性指数PRE値:式(2)=[%Cr]+3.3[%Mo]+16[%N]:≧32、粒界被覆率:≦13%であることを特徴とする耐粒界腐食性および耐孔食性に優れる高Ni合金である。なお、上記の[%元素]はいずれも質量%である。 The means for solving the problem of the present invention is, in the first means, by mass%, C: 0.001 to 0.100%, Si: 0.01 to 1.50%, Mn: 0.01. ~ 1.50%, Ni: 30.00-50.00%, Cr: 18.50 ~ 25.00%, Mo: 2.00 ~ 10.00%, Cu: 0.10 ~ 5.00%, It is a Ni alloy containing Al: 0.010 to 2.500%, Ti: 0.010 to 2.500%, Fe: ≧ 20.00%, and 100% including other unavoidable impurities. Intergranular corrosion index IRE value: Equation (1) = 1.08 ([% Cr] + [% Ti])-4.34 [% C]: ≧ 22, Porous corrosion resistance index PRE value: Equation (2) = [% Cr] +3.3 [% Mo] +16 [% N]: ≧ 32, intergranular corrosion resistance: ≦ 13%, which is a high Ni alloy having excellent intergranular corrosion resistance and pore corrosion resistance. be. In addition, all of the above [% element] are mass%.

第2の手段では、第1の手段の構成要件に加えて、質量%で、N:0.0001~0.0500%を含有し、さらにB:0.0001~0.0250%、Ca:0.0001~0.0250%、Mg:0.0001~0.0250%のうちのいずれか1種または2種以上の元素を含有することを特徴とする耐粒界腐食性および耐孔食性に優れる高Ni合金である。なお、上記の[%元素]はいずれも質量%である。 In the second means, in addition to the constituent requirements of the first means, N: 0.0001 to 0.0500% is contained in mass%, and B: 0.0001 to 0.0250%, Ca: 0. Excellent intergranular corrosion resistance and pore corrosion resistance, characterized by containing one or more of one or more elements of .0001 to 0.0250% and Mg: 0.0001 to 0.0250%. It is a high Ni alloy. In addition, all of the above [% element] are mass%.

第3の手段では、第1の手段の構成要件あるいは第2の手段の構成要件に加えて、質量%で、S:≦0.0150%を有することを特徴とする耐粒界腐食性および耐孔食性に優れる高Ni合金である。なお、上記の[%元素]はいずれも質量%である。 The third means has intergranular corrosion resistance and resistance to intergranular corrosion, which is characterized by having S: ≤ 0.0150% in% by mass, in addition to the constituent requirements of the first means or the second means. A high Ni alloy with excellent pitting corrosion properties. In addition, all of the above [% element] are mass%.

上記の手段とすることで、化学プラントや熱交換器などの用途の耐食性の合金において、高耐食性、耐粒界腐食性および耐孔食性に優れた高ニッケル合金を得ることができる。 By using the above means, it is possible to obtain a high nickel alloy having excellent corrosion resistance, intergranular corrosion resistance and pore corrosion resistance in corrosion resistant alloys for applications such as chemical plants and heat exchangers.

発明を実施するための形態の記載に先立ち、本願の第1の発明、第2の発明および第3の発明の高Ni合金の各化学成分ならびに耐粒界腐食性、耐孔食性、および粒界被覆率の各性質について、以下に記載する。 Prior to the description of the embodiment for carrying out the invention, each chemical component of the high Ni alloy of the first invention, the second invention and the third invention of the present application, and intergranular corrosion resistance, pore corrosion resistance, and grain boundary. Each property of coverage is described below.

C:0.001~0.100%
Cは、Ni合金の強度、熱間加工性および冷間加工性、耐粒界腐食性指数、耐孔食性指数、および粒界被覆率に影響を与える元素である。Cが0.001%未満であるとNi合金の強度が不足する。一方、Cは、0.100%を超えると、Ni合金の熱間加工性および冷間加工性が低下し、さらに耐粒界腐食性指数、耐孔食性指数、および粒界被覆率が低下する。そこで、Cは0.001~0.100%とする。
C: 0.001 to 0.100%
C is an element that affects the strength, hot workability and cold workability, intergranular corrosion resistance index, pitting corrosion resistance index, and grain boundary coverage of Ni alloys. If C is less than 0.001%, the strength of the Ni alloy is insufficient. On the other hand, when C exceeds 0.100%, the hot workability and cold workability of the Ni alloy are lowered, and the intergranular corrosion resistance index, the pitting corrosion resistance index, and the grain boundary coverage are further lowered. .. Therefore, C is set to 0.001 to 0.100%.

