JP6725191B2 - Ni-containing high C martensitic heat resistant steel - Google Patents

Ni-containing high C martensitic heat resistant steel Download PDF

Info

Publication number
JP6725191B2
JP6725191B2 JP2016138416A JP2016138416A JP6725191B2 JP 6725191 B2 JP6725191 B2 JP 6725191B2 JP 2016138416 A JP2016138416 A JP 2016138416A JP 2016138416 A JP2016138416 A JP 2016138416A JP 6725191 B2 JP6725191 B2 JP 6725191B2
Authority
JP
Japan
Prior art keywords
value
steel
toughness
grain boundary
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016138416A
Other languages
Japanese (ja)
Other versions
JP2018009214A5 (en
JP2018009214A (en
Inventor
太一 渕上
太一 渕上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2016138416A priority Critical patent/JP6725191B2/en
Publication of JP2018009214A publication Critical patent/JP2018009214A/en
Publication of JP2018009214A5 publication Critical patent/JP2018009214A5/ja
Application granted granted Critical
Publication of JP6725191B2 publication Critical patent/JP6725191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この出願の発明は、高温環境において使用されるNi含有高Cマルテンサイト系耐熱鋼に関する。 The invention of this application relates to a Ni-containing high-C martensitic heat-resistant steel used in a high temperature environment.

従来、マルテンサイト系耐熱鋼は、高温において使用されるが、冷間加工性が劣るため、通常は、熱間鍛造により、各部材が製造されている。そのため加工時の材料組織および硬さについては、それほど重要視されていなかった。しかしながら、熱間鍛造による製造では、生産性やコストの面で冷間鍛造に比べて劣るという問題があり、近年、これらマルテンサイト系耐熱鋼の冷鍛化の開発が求められている。この場合、冷間鍛造機などの使用により、素材が加工されるため、加工前の素材硬さが少しでも低いことが求められている。 Conventionally, martensitic heat-resistant steel is used at high temperatures, but since cold workability is poor, each member is usually manufactured by hot forging. Therefore, the material structure and hardness during processing were not so important. However, the manufacturing by hot forging has a problem that it is inferior to the cold forging in terms of productivity and cost, and in recent years, development of cold forging of these martensitic heat-resistant steels has been demanded. In this case, since the material is processed by using a cold forging machine or the like, it is required that the material hardness before processing is as low as possible.

一方、マルテンサイト系耐熱鋼であって冷鍛性に優れた耐熱鋼の製造方法に関する発明として、Ni含有の高C系マルテンサイト系耐熱鋼が提案されている(例えば、特許文献1参照。)。しかし、この提案の発明は、Cの範囲が十分でなく、またCr含有量が低い成分系であり、炭化物の粒界被覆率が靭性に与える影響および耐酸化性に関する記述がない。 On the other hand, a Ni-containing high C martensitic heat resistant steel has been proposed as an invention relating to a method for producing a martensitic heat resistant steel having excellent cold forging properties (see, for example, Patent Document 1). .. However, the proposed invention is a component system in which the range of C is not sufficient and the Cr content is low, and there is no description about the influence of the carbide grain boundary coverage on the toughness and the oxidation resistance.

さらに、高温使用時に硬さの低減などの特性変化を起こし難いマルテンサイト系耐熱鋼に関する発明が提案されている(例えば、特許文献2参照。)。この発明は、C:0.35〜0.60%、Si:1.0〜2.5%、Mn:0.1%以上1.5%未満、およびCr:7.5〜13.0%に加えて、請求項1では、Mo+0.5W:1.5〜3.0%を加え、請求項2では、さらにNb+Taを加え、請求項3では、さらにVを添加したマルテンサイト系耐熱鋼である。しかし、この提案の発明は、本願の発明とは成分系が異なり、また炭化物の粒界被覆率が靭性に与える影響に関する記述がない。 Furthermore, an invention relating to a martensitic heat-resistant steel that is unlikely to cause a change in properties such as a decrease in hardness when used at high temperatures has been proposed (see, for example, Patent Document 2). This invention is C: 0.35-0.60%, Si: 1.0-2.5%, Mn: 0.1% or more and less than 1.5%, and Cr: 7.5-13.0%. In addition, in claim 1, Mo+0.5W: 1.5-3.0% is added, in claim 2, Nb+Ta is further added, and in claim 3, a martensitic heat-resistant steel further containing V is added. is there. However, the composition of the proposed invention is different from that of the invention of the present application, and there is no description about the influence of the grain boundary coverage of carbides on the toughness.

