JP2018048399A - Wear resisting steel sheet and production method therefor - Google Patents

Wear resisting steel sheet and production method therefor Download PDF

Info

Publication number
JP2018048399A
JP2018048399A JP2017174653A JP2017174653A JP2018048399A JP 2018048399 A JP2018048399 A JP 2018048399A JP 2017174653 A JP2017174653 A JP 2017174653A JP 2017174653 A JP2017174653 A JP 2017174653A JP 2018048399 A JP2018048399 A JP 2018048399A
Authority
JP
Japan
Prior art keywords
less
steel sheet
wear
mass
resistant steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017174653A
Other languages
Japanese (ja)
Other versions
JP6540764B2 (en
Inventor
直樹 ▲高▼山
直樹 ▲高▼山
Naoki Takayama
祐介 寺澤
Yusuke Terasawa
祐介 寺澤
善明 村上
Yoshiaki Murakami
善明 村上
長谷 和邦
Kazukuni Hase
和邦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2018048399A publication Critical patent/JP2018048399A/en
Application granted granted Critical
Publication of JP6540764B2 publication Critical patent/JP6540764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a wear resisting steel sheet combining bending workability with wear resistance and a production method therefor.SOLUTION: The wear resisting steel sheet is provided that has a component composition containing, by mass%, C:0.10 to 0.45%, Si:0.05 to 1.00%, Mn:0.10 to 2.00%, P:0.020% or less, S:0.020% or less, Al:0.050% or less, Cr:0.05 to 2.00%, N:0.010% or less, O:0.010% or less, and the balance Fe with inevitable impurities, and that has ferrite with thickness of 0.03 mm or more and less than 1 mm on a steel sheet surface and a volume percentage of martensite at a position 1 mm from the steel sheet surface of 90% or more.SELECTED DRAWING: Figure 1

Description

本発明は、耐摩耗鋼板に係り、とくに建設、土木および鉱山等の掘削等の分野で使用される産業機械、運搬機器の部材用として好適な、曲げ加工性に優れた耐摩耗鋼板およびその製造方法に関する。   TECHNICAL FIELD The present invention relates to a wear-resistant steel sheet, and in particular, an abrasion-resistant steel sheet excellent in bending workability and manufacturing thereof, suitable for use in industrial machinery and materials used in construction, civil engineering, mining, and other fields. Regarding the method.

従来から、鋼材の耐摩耗性は、高硬度化することにより向上することが知られている。このため、例えば、土、砂等による摩耗を受け、耐摩耗性が要求される部材には、焼入等の熱処理を施して高硬度化した鋼材が使用されてきた。   Conventionally, it is known that the wear resistance of a steel material is improved by increasing the hardness. For this reason, for example, steel members that have been subjected to wear due to earth, sand, etc. and are required to have wear resistance have been subjected to heat treatment such as quenching to increase the hardness.

例えば、特許文献1には、重量%で、C:0.10〜0.20%、Si:0.03〜0.75%、Mn:0.4〜1.5%、N:0.0025%以下、Al:0.001〜0.080%を含み、あるいは更にCu、Ni、Cr、Mo、Bのうちの1種以上を含有する組成の鋼材に、熱間圧延を施して厚鋼板とした後、直接焼入れするか、あるいは熱間圧延後放冷し、その後γ域に再加熱して焼入れする耐摩耗厚鋼板の製造方法が記載されている。特許文献1に記載された技術によれば、焼入れままで340HB以上の硬さと、高靭性とを有し、溶接低温割れ性が改善された耐摩耗厚鋼板が得られるとしている。   For example, in Patent Document 1, by weight, C: 0.10 to 0.20%, Si: 0.03 to 0.75%, Mn: 0.4 to 1.5%, N: 0.0025 %, Al: 0.001 to 0.080%, or a steel plate having a composition containing at least one of Cu, Ni, Cr, Mo, and B is hot-rolled to a thick steel plate After that, a method for producing a wear-resistant thick steel sheet is described in which it is directly quenched or cooled after hot rolling and then reheated to the γ region and quenched. According to the technique described in Patent Document 1, it is said that a wear-resistant thick steel plate having a hardness of 340 HB or more as it is quenched and high toughness and improved weld cold cracking property is obtained.