Si:0.01~1.50%
Siは、脱酸剤として作用し、また熱間加工性および冷間加工性に影響を与える元素である。Siが0.01%未満であると脱酸剤として不足する。一方、Siは、1.50%を超えると、合金材の熱間加工性および冷間加工性が低下する。そこで、Siは0.01~1.50%とする。
Si: 0.01-1.50%
Si is an element that acts as a deoxidizing agent and affects hot workability and cold workability. If Si is less than 0.01%, it is insufficient as a deoxidizing agent. On the other hand, when Si exceeds 1.50%, the hot workability and cold workability of the alloy material deteriorate. Therefore, Si is set to 0.01 to 1.50%.

Mn:0.01~1.50%
Mnは、熱間加工性に影響を与える元素であり、さらにオーステナイト相に影響する元素である。Mnが0.01%未満であると、合金材の熱間加工性が低下し、かつオーステナイト相が不安定となる。一方、Mnが1.50%を超えると熱間加工性が低下する。そこで、Mnは0.01~1.50%とする。
Mn: 0.01 to 1.50%
Mn is an element that affects hot workability and further an element that affects the austenite phase. When Mn is less than 0.01%, the hot workability of the alloy material is lowered and the austenite phase becomes unstable. On the other hand, if Mn exceeds 1.50%, the hot workability deteriorates. Therefore, Mn is set to 0.01 to 1.50%.

Cr:18.50~25.00%
Crは、耐粒界腐食性指数および耐孔食性に影響する元素であり、また、熱間加工性および冷間加工性に影響する元素である。Crが18.50%未満では耐粒界腐食性指数および耐孔食性が低下する。一方、Crが25.00%を超えると、熱間加工性および冷間加工性が低下する。そこで、Crは18.50~25.00%とする。
Cr: 18.50 to 25.00%
Cr is an element that affects the intergranular corrosion resistance index and pitting corrosion resistance, and is an element that affects hot workability and cold workability. If Cr is less than 18.50%, the intergranular corrosion resistance index and pitting corrosion resistance are lowered. On the other hand, when Cr exceeds 25.00%, hot workability and cold workability deteriorate. Therefore, Cr is set to 18.50 to 25.00%.

Mo:2.00~10.00%
Moは、耐孔食性に影響を与える元素であり、また、熱間加工性および冷間加工性に影響する元素である。Moが2.00%未満では耐食性が低下する。一方、Moが10.00%を超えると、熱間加工性および冷間加工性が低下し、かつコストアップとなる。そこで、Moは2.00~10.00%とする。
Mo: 2.00 to 10.00%
Mo is an element that affects pitting corrosion resistance, and is an element that affects hot workability and cold workability. If Mo is less than 2.00%, the corrosion resistance is lowered. On the other hand, when Mo exceeds 10.00%, the hot workability and the cold workability are lowered, and the cost is increased. Therefore, Mo is set to 2.00 to 10.00%.

Cu:0.10~5.00%
Cuは、耐食性に影響を与える元素であり、さらにオーステナイト相に影響する元素である。さらに、Cuは熱間加工性に影響する元素である。Cuが0.10%未満では耐食性が低下し、かつオーステナイト相が不安定となる。一方、Cuが5.00%を超えると、熱間加工性が低下する。そこで、Cuは0.10~5.00%とする。
Cu: 0.10 to 5.00%
Cu is an element that affects the corrosion resistance and further an element that affects the austenite phase. Further, Cu is an element that affects hot workability. If Cu is less than 0.10%, the corrosion resistance is lowered and the austenite phase becomes unstable. On the other hand, when Cu exceeds 5.00%, the hot workability deteriorates. Therefore, Cu is set to 0.10 to 5.00%.

Al:0.010~2.500%
Alは、脱酸剤として作用し、強度および靱性に有効な元素である。Alが0.010%より少ないと脱酸剤として不足し、かつ高Ni合金の強度および靱性が不足する。一方、Alが2.500%より多いと、熱間加工性および冷間加工性が低下する。そこで、Alは0.010~2.500%とする。
Al: 0.010 to 2.500%
Al is an element that acts as a deoxidizing agent and is effective for strength and toughness. If Al is less than 0.010%, it is insufficient as a deoxidizing agent, and the strength and toughness of the high Ni alloy are insufficient. On the other hand, when Al is more than 2.500%, the hot workability and the cold workability are lowered. Therefore, Al is set to 0.010 to 2.500%.