上記のように、従来技術では0.8%程度のCおよび2%程度のNiを含有しているが、高Cr系である耐熱鋼に関する記述がない上に、靭性が低く製造性が低いことも問題である。 As described above, the prior art contains about 0.8% C and about 2% Ni, but there is no description about heat-resistant steel that is a high Cr system, and the toughness is low and the manufacturability is low. Is also a problem.

特開2000−256735号公報JP, 2000-256735, A 特開平11−323506号公報JP, 11-323506, A

本発明は、高CでかつNiを含有する高Cr系の耐熱鋼に係る発明であり、炭化物の粒界被覆率が靭性に影響を与えることを発見したことから着想を得たものであり、さらに、使用環境を考慮して耐酸化性に関しても検討したNi含有高Cマルテンサイト系耐熱鋼を提供することである。 The present invention is an invention relating to a high-Cr heat-resisting steel containing high C and Ni, and was conceived from the discovery that the grain boundary coverage of carbides affects toughness, Another object of the present invention is to provide a Ni-containing high C martensitic heat-resistant steel whose oxidation resistance is also considered in consideration of the use environment.

上記の課題を解決するための手段では、開発鋼1の手段は、質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、およびFe並びに不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2 以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104であることを特徴とするNi含有高Cマルテンサイト系耐熱鋼である。 In the means for solving the above problems, the means of the developed steel 1 is, by mass%, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤ 0.030%, Ni: 0.10 to 2.00%, Cr: 16.00 to 23.50%, O: ≤ 0.0080%, N: ≤ 0.0600%. And Fe and unavoidable impurities, toughness according to Charpy impact value: 5.0 J/cm 2 or more , grain boundary coverage index W value of 16.3 [% C]+15.4×[% Ni] +3.3×[% Cr]:≦104 is a Ni-containing high-C martensitic heat-resistant steel.

開発鋼2の手段は、質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、さらに、Mo:≦1.00%、Ti:≦0.20%、V:≦0.30%、Nb≦0.50%、W:≦1.00%、B:≦0.0200%のいずれか1種または2種以上を含有し、さらにFeおよび不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2 以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104、さらにA値の[%Mo]+1/2×[%W]:≦1.0、およびB値の5×[%Ti]+2×[%Nb]:≦1.5であることを特徴とする開発鋼1の手段のNi含有高Cマルテンサイト系耐熱鋼である。 The means of the developed steel 2 is, by mass%, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤ 0.030. %, Ni: 0.10 to 2.00%, Cr: 16.0 to 23.50%, O: ≤ 0.0080%, N: ≤ 0.0600%, and Mo: ≤ 1. 00%, Ti: ≤ 0.20%, V: ≤ 0.30%, Nb ≤ 0.50%, W: ≤ 1.00%, B: ≤ 0.0200%, one or more of them. In addition, Fe and unavoidable impurities, toughness according to Charpy impact value: 5.0 J/cm 2 or more , grain boundary coverage index W value of 16.3 [% C]+15.4×[% Ni] +3.3×[%Cr]:≦104, A value of [%Mo]+1/2×[%W]:≦1.0, and B value of 5×[%Ti]+2×[%Nb] : Ni-containing high C martensitic heat resistant steel as a means of the developed steel 1 characterized in that: ≦1.5.

開発鋼3の手段は、質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、さらに、Mo:≦1.00%、Ti:≦0.20%、V:≦0.30%、Nb≦0.50%、W:≦1.00%、B:≦0.0200%のいずれか1種または2種以上を含有し、さらに、S:0より大きく0.150%以下であり、さらにFeおよび不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2 以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104、さらにA値の[%Mo]+1/2×[%W]:≦1.0、およびB値の5×[%Ti]+2×[%Nb]:≦1.5であることを特徴とする開発鋼1または2の手段のNi含有高Cマルテンサイト系耐熱鋼である。 The means of the developed steel 3 is, by mass%, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤ 0.030. %, Ni: 0.10 to 2.00%, Cr: 16.0 to 23.50%, O: ≤ 0.0080%, N: ≤ 0.0600%, and Mo: ≤ 1. 00%, Ti: ≤ 0.20%, V: ≤ 0.30%, Nb ≤ 0.50%, W: ≤ 1.00%, B: ≤ 0.0200%, one or more of them. In addition, S: more than 0.1 and not more than 0.150%, Fe and inevitable impurities, toughness according to Charpy impact value: 5.0 J/cm 2 or more , grain boundary coverage index W value of 16.3 [% C] + 15.4 x [% Ni] + 3.3 x [% Cr]: ≤ 104, A value [% Mo] + 1/2 x [% W]: ≤ 1.0, and The B value is 5×[%Ti]+2×[%Nb]:≦1.5, which is the Ni-containing high C martensitic heat resistant steel of the means of the developed steel 1 or 2.