また、特許文献2には、C:0.20〜0.45%、Si:0.10〜1.50%、Mn:0.60〜2.50%、Cr:0.60〜2.00%、Al:0.010〜0.080%、Nb:0.010〜0.100%、B:0.0010〜0.0060%、Ca:0.01%以下を含み、残部Feおよび不可避的不純物からなり、あるいは更にTi、Mo、Vのうち1種または2種以上を含有した鋼を、900℃〜Ar変態点の温度で圧下率15%以上の熱間圧延を行い、Ar変態点以上の温度から焼入れすることを特徴とした耐摩耗鋼の製造方法が記載されている。特許文献2に記載された技術によれば、容易に耐摩耗性に有利な高い硬度の耐摩耗鋼が得られるとしている。 In Patent Document 2, C: 0.20 to 0.45%, Si: 0.10 to 1.50%, Mn: 0.60 to 2.50%, Cr: 0.60 to 2.00 %, Al: 0.010 to 0.080%, Nb: 0.010 to 0.100%, B: 0.0010 to 0.0060%, Ca: 0.01% or less, the remainder Fe and inevitable A steel containing impurities or further containing one or more of Ti, Mo and V is hot-rolled at a reduction rate of 15% or more at a temperature of 900 ° C. to Ar 3 transformation point, and Ar 3 transformation is performed. A method for producing a wear-resistant steel characterized by quenching from a temperature above the point is described. According to the technique described in Patent Document 2, it is said that wear-resistant steel having high hardness that is advantageous for wear resistance can be easily obtained.

特許文献1〜2に記載された技術は、高硬度化することで、耐摩耗特性を向上させている。一方で、様々な形状の部材への適用や溶接個所の低減のため、耐摩耗鋼板に対して曲げ加工性が重要視されることが少なくない。   The techniques described in Patent Documents 1 and 2 improve wear resistance characteristics by increasing the hardness. On the other hand, bending workability is often regarded as important for wear-resistant steel sheets for application to members of various shapes and reduction of welding locations.

曲げ加工性に対しては、例えば特許文献3には、重量%で、C:0.05〜0.20%、Mn:0.50〜2.5%、Al:0.02〜2.00%を含有する鋼を、たとえば熱間圧延後にAcとAcの間のフェライト‐オーステナイト2相域に加熱した後急冷することで、フェライト‐ベイナイト母相中に面積分率で5〜50%のマルテンサイト組織を分散させた加工性および溶接性に優れた耐摩耗鋼が記載されている。 Regarding bending workability, for example, in Patent Document 3, in weight percent, C: 0.05 to 0.20%, Mn: 0.50 to 2.5%, Al: 0.02 to 2.00 % Steel is heated to a ferrite-austenite two-phase region between Ac 3 and Ac 1 after hot rolling, for example, and then rapidly cooled, so that the area fraction in the ferrite-bainite matrix is 5 to 50%. A wear-resistant steel having excellent workability and weldability in which the martensite structure is dispersed is described.