Ti:0.010~2.500%
Tiは、耐粒界腐食性指数に影響を与える元素であり、さらに、熱間加工性および冷間加工性に影響する元素である。Tiが0.010%未満では耐粒界腐食性指数が低下する。一方、Tiが2.500%を超えると熱間加工性および冷間加工性が低下する。そこで、Tiは0.010~2.500%とする。
Ti: 0.010 to 2.500%
Ti is an element that affects the intergranular corrosion resistance index, and is an element that affects hot workability and cold workability. If Ti is less than 0.010%, the intergranular corrosion resistance index decreases. On the other hand, when Ti exceeds 2.500%, hot workability and cold workability deteriorate. Therefore, Ti is set to 0.010 to 2.500%.

Fe:≧20.00%
Feは、熱間加工性および冷間加工性に影響する元素である。Feが20.00%未満であると、熱間加工性および冷間加工性が低下する。そこで、Feは20.00%以上とする。
Fe: ≧ 20.00%
Fe is an element that affects hot workability and cold workability. When Fe is less than 20.00%, hot workability and cold workability are deteriorated. Therefore, Fe is set to 20.00% or more.

Ni:30.00~50.00%
Niは、以上の高Ni合金の各化学成分の残部として、この高Ni合金中で最も多く含有される元素であり、全合金中の30.00~50.00%として含有される金属である。上記のNi以外の合金元素とその他不可避不純物とを有して100%からなる高Ni合金である。
Ni: 30.00-50.00%
Ni is the most abundant element in this high Ni alloy as the remainder of each chemical component of the above high Ni alloy, and is a metal contained as 30.00 to 50.00% in the total alloy. .. It is a high Ni alloy having 100% of the above alloy elements other than Ni and other unavoidable impurities.

耐粒界腐食性指数(Intergranular corrosion Resistance Equivalent):≧22
耐粒界腐食性指数は22より小さいと粒界腐食が進行する。そこで、IREは22以上とする。
Intergranular corrosion Resistance Equivalent: ≧ 22
If the intergranular corrosion resistance index is less than 22, intergranular corrosion progresses. Therefore, the IRE is set to 22 or more.

耐孔食性指数(Pitting Resistance Equivalent):≧32
耐孔食性指数は32より小さいと孔食が発生する。そこで、PREは32以上とする。
Pitting Resistance Equivalent: ≧ 32
If the pitting corrosion resistance index is less than 32, pitting corrosion will occur. Therefore, PRE is set to 32 or more.

粒界被覆率:≦13%
粒界被覆率は13%より大きいと粒界腐食が進行する。そこで、粒界被覆率は13%以下とする。
Grain boundary coverage: ≤13%
If the grain boundary coverage is greater than 13%, intergranular corrosion progresses. Therefore, the grain boundary coverage is set to 13% or less.

以上が、本願発明の第1の手段の構成要件である。
なお、上記の耐粒界腐食性指数:式(1)、耐孔食性指数:式(2)は、それぞれ
IRE値=1.08×([%Cr]+[%Ti])4.34×[%C]・・・(1)
PRE値=[%Cr]+3.3×[%Mo]+16×[%N]・・・(2)
である。
上記式(1)および式(2)の[%元素]は質量%で示す含有元素量を示す。
The above are the constituent requirements of the first means of the present invention.
The above-mentioned intergranular corrosion resistance index: formula (1) and pitting corrosion resistance index: formula (2) have IRE values = 1.08 × ([% Cr] + [% Ti]) 4.34 ×, respectively. [% C] ... (1)
PRE value = [% Cr] +3.3 x [% Mo] +16 x [% N] ... (2)
Is.
[% Element] in the above formulas (1) and (2) indicates the amount of contained elements represented by mass%.

第2の手段では、第1の手段の構成要件に加えて、N:0.0001~0.0500%を含有し、さらにB:0.0001~0.0250%、Ca:0.0001~0.0250%、Mg:0.0001~0.0250%のうちのいずれか1種または2種以上の元素を含有することを特徴とする耐粒界腐食性および耐孔食性に優れる高Ni合金である。 The second means contains N: 0.0001 to 0.0500%, B: 0.0001 to 0.0250%, and Ca: 0.0001 to 0, in addition to the constituent requirements of the first means. .0250%, Mg: 0.0001 to 0.0250%, which is a high Ni alloy having excellent intergranular corrosion resistance and pore corrosion resistance, which is characterized by containing one or more elements. be.