本願発明は、Ni含有高Cマルテンサイト系耐熱鋼であり、Cの範囲が0.40〜0.85%と広く、Cr含有量も16.00〜23.50%と高いものの、炭化物の粒界被覆率が50%以下と低いので、靱性が高く確保される等の効果を有する。 INDUSTRIAL APPLICABILITY The present invention is a Ni-containing high-C martensitic heat-resisting steel, which has a wide C range of 0.40 to 0.85% and a high Cr content of 16.00 to 23.50%, but has carbide grains. Since the boundary coverage is as low as 50% or less, it has an effect of ensuring high toughness.

発明を実施するための形態の記載に先立って、本願発明の鋼の化学成分の限定理由を記載する。 Before describing the modes for carrying out the invention, the reasons for limiting the chemical composition of the steel of the present invention will be described.

C:0.40〜0.85%
Cは、強度や耐摩耗性を確保するために必要な元素であり、十分な強度や耐摩耗性を得るためには0.40%添加する必要がある。しかし、0.40%より少ないと鋼の焼入焼戻し硬さを低下し、一方、0.85%より多いと鋼の焼なまし硬さを大きくして熱間加工性を悪化する。そこで、Cは0.40〜0.85%とする。好ましくは、0.55〜0.80%とする。
C: 0.40 to 0.85%
C is an element necessary for securing strength and wear resistance, and it is necessary to add 0.40% to obtain sufficient strength and wear resistance. However, if it is less than 0.40%, the quenching and tempering hardness of the steel is lowered, while if it is more than 0.85%, the annealing hardness of the steel is increased and the hot workability is deteriorated. Therefore, C is set to 0.40 to 0.85%. Preferably, it is 0.55 to 0.80%.

Si:0.50〜2.00%
Siは、脱酸剤として必要な元素である。しかし、Siは0.50%より少ないと鋼の酸化減量を大きくし、一方、2.00%より多いと鋼の靱性を悪化し、冷鍛性が得られない。そこで、Siは0.50〜2.00%とし、好ましくは、1.00〜2.00%とする。
Si: 0.50 to 2.00%
Si is an element required as a deoxidizer. However, if Si is less than 0.50%, the oxidation loss of the steel is increased, while if it is more than 2.00%, the toughness of the steel is deteriorated and cold forgeability cannot be obtained. Therefore, Si is set to 0.50 to 2.00%, preferably 1.00 to 2.00%.

Mn:0.10〜2.00%
Mnは、脱酸剤、脱硫剤として必要な元素である。しかし、Mnは0.10%より少ないと鋼の靱性を悪化する。一方、Mnは2.00%より多いと鋼の熱間加工性を悪化する。そこで、Mnは0.10〜2.00%とし、好ましくは、0.30〜1.00%とする。
Mn: 0.10 to 2.00%
Mn is an element required as a deoxidizing agent and a desulfurizing agent. However, if Mn is less than 0.10%, the toughness of steel deteriorates. On the other hand, if Mn is more than 2.00%, the hot workability of steel deteriorates. Therefore, Mn is set to 0.10 to 2.00%, preferably 0.30 to 1.00%.

P:≦0.030%
Pは、不可避不純物元素であるが、0.030%より多いと鋼の熱間加工性を悪化する。そこで、P≦0.030%とし、好ましくは、0.020%以下とする。
P: ≤0.030%
P is an unavoidable impurity element, but if it is more than 0.030%, the hot workability of steel deteriorates. Therefore, P≦0.030%, and preferably 0.020% or less.