また、特許文献4には、重量%で、C:0.1〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.02%以下、S:0.05%以下、Nb:0.005〜0.03%を含有する鋼を、熱間圧延後直ちにMs点±25℃まで冷却後、いったん冷却を中断し、Ms点+50℃以上に復熱させ、その後室温まで冷却する耐摩耗鋼の製造方法が記載されている。特許文献4によると、鋼板表面から深さ5mmまでの温度分布における最低硬度が、さらに内部の硬度分布における最高硬度よりも40HV以上低値となり、曲げ加工性に優れた耐摩耗鋼が得られるとしている。   In Patent Document 4, the weight percentage is C: 0.1 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.02 %, S: 0.05% or less, and Nb: 0.005 to 0.03% of steel is cooled to the Ms point ± 25 ° C. immediately after hot rolling, and then the cooling is interrupted, and the Ms point +50 A method for producing wear-resistant steel is described in which reheating is performed at a temperature higher than or equal to ° C. and then cooled to room temperature. According to Patent Document 4, the minimum hardness in the temperature distribution from the steel sheet surface to a depth of 5 mm is 40 HV or more lower than the maximum hardness in the internal hardness distribution, and a wear-resistant steel excellent in bending workability is obtained. Yes.

また、特許文献5には、質量%で、C:0.05〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、B:0.0003〜0.0030%、Ti:0.10〜1.2%、Al:0.1%以下を含み、さらにCu:0.1〜1.0%、Ni:0.1〜0.2%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、W:0.05〜1.0%から選ばれた1種または2種以上を含有し、あるいは更にNb、Vのうちから選ばれた1種または2種以上を含有し、DIを60以上に限定した鋼を、熱間圧延後平均冷却速度で0.5〜2℃/sの冷却速度で400℃以下の温度域まで冷却する耐摩耗鋼板の製造方法が記載されている。これにより、平均粒径0.5〜50μm以上のTi系の炭化物を400個/mm以上析出させて、過度に高硬度化させることなく耐摩耗性を向上させた耐摩耗鋼が得られるとしている。 Further, in Patent Document 5, in mass%, C: 0.05 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, B: 0.0003 -0.0030%, Ti: 0.10-1.2%, Al: 0.1% or less, further Cu: 0.1-1.0%, Ni: 0.1-0.2%, 1 type or 2 or more types chosen from Cr: 0.1-1.0%, Mo: 0.05-1.0%, W: 0.05-1.0%, or also Nb, A steel containing one or more selected from V and having a DI limited to 60 or more is 400 ° C. or less at a cooling rate of 0.5 to 2 ° C./s at an average cooling rate after hot rolling. The manufacturing method of the abrasion-resistant steel plate which cools to the temperature range is described. As a result, it is possible to obtain a wear resistant steel having improved wear resistance without excessively increasing the hardness by precipitating 400 carbides / mm 2 or more of Ti-based carbide having an average particle size of 0.5 to 50 μm or more. Yes.

特開昭63−169359号公報JP-A 63-169359 特開昭64−31928号公報JP-A-64-31928 特許第2864960号公報Japanese Patent No. 2864960 特開2006−104489号公報Japanese Patent Laid-Open No. 2006-104489 特許第4899874号公報Japanese Patent No. 4899874

しかしながら、特許文献3〜5に記載された技術では、基地相(マトリクス)の硬度が低くなり、耐摩耗性に問題を残していた。   However, in the techniques described in Patent Documents 3 to 5, the hardness of the matrix phase (matrix) is lowered, leaving a problem in wear resistance.

そこで本発明は、このような従来技術の問題を解決し、曲げ加工性と耐摩耗性を兼備した耐摩耗鋼板およびその製造方法を提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such problems of the prior art and provide a wear-resistant steel plate having both bending workability and wear resistance and a method for producing the same.

本発明者らは、上記した目的を達成するために、耐摩耗鋼板の曲げ加工性に影響する各種要因について、鋭意検討を重ねた。その結果、耐摩耗鋼板の曲げ加工性には表層部の硬度および延性が大きく寄与するということを見出し、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトとすることで、耐摩耗性に大きく影響を及ぼす基地相(マトリクス)の硬度を低下させない範囲で、曲げ加工性が向上することを知見した。   In order to achieve the above-described object, the present inventors have conducted extensive studies on various factors that affect the bending workability of the wear-resistant steel sheet. As a result, it has been found that the hardness and ductility of the surface layer part greatly contribute to the bending workability of the wear-resistant steel sheet, and the structure of the steel sheet surface is made of ferrite and the structure inside the steel sheet is made of martensite. It has been found that the bending workability is improved within a range in which the hardness of the matrix phase (matrix) that greatly affects the hardness is not lowered.