N:0.0001~0.0500%
Nは、高Ni合金のオーステナイト相の維持に作用し、耐食性および冷間加工性に寄与する元素である。ところで、Nが0.0001%より少ないと高Ni合金のオーステナイト相が不安定となる。一方、Nが0.0500%より多いと高Ni合金の耐食性が低下し、さらに冷間加工性が低下する。そこで、Nは0.0001~0.0500%とする。
N: 0.0001 to 0.0500%
N is an element that acts on the maintenance of the austenite phase of the high Ni alloy and contributes to corrosion resistance and cold workability. By the way, when N is less than 0.0001%, the austenite phase of the high Ni alloy becomes unstable. On the other hand, if N is more than 0.0500%, the corrosion resistance of the high Ni alloy is lowered, and the cold workability is further lowered. Therefore, N is set to 0.0001 to 0.0500%.

B、Ca、Mgのいずれか1種以上の元素:0.0001~0.0250%
B、Ca、Mgのいずれか1種以上の元素は、選択的に含有されると、高Ni合金の熱間加工性に寄与する。ところで、B、Ca、Mgのいずれか1種以上の元素は0.0001%より少ないと高Ni合金の熱間加工性に寄与しない。一方、B、Ca、Mgのいずれか1種以上の元素は0.0250%より多いときには高Ni合金の熱間加工性が低下する。そこで、B、Ca、Mgのいずれか1種以上の元素は、0.0001~0.0250%とする。
One or more elements of B, Ca, Mg: 0.0001 to 0.0250%
When any one or more elements of B, Ca, and Mg are selectively contained, it contributes to the hot workability of the high Ni alloy. By the way, if the element of any one or more of B, Ca and Mg is less than 0.0001%, it does not contribute to the hot workability of the high Ni alloy. On the other hand, when the amount of any one or more of B, Ca and Mg is more than 0.0250%, the hot workability of the high Ni alloy is lowered. Therefore, the element of any one or more of B, Ca, and Mg is set to 0.0001 to 0.0250%.

第3の手段では、上記の第1の手段の構成要件あるいは第2の手段の構成要件に加えて、質量%で、S:≦0.0150%を含有することを特徴とする耐粒界腐食性および耐孔食性に優れる高Ni合金である。 In the third means, in addition to the constituent requirements of the first means or the constituent requirements of the second means described above, intergranular corrosion resistance is characterized by containing S: ≦ 0.0150% in% by mass. A high Ni alloy with excellent properties and corrosion resistance.

S:≦0.0150%
Sは、被削性に寄与する元素であり、機械化加工などの切削を容易にする効果があるものである。ただし、Sが0.0150%より多く含有されると、熱間加工性が低下する。そこで、Sは0.0150%以下とする。
S: ≦ 0.0150%
S is an element that contributes to machinability and has the effect of facilitating cutting such as mechanization. However, if S is contained in an amount of more than 0.0150%, the hot workability is deteriorated. Therefore, S is set to 0.0150% or less.

表1に示す化学成分を有する開発鋼1の高Ni合金、表2に示す化学成分を有する開発鋼2および開発鋼3の高Ni合金、および表3に示す化学成分を有する比較鋼1のNi合金、比較鋼2のNi合金および比較鋼3の高Ni合金を、それぞれ100kg、VIMにて溶解し、それらをインゴットに鋳造した。次いで、それらを径20mmに鍛伸した後、940℃で120分間保持した後、水冷する熱処理を行った。 The high Ni alloy of the developed steel 1 having the chemical components shown in Table 1, the high Ni alloys of the developed steel 2 and the developed steel 3 having the chemical components shown in Table 2, and the Ni of the comparative steel 1 having the chemical components shown in Table 3. The alloy, the Ni alloy of Comparative Steel 2 and the high Ni alloy of Comparative Steel 3 were melted in 100 kg each with VIM, and they were cast into an ingot. Then, they were forged to a diameter of 20 mm, held at 940 ° C. for 120 minutes, and then subjected to a water-cooled heat treatment.