Ni:0.10〜2.00%
Niは、焼入性の向上、強度の向上に有効である。しかし、Niは0.10%より少ないと鋼の酸化減量を大きくする。一方、Niは2.00%より多いと鋼の焼なまし硬さを大きくし、かつコストアップも招く。そこで、Niは0.10〜2.00%とし、好ましくは、0.50〜1.70%とする。
Ni: 0.10 to 2.00%
Ni is effective in improving hardenability and strength. However, if Ni is less than 0.10%, the oxidation weight loss of steel is increased. On the other hand, when Ni is more than 2.00%, the annealing hardness of steel is increased and the cost is increased. Therefore, the Ni content is 0.10 to 2.00%, preferably 0.50 to 1.70%.

Cr:16.00〜23.50%
Crは、耐酸化性の向上に有効である。しかし、Crは16.00%より少ないと鋼の酸化減量を大きくし、一方、23.50%より多いと鋼の焼入焼戻し硬さが低下し、かつ靱性が悪化する。そこで、Crは16.00〜23.50%とし、好ましくは、18.00〜21.50%とする。
Cr: 16.0-23.50%
Cr is effective in improving the oxidation resistance. However, if Cr is less than 16.00%, the oxidation loss of the steel is increased, while if it is more than 23.50%, the quenching and tempering hardness of the steel decreases and the toughness deteriorates. Therefore, Cr is set to 16.00 to 23.50%, and preferably 18.0 to 21.50%.

O:≦0.0080%
Oは、不可避不純物元素であるが、0.0080%より多くなると、耐酸化性に有効なSiやCrを奪うため、酸化減量が増大する。そこで、O≦0.0080%とし、好ましくは、0.0055%以下とする。
O: ≤ 0.0080%
O is an unavoidable impurity element, but if it exceeds 0.0080%, Si and Cr, which are effective for oxidation resistance, are deprived, so the oxidation weight loss increases. Therefore, O≦0.0080%, and preferably 0.0055% or less.

N:≦0.0600%
Nは、不可避不純物元素であるが、0.0600%より多くなると、熱間加工性を悪化し、粒界被覆率指数のW値の増大に伴う靱性を悪化する。そこで、N:≦0.0600%とし、好ましくは、0.0500%以下とする。
N: ≤0.0600%
N is an unavoidable impurity element, but if it is more than 0.0600%, the hot workability deteriorates, and the toughness deteriorates as the W value of the grain boundary coverage index increases. Therefore, N: ≤ 0.0600%, preferably 0.0500% or less.

Mo:≦1.00%
Moは、焼入性を高める他に、焼戻し軟化抵抗を向上させ、A1点を高くする元素であり、焼戻し時にM73やM2Cなどの炭化物を形成して、高温強度を増大させる。Moは多量に添加すると焼なまし硬さを大とし、靱性を劣化し、その上にMoは高価な元素である。そこで、Mo≦1.00%とし、好ましくは、0.85%以下とする。
Mo: ≤1.00%
Mo is an element that not only enhances hardenability but also improves temper softening resistance and raises A 1 point, and forms carbides such as M 7 C 3 and M 2 C during tempering to increase high temperature strength. Let Addition of a large amount of Mo increases the annealing hardness and deteriorates the toughness, and on top of that, Mo is an expensive element. Therefore, Mo≦1.00%, and preferably 0.85% or less.

Ti:≦0.20%
Tiは、Bに比べてNとの親和力が極めて強い元素である。TiNの形成によってBN
の析出を抑制し、炭化物の粗大化を抑制するBの効果を高めるために、Tiを0.005%以上添加することが好ましい。一方Tiを過剰に添加すると、粗大なTiCが析出または晶出し、靱性を低下するため、Tiを0.20%以下とし、好ましくは、0.15%以下とする。
Ti: ≤ 0.20%
Ti is an element having an extremely strong affinity with N as compared with B. BN by forming TiN
In order to suppress the precipitation of Al and enhance the effect of B that suppresses the coarsening of carbides, it is preferable to add 0.005% or more of Ti. On the other hand, if Ti is excessively added, coarse TiC is precipitated or crystallized to lower the toughness. Therefore, the Ti content is 0.20% or less, preferably 0.15% or less.