まず、本発明の基礎となった実験結果について説明する。   First, the experimental results on which the present invention is based will be described.

質量%で、0.27%C−0.35%Si−0.75%Mn−0.005%P−0.002%S−0.015%Ti−0.03%Al−0.38%Cr−0.20Moを含有する組成の鋼素材(スラブ)を、1150℃に加熱した後熱間圧延して、板厚:12mmの熱延板とした。熱間圧延後に空冷し、下記の(1)式で示すAc点以上の加熱温度で再加熱後、室温まで水冷する焼入れ処理を施した。
Ac3(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
ここで、本発明者らは、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトにするために、スラブ加熱を利用して鋼板表面のCを脱炭し、次いで焼入れ処理において、C量が0であるAc点、すなわちAc3(C=0)点以下の温度域で再加熱して焼入れ処理を行うことにより、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトに制御できると考えた。そして、再加熱温度について、Ac3(C=0)点以下で再加熱した熱処理材と、Ac3(C=0)点超えで再加熱した熱処理材についてそれぞれ検討した。
In mass%, 0.27% C-0.35% Si-0.75% Mn-0.005% P-0.002% S-0.015% Ti-0.03% Al-0.38% A steel material (slab) having a composition containing Cr-0.20Mo was heated to 1150 ° C. and then hot-rolled to obtain a hot-rolled sheet having a thickness of 12 mm. After hot rolling, it was air-cooled, reheated at a heating temperature of 3 or more points of Ac shown in the following formula (1), and then subjected to a quenching treatment to cool to room temperature.
Ac3 (° C.) = 912.0-230.5 × C + 31.6 × Si-20.4 × Mn-39.8 × Cu-18. 1 × Ni-14.8 × Cr + 16.8 × Mo. 1)
Here, the present inventors decarburized C on the surface of the steel sheet using slab heating in order to change the structure of the steel sheet surface to ferrite and the structure inside the steel sheet to martensite. By reheating at the Ac 3 point where the amount is 0, that is, below the Ac 3 (C = 0) temperature range, and quenching, the structure of the steel sheet surface becomes ferrite and the structure inside the steel sheet becomes martensite. I thought it could be controlled. Then, the reheating temperature, were examined respectively heat-treated material was reheated below Ac 3 (C = 0) point, Ac 3 (C = 0) point than at the reheated heat treatment material.

得られた鋼板について、圧延方向に垂直な断面が観察面となるようにサンプルを採取した。この観察面を鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて観察面のミクロ写真を撮影し、撮影された像からフェライトの厚さを測定した。   About the obtained steel plate, the sample was extract | collected so that a cross section perpendicular | vertical to a rolling direction might become an observation surface. After the observation surface was mirror-polished and further subjected to nital corrosion, a microphotograph of the observation surface was taken using an optical microscope, and the thickness of the ferrite was measured from the taken image.

また、得られた鋼板から、曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した、限界曲げ半径R/tを求めた。   In addition, a bending test piece (width 150 mm × 300 mm length) was taken from the obtained steel sheet, and bent according to JIS Z 2248, bending angle: 180 °, bending radius R (where no cracking occurred) mm) was determined as a ratio to the plate thickness t (mm).

また、鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から硬さ測定用試験片を採取し、表面のスケールの影響を除くために鋼板表面から1mmの部分までを研削除去して、研削後の鋼板表面の硬さを測定した。測定はJIS Z 2243(1998)の規定に準拠した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。   Further, the wear resistance of the steel sheet is mainly determined by the hardness of the surface layer portion. Therefore, a test piece for hardness measurement was taken from the obtained steel plate, and 1 mm from the steel plate surface was ground and removed to remove the influence of the surface scale, and the hardness of the steel plate surface after grinding was measured. . The measurement complied with the provisions of JIS Z 2243 (1998). In the measurement, a tungsten hard sphere having a diameter of 10 mm was used, and the load was 3000 kgf.