開発鋼1、開発鋼2および開発鋼3の高Ni合金ならびに比較鋼1、比較鋼2および比較鋼3の高Ni合金の化学成分値を蛍光X線および湿式分析にて調査し、式(1)で示す耐粒界腐食性指数であるIRE(Intergranular corrosion Resistance Equivalent)値、および式(2)で示す耐孔食性指数であるPRE(Pitting Resistance Equivalent)値を算出した。そして、それら試験結果について、表1には開発鋼1の高Ni合金、表2には開発鋼2および開発鋼3の高Ni合金、表3には比較鋼1、比較鋼2および比較鋼3の高Ni合金における値を、それぞれ示した。
ここで、式(1)のIRE値および式(2)のPRE値を示すと、
PRI値=1.08×([%Cr]+[%Ti])-4.34×[%C]…(1)
PRE値=[%Cr]+3.3×[%Mo]+16×[%N]
ただし、[%M]はいずれも質量%の数値である。
The chemical composition values of the high Ni alloys of the developed steel 1, the developed steel 2 and the developed steel 3 and the high Ni alloys of the comparative steel 1, the comparative steel 2 and the comparative steel 3 were investigated by fluorescent X-ray and wet analysis, and the formula (1). The IRE (Intergranular corrosion Resistance Equivalent) value, which is the intergranular corrosion resistance index represented by), and the PRE (Pitting Resistance Equivalent) value, which is the pore corrosion resistance index represented by the formula (2), were calculated. Regarding the test results, Table 1 shows the high Ni alloy of the developed steel 1 , Table 2 shows the high Ni alloy of the developed steel 2 and the developed steel 3 , and Table 3 shows the comparative steel 1, the comparative steel 2 and the comparative steel 3. The values of high Ni alloys are shown.
Here, the IRE value of the formula (1) and the PRE value of the formula (2) are shown.
PRI value = 1.08 x ([% Cr] + [% Ti])-4.34 x [% C] ... (1)
PRE value = [% Cr] +3.3 x [% Mo] +16 x [% N]
However, [% M] is a numerical value of mass%.

Figure 0007002197000001
Figure 0007002197000001

Figure 0007002197000002
Figure 0007002197000002

Figure 0007002197000003
Figure 0007002197000003

さらに、表4には開発鋼1の高Ni合金、表5には開発鋼2および開発鋼3の高Ni合金の特性を示した。一方、表6には請求項1に対応する比較例である比較鋼1、請求項2に対応する比較鋼2および比較鋼3の特性をそれぞれ示した。これら表4、表5および表6における熱間加工性は、鍛伸時の割れの発生状況から判断して評価し、割れが発生しないものをGOOD、割れが発生したものをNGとした。 Further, Table 4 shows the characteristics of the high Ni alloy of the developed steel 1 , and Table 5 shows the characteristics of the high Ni alloy of the developed steel 2 and the developed steel 3 . On the other hand, Table 6 shows the characteristics of the comparative steel 1, which is a comparative example corresponding to claim 1, the comparative steel 2 and the comparative steel 3 corresponding to claim 2, respectively. The hot workability in Tables 4, 5 and 6 was evaluated by judging from the state of occurrence of cracks during forging, and those without cracks were designated as GOOD and those with cracks were designated as NG.

Figure 0007002197000004
Figure 0007002197000004

Figure 0007002197000005
Figure 0007002197000005

Figure 0007002197000006
Figure 0007002197000006

上記の鍛伸材について、冷間加工性、炭化物の粒界被覆率、ASTM A262-C法に準拠する浸食度、およびASTM G48-A法に準拠する腐食度を、次の評価方法でそれぞれを評価し、表4、表5および表6に開発鋼の特性、および比較鋼の特性として記載した。 For the above forged materials, the cold workability, the grain boundary coverage of carbides, the degree of erosion according to the ASTM A262-C method, and the degree of corrosion according to the ASTM G48-A method are evaluated by the following evaluation methods. It was evaluated and listed in Tables 4, 5 and 6 as the properties of the developed steel and the properties of the comparative steel.