V:≦0.30%
Vは、過剰に添加すると粗大なVCを析出または晶出して靱性を悪化するため、また、Vは高価な元素であるので、Vは0.30%以下とし、好ましくは、0.20%以下する。
V: ≤ 0.30%
If V is added excessively, coarse VC is precipitated or crystallized to deteriorate the toughness. Further, since V is an expensive element, V is set to 0.30% or less, preferably 0.20% or less. To do.

Nb:≦0.50%
Nbは、過剰に添加すると粗大なNbCを析出または晶出して靱性を悪化し、焼入れ硬さを低下させる。そこで、Nbは0.50%以下とし、好ましくは、0.30%以下とする。
Nb: ≤0.50%
When Nb is added excessively, coarse NbC is precipitated or crystallized to deteriorate the toughness and reduce the quenching hardness. Therefore, Nb is 0.50% or less, and preferably 0.30% or less.

W:≦1.00%
Wは、過剰に添加すると粗大な炭化物を析出して靱性を悪化し、焼入れ硬さを低下させかつWは高価な元素である。そこで、Wは1.00%以下とし、好ましくは、0.50%以下とする。
W: ≤1.00%
When W is added excessively, coarse carbides are precipitated to deteriorate toughness, quenching hardness is lowered, and W is an expensive element. Therefore, W is 1.00% or less, and preferably 0.50% or less.

S:≦0.150%
Sは、不可避不純物元素であるが、0.150%より多いと鋼の熱間加工性を悪化する。そこで、S≦0.150%とし、好ましくは、0.100%以下とする。
S: ≤0.150%
S is an unavoidable impurity element, but if it exceeds 0.150%, the hot workability of steel deteriorates. Therefore, S≦0.150%, and preferably 0.100% or less.

靱性としてのシャルピー衝撃値:5.0J/cm2以上
シャルピー衝撃値が、5.0J/cm2未満であると靱性が低く製造性が低下する。そこで、靱性としてのシャルピー衝撃値は5.0J/cm2以上とする。
Charpy impact value as toughness: 5.0 J/cm 2 or more If the Charpy impact value is less than 5.0 J/cm 2 , toughness is low and manufacturability is reduced. Therefore, the Charpy impact value as toughness is set to 5.0 J/cm 2 or more.

粒界被覆率指数W値:16.3[%C]+15.4×[%Ni]+3.3×[%Cr]≦104
粒界被覆率指数W値は、104より大きくなると、炭化物の粒界被覆率が増加し、靱性が確保できなくなる。そこで、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]は、104以下とする。
Grain boundary coverage index W value: 16.3 [%C]+15.4×[%Ni]+3.3×[%Cr]≦104
If the grain boundary coverage index W value is larger than 104, the grain boundary coverage of carbides increases and it becomes impossible to secure toughness. Therefore, the grain boundary coverage index W value of 16.3[%C]+15.4×[%Ni]+3.3×[%Cr] is set to 104 or less.

A値:[%Mo]+1/2×[%W]
A値は、1.0より大きくなると本願開発鋼の請求項2の靱性を悪化する。そこで、A値の[%Mo]+1/2×[%W]は、1.0以下とする。
A value: [%Mo]+1/2×[%W]
When the A value exceeds 1.0, the toughness of claim 2 of the developed steel of the present application deteriorates. Therefore, the A value [%Mo]+1/2×[%W] is set to 1.0 or less.

B値:5×[%Ti]+2×[%Nb]
B値は、1.5より大きくなると本願開発鋼の請求項2の靱性を悪化する。そこで、B
値の5×[%Ti]+2×[%Nb]は、1.5以下とする。
B value: 5×[%Ti]+2×[%Nb]
If the B value exceeds 1.5, the toughness of claim 2 of the developed steel of the present application deteriorates. So B
The value 5×[%Ti]+2×[%Nb] is 1.5 or less.

ここで、本願の発明を実施するための形態について説明する。表1に示す本願発明の開発鋼の各成分の各No.の鋼、および表2に示す各比較鋼の各成分の各No.の鋼のそれぞれを、100kgVIMにて溶解してインゴットに鋳造した。 Here, modes for carrying out the invention of the present application will be described. Each No. of each component of the developed steel of the present invention shown in Table 1 is as follows. No. of each component of each of the comparative steels shown in Table 2 and No. Each of the steels was melted with 100 kg VIM and cast into an ingot.