図1(a)は、Ac3(C=0)点超えで再加熱・焼入れした鋼板の、圧延方向に垂直な断面のミクロ写真である。また、図1(b)は、Ac3(C=0)点以下で再加熱・焼入れした鋼板の、圧延方向に垂直な断面のミクロ写真である。図1の結果から、再加熱温度がAc3(C=0)点超えの場合、マルテンサイトのみ存在しており、鋼板表面にフェライトが無いことがわかる。一方、再加熱温度がAc3(C=0)点以下の場合、鋼板表面にフェライトが存在し、かつ鋼板内部にマルテンサイトが存在していることがわかる。 FIG. 1A is a microphotograph of a cross section perpendicular to the rolling direction of a steel sheet reheated and quenched beyond the Ac 3 (C = 0) point. FIG. 1 (b) is a microphotograph of a cross section perpendicular to the rolling direction of a steel sheet reheated and quenched at an Ac 3 (C = 0) point or less. From the results of FIG. 1, it can be seen that when the reheating temperature exceeds the Ac 3 (C = 0) point, only martensite is present and there is no ferrite on the steel sheet surface. On the other hand, when the reheating temperature is below the Ac 3 (C = 0) point, it can be seen that ferrite is present on the steel sheet surface and martensite is present inside the steel sheet.

また、図2は鋼板表面のフェライトの厚さと限界曲げ半径との関係を示す図であり、図3は鋼板表面のフェライトの厚さと表面硬さとの関係を示す図である。鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有する場合、限界曲げ半径が小さく曲げ加工性が向上し、かつ硬さを維持していることがわかった。一方、鋼板表面に1mm厚さ以上のフェライトを有する場合、限界曲げ半径が小さく曲げ加工性は向上するものの、硬さは低下していることがわかった。また、鋼板表面にフェライトを有しない場合(0mm)、硬さは維持しているものの、限界曲げ半径が大きく加工性に劣ることがわかった。   FIG. 2 is a diagram showing the relationship between the ferrite thickness on the steel plate surface and the critical bending radius, and FIG. 3 is a diagram showing the relationship between the ferrite thickness on the steel plate surface and the surface hardness. It was found that when ferrite having a thickness of 0.03 mm or more and less than 1 mm was present on the surface of the steel sheet, the limit bending radius was small, the bending workability was improved, and the hardness was maintained. On the other hand, it was found that when the steel plate surface had ferrite having a thickness of 1 mm or more, the limit bending radius was small and the bending workability was improved, but the hardness was lowered. Further, it was found that when the steel plate surface does not have ferrite (0 mm), the hardness is maintained, but the limit bending radius is large and the workability is inferior.