表4、表5および表6における、粒界被覆率は、炭化物の粒界被覆率の測定により求め、それは径20mmの鍛伸材を15mmの長さに調整した後、長手方向断面のミクロ組織の観察を実施した値である。すなわち、粒界被覆率は大角度粒界上の析出物の長さの総和を大角度粒界長さの総和で除した値であり、完全に被覆されている場合を100%、全く被覆されていない場合を0%と判断するパラメータである。まず、5000倍の電子顕微鏡観察により、大角度粒界上に析出した粒子を、エネルギー分散型X線分光分析(EDS)または同じく5000倍の薄膜透過型電子顕微鏡における透過型電子回折パターン解析によって、M236型炭化物またはM73型炭化物と判断できる析出物を特定するものとする。さらに、その粒子が大角度粒界を被覆する長さを測定し、当該測定を少なくとも1試料あたり10視野、1合金あたり5個以上の試料を採取して行ない、合計50視野以上のその場観察、または電子顕微鏡の解析によって、炭化物の粒界被覆率を得た。 The grain boundary coverage in Tables 4, 5 and 6 is determined by measuring the grain boundary coverage of carbides, which is the microstructure of the longitudinal cross section after adjusting the forged material with a diameter of 20 mm to a length of 15 mm. It is a value obtained by carrying out the observation of. That is, the grain boundary coverage is a value obtained by dividing the total length of precipitates on the large angle grain boundaries by the total length of the large angle grain boundaries, and 100% of the cases where the grains are completely covered are completely covered. It is a parameter to judge 0% when it is not. First, the particles deposited on the large-angle grain boundary by observation with a 5000x electron microscope are subjected to energy dispersive X-ray spectroscopic analysis (EDS) or transmission electron diffraction pattern analysis with a 5000x thin film transmission electron microscope. Precipitates that can be determined to be M 23 C 6 type charcoal or M 7 C 3 type charcoal shall be identified. Furthermore, the length of the particles covering the large-angle grain boundary is measured, and the measurement is performed with at least 10 visual fields per sample and 5 or more samples per alloy, and in-situ observation with a total of 50 visual fields or more. , Or the grain boundary coverage of the charcoal was obtained by electron microscopic analysis.

ASTM A262-C法に準拠する浸食度は、供試材に追加で675℃、60分間保持後、空冷する鋭敏化熱処理を施した後、径12mmで長さ21mmのサイズに調整し、ASTM A262-C法に則って粒界腐食試験を実施して求めた。具体的には、試験片の初期質量と表面積を測定した後、65%沸騰硝酸に48時間浸漬させ、試験後洗浄して再度質量測定を実施した。下記式(A)から浸食度(mm/year)を算出した。この操作を5回繰り返し、各回の浸食度および初期質量と最終質量から導き出されるトータルの浸食度を算出して耐粒界腐食性を評価した。
式(A):浸食度(mm/year)=(12×7290×W)/(A×t×d)
なお、記号はそれぞれ以下の値を示す。
W:質量減(g)、A:表面積(cm2)、t:浸漬時間(h)、d:密度(g/cm3
The degree of corrosion according to the ASTM A262-C method is adjusted to a size of 12 mm in diameter and 21 mm in length after holding it at 675 ° C for 60 minutes and then performing an air-cooling sensitizing heat treatment. -It was obtained by conducting an intergranular corrosion test according to the C method. Specifically, after measuring the initial mass and surface area of the test piece, the test piece was immersed in 65% boiling nitric acid for 48 hours, washed after the test, and the mass measurement was performed again. The degree of erosion (mm / year) was calculated from the following formula (A). This operation was repeated 5 times, and the degree of erosion each time and the total degree of erosion derived from the initial mass and the final mass were calculated to evaluate the intergranular corrosion resistance.
Formula (A): Degree of erosion (mm / year) = (12 × 7290 × W) / (A × t × d)
The symbols indicate the following values.
W: Mass reduction (g), A: Surface area (cm 2 ), t: Immersion time (h), d: Density (g / cm 3 )

ASTM G48-A法に準拠する腐食度は、供試材を径12mmで長さ21mmのサイズに調整し、ASTM G48-A法に則って孔食試験を実施した。具体的には、試験片の初期質量と表面積を測定した後、22℃の6%塩化第二鉄に72時間浸漬させ、試験後に洗浄して再度質量測定を実施した。得られた質量減から腐食度(g/cm2)を算出して耐孔食性を評価した。 For the degree of corrosion according to the ASTM G48-A method, the test material was adjusted to a size of 12 mm in diameter and 21 mm in length, and a pitting corrosion test was carried out according to the ASTM G48-A method. Specifically, after measuring the initial mass and surface area of the test piece, the test piece was immersed in 6% ferric chloride at 22 ° C. for 72 hours, washed after the test, and mass measurement was performed again. The degree of corrosion (g / cm 2 ) was calculated from the obtained mass loss to evaluate the pitting corrosion resistance.