Figure 0006725191
Figure 0006725191

Figure 0006725191
Figure 0006725191

これらのインゴットを、第1グループでは径65mm丸棒の鍛伸材に鍛伸し、第2グループでは45mmH×95mmWに鍛伸し、これらグループのそれぞれを850〜950℃にて焼なまして素材とした。それぞれのサイズに調整した素材から、以下の試験をそれぞれ実施した。試験結果は、表3に本願発明の開発鋼の値を示し、表4に比較項の値を示した。また、熱間加工性に関しては鍛伸時の割れ発生状況から判断し、割れが発生しないものを○、割れが発生したものを×として評価した。 These ingots were forged into a forged material of a round bar with a diameter of 65 mm in the first group, 45 mmH×95 mmW in the second group, and each of these groups was annealed at 850 to 950° C. did. The following tests were carried out from the materials adjusted to the respective sizes. As for the test results, Table 3 shows the values of the developed steel of the present invention, and Table 4 shows the values of the comparative items. Further, the hot workability was judged from the crack occurrence state during forging, and the case where the crack did not occur was evaluated as ◯, and the case where the crack occurred was evaluated as x.

Figure 0006725191
Figure 0006725191

Figure 0006725191
Figure 0006725191

第1グループの評価は、径65mmの丸棒の鍛伸材を径60mmに調整した後、焼なまし硬さの測定、焼入焼戻し硬さの測定、炭化物の粒界被覆率の測定を実施し、表3に本願発明鋼の値を示し、表4に比較鋼の値を示した。 For the evaluation of the first group, after adjusting the diameter of the forged material of the round bar having a diameter of 65 mm to the diameter of 60 mm, the annealing hardness, the quenching and tempering hardness, and the grain boundary coverage of the carbide were measured. Then, Table 3 shows the values of the present invention steels, and Table 4 shows the values of the comparative steels.

焼なまし硬さ(表3および表4でA硬さと表示)は、供試材の長手方向と垂直な面の中周にて、HRCスケールでの硬さを測定して実施した。表3の本願発明鋼および表4の比較鋼には、それぞれ5点平均の値を示した。 The annealing hardness (indicated as A hardness in Tables 3 and 4) was measured by measuring the hardness on the HRC scale in the middle circumference of the surface perpendicular to the longitudinal direction of the test material. The present invention steels in Table 3 and the comparative steels in Table 4 each show an average value of 5 points.

焼入焼戻し硬さ(表3および表4でQT硬さと表示)は、供試材に1000〜1150℃で焼入、その後550〜650℃で焼戻しを実施した。焼なまし硬さと同様に測定して、それぞれ5点平均の値を示した。 Regarding the quenching and tempering hardness (indicated as QT hardness in Tables 3 and 4), the test material was quenched at 1000 to 1150°C, and then tempered at 550 to 650°C. The measurement was performed in the same manner as the annealing hardness, and the average value of 5 points was shown for each.

粒界被覆率は、大角(度)粒界上の析出物長さの総和を大角(度)粒界長さの総和で除した値であり、完全に被覆されている場合は100%となり、全く被覆していない場合を0%と判断するパラメータである。
炭化物の粒界被覆率は、焼なましの状態で、供試材の長手方向にて組織観察を実施し、粒界被覆率を測定した。粒界被覆率は、まず1万倍の電子顕微鏡観察により、大角(度)粒界上に析出した粒子を、エネルギー分散型X線分光分析(EDX)または同じく1万倍の薄膜透過型電子顕微鏡解析における透過型電子回折パターン解析によってM236型炭化物またはM73型炭化物と判断できる析出物を特定する。その粒子が大角(度)粒界を被覆する長さを測定し、当該測定を少なくとも1試料あたり5視野、1合金あたり5個以上の試験片を採取して行ない、合計25試料以上のその場観察、または電子顕微鏡の解析によって求めることができる。
The grain boundary coverage is a value obtained by dividing the sum of precipitate lengths on the large angle (degree) grain boundary by the sum of the large angle (degree) grain boundary lengths, and 100% when completely covered, This is a parameter for determining 0% when there is no coating.
The grain boundary coverage of the carbide was measured by observing the structure in the longitudinal direction of the test material in the annealed state and measuring the grain boundary coverage. Grain boundary coverage is first measured by an electron microscope with a magnification of 10,000, and then the particles deposited on large-angle (degree) grain boundaries are analyzed by energy dispersive X-ray spectroscopy (EDX) or a thin film transmission electron microscope with a magnification of 10,000. Precipitates that can be judged to be M 23 C 6 type carbides or M 7 C 3 type carbides are specified by transmission electron diffraction pattern analysis in the analysis. The length of the particle covering a large angle (degree) grain boundary is measured, and the measurement is performed by collecting at least 5 fields of view per sample and 5 or more test pieces per alloy, and a total of 25 or more samples in situ. It can be determined by observation or analysis with an electron microscope.