以上より、鋼板表面に一定の厚さのフェライトを有し、かつ鋼板内部にマルテンサイトを有することにより、曲げ加工性および耐摩耗性に優れた耐摩耗鋼板を得られるという知見を得た。   From the above, it has been found that a wear-resistant steel sheet having excellent bending workability and wear resistance can be obtained by having a certain thickness of ferrite on the steel sheet surface and martensite inside the steel sheet.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
[2]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
[3]前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]または[2]に記載の耐摩耗鋼板。
[4]前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]〜[3]のいずれかに記載の耐摩耗鋼板。
[5]前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]〜[4]のいずれかに記載の耐摩耗鋼板。
[6]表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることを特徴とする[1]〜[5]のいずれかに記載の耐摩耗鋼板。
[7]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
[8]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
[9]前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]または[8]に記載の耐摩耗鋼板の製造方法。
[10]記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]〜[9]のいずれかに記載の耐摩耗鋼板の製造方法。
[11]前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]〜[10]のいずれかに記載の耐摩耗鋼板の製造方法。
The present invention has been completed based on such findings and further studies. That is, the gist of the present invention is as follows.
[1] By mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.050% or less, Cr: 0.05-2.00%, N: 0.010% or less, O: 0.010% or less, from the balance Fe and unavoidable impurities A wear-resistant steel sheet, characterized by having a ferrite composition with a thickness of 0.03 mm or more and less than 1 mm on the steel sheet surface, and a martensite volume ratio at a position of 1 mm from the steel sheet surface being 90% or more. .
[2] By mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less, from the remainder Fe and inevitable impurities A wear-resistant steel sheet, characterized by having a ferrite composition with a thickness of 0.03 mm or more and less than 1 mm on the steel sheet surface, and a martensite volume ratio at a position of 1 mm from the steel sheet surface being 90% or more. .
[3] In addition to the above component composition, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, and B: 0.0001 to 0.0100% in mass% The wear-resistant steel plate according to [1] or [2], comprising one or more selected from
[4] In addition to the above-described component composition, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V : 0.01 to 1.00%, W: 0.01 to 1.00%, Co: containing one or more selected from 0.01 to 1.00% The wear-resistant steel sheet according to any one of [1] to [3].
[5] In addition to the above-described component composition, Ca: 0.0005-0.0100%, Mg: 0.0005-0.0100%, REM: 0.0005-0.0100% The wear-resistant steel plate according to any one of [1] to [4], which contains one or more selected from
[6] The density of inclusions and precipitates having an average particle size of 500 nm or more at a position 1 mm from the surface is 3.0 particles / mm 2 or less, according to any one of [1] to [5] The wear-resistant steel sheet described.
[7] By mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.050% or less, Cr: 0.05 to 2.00%, N: 0.010% or less, O: 0.010%, and the balance consisting of Fe and inevitable impurities A steel material having a component composition is heated, then hot rolled, cooled after completion of the hot rolling, and then re-heated at a heating temperature of Ac 3 points to Ac 3 (C = 0) point. A method for producing a wear-resistant steel sheet, comprising: The Ac 3 point and Ac 3 (C = 0) point are represented by the following formulas (1) and (2), respectively.
Ac 3 (° C.) = 912.0-230.5 × C + 31.6 × Si-20.4 × Mn-39.8 × Cu-18.1 × Ni-14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C.) = 912.0 + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and is set to 0 when not containing.
[8] By mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less, from the remainder Fe and inevitable impurities A steel material having a component composition is heated, then hot-rolled, cooled after completion of the hot rolling, and then re-heated at a heating temperature of Ac 3 points or more and Ac 3 (C = 0) points or less. A method for producing a wear-resistant steel sheet, comprising: The Ac 3 point and Ac 3 (C = 0) point are represented by the following formulas (1) and (2), respectively.
Ac 3 (° C.) = 912.0-230.5 × C + 31.6 × Si-20.4 × Mn-39.8 × Cu-18.1 × Ni-14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C.) = 912.0 + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and is set to 0 when not containing.
[9] In addition to the above component composition, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, and B: 0.0001 to 0.0100% in mass% The method for producing a wear-resistant steel plate according to [7] or [8], comprising one or more selected from the above.
[10] In addition to the above component composition, in addition, by mass, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V : 0.01 to 1.00%, W: 0.01 to 1.00%, Co: containing one or more selected from 0.01 to 1.00% The method for producing a wear-resistant steel plate according to any one of [7] to [9].
[11] In addition to the above component composition, Ca: 0.0005-0.0100%, Mg: 0.0005-0.0100%, REM: 0.0005-0.0100% The method for producing a wear-resistant steel plate according to any one of [7] to [10], comprising one or more selected from the above.

本発明によれば、曲げ加工性と耐摩耗性を兼備した耐摩耗鋼板を、容易に製造することができ、産業上格段の効果を奏する。   ADVANTAGE OF THE INVENTION According to this invention, the abrasion-resistant steel plate which has bending workability and abrasion resistance can be manufactured easily, and there exists a remarkable effect on industry.