冷間加工性は、供試材を径14mmで長さ21mmのサイズに調整し、冷間据込試験を実施した。加工率60%まで据込を行ない、割れが発生しないものをGOOD、割れが発生したものをNGとして冷間加工性を評価した。 For cold workability, the test material was adjusted to a size of 14 mm in diameter and 21 mm in length, and a cold installation test was carried out. The installation was performed up to a processing rate of 60%, and the cold workability was evaluated by setting GOOD for those without cracks and NG for those with cracks.

Claims (2)

質量%で、C:0.001~0.100%、Si:0.01~1.50%、Mn:0.01~1.50%、Ni:30.00~50.00%、Cr:18.50~25.00%、Mo:2.00~10.00%、Cu:0.10~5.00%、Al:0.010~2.500%、Ti:0.010~2.500%、Fe:≧20.00%、N:0.0052~0.0500%を含有し、さらにB:0.0001~0.0250%、Ca:0.0001~0.0250%、Mg:0.0001~0.0250%の中のいずれか1種または2種以上の元素を含有し、その他不可避不純物を含めて100%からなるNi合金であり、耐粒界腐食性指数IRE値:式(1)=1.08([%Cr]+[%Ti])-4.34[%C]:≧22、耐孔食性指数PRE値:式(2)=[%Cr]+3.3[%Mo]+16[%N]:≧32、粒界被覆率:≦13%であることを特徴とする耐粒界腐食性および耐孔食性に優れた高Ni合金。
なお、上記の[%元素]はいずれも質量%である。
By mass%, C: 0.001 to 0.100%, Si: 0.01 to 1.50%, Mn: 0.01 to 1.50%, Ni: 30.00 to 50.00%, Cr: 18.50 to 25.00%, Mo: 2.00 to 10.00%, Cu: 0.10 to 5.00%, Al: 0.010 to 2.500%, Ti: 0.010 to 2. It contains 500%, Fe: ≧ 20.00% , N: 0.0052 to 0.0500%, and further B: 0.0001 to 0.0250%, Ca: 0.0001 to 0.0250%, Mg: It is a Ni alloy containing one or more elements from 0.0001 to 0.0250% and 100% including other unavoidable impurities. Intergranular corrosion resistance index IRE value: formula (1) = 1.08 ([% Cr] + [% Ti])-4.34 [% C]: ≧ 22, Intergranular corrosion resistance index PRE value: Equation (2) = [% Cr] +3.3 [ % Mo] + 16 [% N]: ≧ 32, grain boundary coverage: ≦ 13%, a high Ni alloy having excellent intergranular corrosion resistance and pitting resistance.
In addition, all of the above [% element] are mass%.
請求項1の構成要件に加えて、質量%で、S:≦0.0150%を有することを特徴とする耐粒界腐食性および耐孔食性に優れる高Ni合金。 A high Ni alloy having excellent intergranular corrosion resistance and pitting corrosion resistance, which is characterized by having S: ≦ 0.0150% in mass% in addition to the constituent requirements of claim 1.
JP2017001801A 2017-01-10 2017-01-10 High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance Active JP7002197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017001801A JP7002197B2 (en) 2017-01-10 2017-01-10 High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017001801A JP7002197B2 (en) 2017-01-10 2017-01-10 High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance

Publications (2)

Publication Number Publication Date
JP2018111846A JP2018111846A (en) 2018-07-19
JP7002197B2 true JP7002197B2 (en) 2022-01-20

Family

ID=62910953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017001801A Active JP7002197B2 (en) 2017-01-10 2017-01-10 High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance

Country Status (1)

Country Link
JP (1) JP7002197B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332258B2 (en) * 2018-12-11 2023-08-23 山陽特殊製鋼株式会社 High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability
CN111411269B (en) * 2020-05-22 2021-03-16 中泰民安防爆科技股份有限公司 Acid and alkali corrosion resistant alloy explosion-proof material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159438A (en) 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP2014084493A (en) 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
JP2015117408A (en) 2013-12-18 2015-06-25 Jfeスチール株式会社 Ni ALLOY CLAD STEEL SHEET EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND HAZ TOUGHNESS OF BASE MATERIAL AND CORROSION RESISTANCE OF CLADDING METAL AND MANUFACTURING METHOD THEREFOR
JP2015155561A (en) 2014-02-20 2015-08-27 株式会社日本製鋼所 Ni-Fe-BASED ALLOY AND MANUFACTURING METHOD OF Ni-Fe-BASED ALLOY MATERIAL
JP2016056436A (en) 2014-09-12 2016-04-21 新日鐵住金株式会社 Ni-BASED HEAT RESISTANT ALLOY