第2グループの評価は、上記で作製した45mmH×95mmWの素材を連続酸化試験し、焼入焼戻し状態のシャルピー衝撃試験を実施し、表3に本願発明鋼の結果を示し、表4に比較鋼の結果を示した。 In the evaluation of the second group, the 45 mmH×95 mmW material produced above was subjected to a continuous oxidation test and a Charpy impact test in a quenched and tempered state. Table 3 shows the results of the invention steels, and Table 4 shows comparative steels. The results of

すなわち、連続酸化試験は、上記で作製した45mm高さ×95mm幅の素材を径12mm長さ21mmに調整した後、1100℃で100hrの連続酸化実験を実施した。さらに、ショットブラストにて脱スケールを施し、酸化減量の値を測定した。 That is, in the continuous oxidation test, after adjusting the material of 45 mm height×95 mm width prepared above to a diameter of 12 mm and a length of 21 mm, a continuous oxidation experiment was carried out at 1100° C. for 100 hours. Furthermore, descaling was performed by shot blasting, and the value of weight loss on oxidation was measured.

シャルピー衝撃試験は、供試材を1000〜1150℃で焼入れし、その後550〜650℃で焼戻しを実施し、角10×55mmの標準試験片に調整した後、JIS Z 2242に則って2mmUノッチのシャルピー衝撃試験を実施し、3回平均の値を、それぞれ表3に本願開発鋼の靱性をシャルピー衝撃値で示し、表4に比較鋼の靱性をシャルピー衝撃値で示した。 In the Charpy impact test, the test material was quenched at 1000 to 1150° C., then tempered at 550 to 650° C., adjusted to a standard test piece having a corner of 10×55 mm, and then subjected to a 2 mm U notch according to JIS Z 2242. A Charpy impact test was carried out, and the average value of three times was shown in Table 3 showing the toughness of the developed steel in Charpy impact value, and in Table 4 showing the toughness of the comparative steel in Charpy impact value.

Claims (3)