図1は、本発明の一実施形態に係る耐摩耗鋼板について、圧延方向に垂直な断面のミクロ写真を示す図であり、(a)は鋼板表面にフェライトが無い場合のミクロ写真、(b)は鋼板表面にフェライトがある場合のミクロ写真を示す図である。FIG. 1 is a view showing a microphotograph of a cross section perpendicular to the rolling direction for a wear-resistant steel plate according to one embodiment of the present invention, (a) is a microphotograph when there is no ferrite on the steel plate surface, (b). These are figures which show a micro photograph in case a ferrite exists in the steel plate surface. 図2は、鋼板表面のフェライトの厚さと限界曲げ半径との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the ferrite thickness on the steel sheet surface and the critical bending radius. 図3は、鋼板表面のフェライトの厚さと硬さとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the ferrite thickness and hardness on the steel sheet surface.

本発明の耐摩耗鋼板は、質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。   The wear-resistant steel sheet of the present invention is in mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020. %: S: 0.020% or less, Al: 0.050% or less, Cr: 0.05-2.00%, N: 0.010% or less, O: 0.010% or less, and the balance Fe And a component composition consisting of inevitable impurities.

より好ましくは、本発明の耐摩耗鋼板は、質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。   More preferably, the wear-resistant steel sheet of the present invention is, in mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P : 0.020% or less, S: 0.020% or less, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less In addition, it has a component composition consisting of the remainder Fe and inevitable impurities.

先ず、本発明の耐摩耗鋼板の組成限定の理由について説明する。以下、組成における質量%は単に%で記す。   First, the reason for limiting the composition of the wear-resistant steel sheet of the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.

C:0.10〜0.45%
Cは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.45%を超える含有は、基地相(マトリクス)の硬度が過度に増加し、曲げ加工性が低下する。このため、Cは0.10〜0.45%の範囲に限定する。なお、好ましくは0.13〜0.42%である。
C: 0.10 to 0.45%
C is an effective element that increases the hardness of the matrix phase (matrix) and improves the wear resistance. In order to obtain such an effect, the content of 0.10% or more is required. On the other hand, if the content exceeds 0.45%, the hardness of the matrix phase (matrix) increases excessively and the bending workability decreases. For this reason, C is limited to a range of 0.10 to 0.45%. In addition, Preferably it is 0.13-0.42%.

Si:0.05〜1.00%
Siは、脱酸剤として作用するとともに、鋼中に固溶して固溶強化により基地相(マトリクス)硬さを増加させる元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.00%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加し、曲げ加工性が低下するなどの問題を生じる。このため、Siは0.05〜1.00%の範囲に限定する。なお、好ましくは0.05〜0.40%である。
Si: 0.05-1.00%
Si is an element that acts as a deoxidizer and increases the matrix phase (matrix) hardness by solid solution in steel and by solid solution strengthening. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, if the content exceeds 1.00%, ductility and toughness are lowered, the amount of inclusions is further increased, and bending workability is lowered. For this reason, Si is limited to the range of 0.05 to 1.00%. In addition, Preferably it is 0.05 to 0.40%.

Mn:0.10〜2.00%
Mnは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、2.00%を超える含有は、溶接性を低下させる。このため、Mnは0.10〜2.00%の範囲に限定する。なお、好ましくは0.50〜2.00%、より好ましくは0.60〜1.80%、さらに好ましくは0.70〜1.60%、さらにより好ましくは0.80〜1.40%である。
Mn: 0.10 to 2.00%
Mn is an effective element that increases the hardness of the matrix phase (matrix) and improves the wear resistance. In order to obtain such an effect, the content of 0.10% or more is required. On the other hand, containing over 2.00% reduces weldability. For this reason, Mn is limited to 0.10 to 2.00% of range. In addition, Preferably it is 0.50-2.00%, More preferably, it is 0.60-1.80%, More preferably, it is 0.70-1.60%, More preferably, it is 0.80-1.40% is there.