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6077918A (en) * 1983-10-05 1985-05-02 Nippon Kokan Kk <Nkk> Manufacture of corrosion resistant alloy steel
JPH05214446A (en) * 1992-02-05 1993-08-24 Nippon Steel Corp Production of high ni alloy-clad steel plate excellent in sour resistance and toughness at low temperature
JPH05230591A (en) * 1992-02-20 1993-09-07 Nippon Steel Corp High ni alloy for cladding material of clad steel sheet excellent in sour resistance and toughness at low temperature
JPH07207401A (en) * 1993-12-28 1995-08-08 Sima Sa Ni-fe-cr-mo four-element nickel-based alloy hardened by deposition of gamma prime phase, and corrosion resisting method used especially in oil refining industry

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159438A (en) 2009-01-06 2010-07-22 Nippon Yakin Kogyo Co Ltd High corrosion-resistant alloy excellent in grain-boundary corrosion resistance
JP2014084493A (en) 2012-10-23 2014-05-12 Nippon Yakin Kogyo Co Ltd AUSTENITIC Fe-Ni-Cr ALLOY FOR COATED TUBE EXCELLENT IN WELDABILITY
JP2015117408A (en) 2013-12-18 2015-06-25 Jfeスチール株式会社 Ni ALLOY CLAD STEEL SHEET EXCELLENT IN LOW TEMPERATURE TOUGHNESS AND HAZ TOUGHNESS OF BASE MATERIAL AND CORROSION RESISTANCE OF CLADDING METAL AND MANUFACTURING METHOD THEREFOR
JP2015155561A (en) 2014-02-20 2015-08-27 株式会社日本製鋼所 Ni-Fe-BASED ALLOY AND MANUFACTURING METHOD OF Ni-Fe-BASED ALLOY MATERIAL
JP2016056436A (en) 2014-09-12 2016-04-21 新日鐵住金株式会社 Ni-BASED HEAT RESISTANT ALLOY

Also Published As

Publication number Publication date
JP2018111846A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
RU2716438C1 (en) Seamless high-strength pipe from stainless steel of oil-field range and method of its manufacturing
JP6904359B2 (en) Austenitic stainless steel
CN109642282B (en) Duplex stainless steel and method for producing same
KR102124914B1 (en) Austenitic stainless steel
WO2018151222A1 (en) Ni-BASED HEAT-RESISTANT ALLOY AND METHOD FOR MANUFACTURING SAME
AU2003200351B2 (en) Duplex stainless steel for urea manufacturing plants
WO2016079920A1 (en) High-strength stainless steel seamless pipe for oil wells
JP6729682B2 (en) Austenitic stainless steel and manufacturing method thereof
JP7002197B2 (en) High Ni alloy with excellent intergranular corrosion resistance and pitting corrosion resistance
JP7114998B2 (en) austenitic stainless steel
JP7046800B2 (en) New austenitic stainless steel alloy
WO2019098233A1 (en) Two-phase stainless steel and method for manufacturing two-phase stainless steel
JP2014005497A (en) Highly corrosion resistant austenitic stainless steel
JP7333327B2 (en) new duplex stainless steel
JP6863529B1 (en) Duplex stainless steel and its manufacturing method, and duplex stainless steel pipe
JP6627662B2 (en) Austenitic stainless steel
JP7277731B2 (en) Duplex stainless steel and method for producing duplex stainless steel
JP7332258B2 (en) High-Ni corrosion-resistant alloy with excellent intergranular corrosion resistance and pitting corrosion resistance, as well as excellent hot workability and cold workability
JP6725191B2 (en) Ni-containing high C martensitic heat resistant steel
RU2448194C1 (en) Heat-resistant alloy
JP5780212B2 (en) Ni-based alloy
JP7307370B2 (en) Alloy materials and seamless pipes for oil wells
RU2672647C1 (en) Corrosive-resistant alloy
WO2023198720A1 (en) New duplex stainless steel
EA043339B1 (en) CORROSION RESISTANT ALLOY

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211020

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150