質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.14〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、およびFe並びに不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104であることを特徴とするNi含有高Cマルテンサイト系耐熱鋼。 % By mass, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤ 0.030%, Ni: 0.14 To 2.00%, Cr: 16.0 to 23.50%, O: ≤ 0.0080%, N: ≤ 0.0600%, and Fe and unavoidable impurities, toughness according to Charpy impact value : 5.0 J/cm 2 or more, 16.3 [% C]+15.3×[%Ni]+3.3×[%Cr] of the grain boundary coverage index W value: ≦104 Ni-containing high C martensitic heat resistant steel. 質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.14〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を含有し、さらに、Mo:≦1.00%、Ti:≦0.20%、V:≦0.30%、Nb≦0.50%、W:≦1.00%、B:≦0.0200%のいずれか1種または2種以上を含有し、さらにFeおよび不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104、さらにA値の[%Mo]+1/2×[%W]:≦1.0、およびB値の5×[%Ti]+2×[%Nb]:≦1.5であることを特徴とする請求項1に記載のNi含有高Cマルテンサイト系耐熱鋼。 % By mass, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤ 0.030%, Ni: 0.14 ~2.00%, Cr: 16.0 to 23.50%, O: ≤ 0.0080%, N: ≤ 0.0600%, and Mo: ≤ 1.00%, Ti: ≤ 0. 20%, V: ≤ 0.30%, Nb ≤ 0.50%, W: ≤ 1.00%, B: ≤ 0.0200%, and at least one of Fe, Fe and Toughness due to Charpy impact value: 5.0 J/cm 2 or more, grain boundary coverage index W value of 16.3 [% C] + 15.4 x [% Ni] + 3.3 x [% Cr ]: ≦104, A value of [%Mo]+½×[%W]:≦1.0, and B value of 5×[%Ti]+2×[%Nb]:≦1.5. The Ni-containing high-C martensitic heat-resistant steel according to claim 1, characterized in that 質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.14〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、さらに、Mo:≦1.00%、Ti:≦0.20%、V:≦0.30%、Nb≦0.50%、W:≦1.00%、B:≦0.0200%のいずれか1種または2種以上を含有し、さらに、S:0より大きく0.150%以下であり、さらにFeおよび不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104、さらにA値の[%Mo]+1/2×[%W]:≦1.0、およびB値の5×[%Ti]+2×[%Nb]:≦1.5であることを特徴とする請求項1または2に記載のNi含有高Cマルテンサイト系耐熱鋼。 % By mass, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤ 0.030%, Ni: 0.14 ˜2.00%, Cr: 16.0 to 23.50%, O:≦0.0080%, N:≦0.0600%, and Mo:≦1.00%, Ti:≦0. 20%, V: ≤ 0.30%, Nb ≤ 0.50%, W: ≤ 1.00%, B: ≤ 0.0200%, and at least one of S, and S: : Greater than 0 and 0.150% or less, further having Fe and unavoidable impurities, toughness according to Charpy impact value: 5.0 J/cm 2 or more, grain boundary coverage index W value of 16.3 [%C] +15.4×[%Ni]+3.3×[%Cr]:≦104, A value of [%Mo]+1/2×[%W]:≦1.0, and B value of 5×[% Ti]+2*[%Nb]: <=1.5, Ni containing high C martensitic heat resistant steel of Claim 1 or 2 characterized by the above-mentioned.
JP2016138416A 2016-07-13 2016-07-13 Ni-containing high C martensitic heat resistant steel Active JP6725191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016138416A JP6725191B2 (en) 2016-07-13 2016-07-13 Ni-containing high C martensitic heat resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016138416A JP6725191B2 (en) 2016-07-13 2016-07-13 Ni-containing high C martensitic heat resistant steel

Publications (3)

Publication Number Publication Date
JP2018009214A JP2018009214A (en) 2018-01-18
JP2018009214A5 JP2018009214A5 (en) 2019-05-30
JP6725191B2 true JP6725191B2 (en) 2020-07-15

Family

ID=60995040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016138416A Active JP6725191B2 (en) 2016-07-13 2016-07-13 Ni-containing high C martensitic heat resistant steel

Country Status (1)

Country Link
JP (1) JP6725191B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110527928B (en) * 2019-09-02 2020-11-10 特冶河北科技发展有限公司 High-temperature-resistant valve seat and production method thereof

Also Published As

Publication number Publication date
JP2018009214A (en) 2018-01-18

Similar Documents

Publication Publication Date Title
KR102172891B1 (en) Austenitic stainless steel
JP7018510B2 (en) Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
WO2009154235A1 (en) Steel for heat treatment
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
KR101894426B1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JP2002363708A (en) Martensitic stainless steel
WO2015182586A1 (en) Hot work tool material and method for manufacturing hot work tool
JP2018048399A (en) Wear resisting steel sheet and production method therefor
KR20190022723A (en) Austenitic stainless steel
KR20160124131A (en) Duplex stainless steel
CN109790602B (en) Steel
WO2007123164A1 (en) Piston ring material for internal combustion engine
JP3485805B2 (en) Hot forged non-heat treated steel having high fatigue limit ratio and method for producing the same
JP6436232B2 (en) Spring steel
JP2021031695A (en) Hot work-tool steel excellent in toughness
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP6654328B2 (en) High hardness and high toughness cold tool steel
JP6725191B2 (en) Ni-containing high C martensitic heat resistant steel
JP4031607B2 (en) Machine structural steel with reduced grain coarsening
JP5017937B2 (en) Wear-resistant steel plate with excellent bending workability
JP7214313B2 (en) High toughness cold work tool steel with high wear resistance
WO2017067999A1 (en) New austenitic stainless alloy
JP2022143564A (en) Hot work tool steel having excellent softening resistance and quenchability
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
RU76647U1 (en) SHAFT (OPTIONS)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200624

R150 Certificate of patent or registration of utility model

Ref document number: 6725191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250