P:0.020%以下
Pは、粒界に偏析し母材および溶接部の靱性を低下させるなど、悪影響を及ぼす元素であり、不可避的不純物として、本発明ではできるだけ低減することが好ましいが、0.020%以下であれば許容できる。このため、Pは0.020以下に限定する。なお、過剰の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
P: 0.020% or less P is an element that has an adverse effect such as segregating at the grain boundary and lowering the toughness of the base metal and the welded portion, and as an inevitable impurity, it is preferable to reduce as much as possible in the present invention. If it is 0.020% or less, it is acceptable. For this reason, P is limited to 0.020 or less. In addition, since excessive reduction causes the refining cost to rise, it is preferable to make it 0.001% or more.

S:0.020%以下
Sは、MnS等の硫化物系介在物として鋼中に存在し、破壊の発生起点となるなど、悪影響を及ぼす元素である。本発明では不可避的不純物として、できるだけ低減することが好ましいが、0.020%以下であれば、許容できる。このため、Sは0.020%以下に限定する。なお、好ましくは、0.010%以下である。なお、過剰の低減は、精錬コストの高騰を招くため、0.0005%以上とすることが好ましい。
S: 0.020% or less S is an element that exists in steel as sulfide inclusions such as MnS and has an adverse effect such as becoming a starting point of fracture. In the present invention, it is preferable to reduce as much as possible as inevitable impurities, but if it is 0.020% or less, it is acceptable. For this reason, S is limited to 0.020% or less. In addition, Preferably, it is 0.010% or less. In addition, since excessive reduction causes the refining cost to rise, it is preferable to make it 0.0005% or more.

Al:0.050%以下
Alは、脱酸剤として作用するとともに、結晶粒を微細化する作用を有する元素であり、このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.050%を超えて多量に含有すると、酸化物系介在物が増加し、清浄度が低下し、表面疵が多発して表面性状が低下するとともに、曲げ加工性が低下する。このため、Alは0.050%以下に限定する。なお、好ましくは0.04%以下、より好ましくは、0.03%以下、さらにより好ましくは0.02%以下である。
Al: 0.050% or less Al is an element that acts as a deoxidizer and has a function of refining crystal grains. To obtain such an effect, Al should be contained in an amount of 0.01% or more. desirable. On the other hand, when it contains more than 0.050%, oxide inclusions increase, cleanliness decreases, surface defects occur frequently, surface properties decrease, and bending workability decreases. For this reason, Al is limited to 0.050% or less. In addition, Preferably it is 0.04% or less, More preferably, it is 0.03% or less, More preferably, it is 0.02% or less.

Cr:0.05〜2.00%
Crは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.00%を超える含有は、溶接性を低下させる。このため、Crは0.05〜2.00%の範囲に限定する。なお、好ましくは0.15〜0.90%、より好ましくは0.20〜0.80%、さらに好ましくは0.30〜0.70%である。
Cr: 0.05-2.00%
Cr is an effective element that increases the hardness of the matrix phase (matrix) and improves the wear resistance. In order to acquire such an effect, 0.05% or more of content is required. On the other hand, containing over 2.00% reduces weldability. For this reason, Cr is limited to 0.05 to 2.00% of range. In addition, Preferably it is 0.15-0.90%, More preferably, it is 0.20-0.80%, More preferably, it is 0.30-0.70%.

上記した成分が基本の成分である。なお、本発明では基本の組成に加えてさらに、選択元素として、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上、を必要に応じて選択して、含有してもよい。   The above components are basic components. In the present invention, in addition to the basic composition, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100 as a selective element One or more selected from: and / or Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: One or more selected from 0.01 to 1.00%, W: 0.01 to 1.00%, Co: 0.01 to 1.00%, and / or Ca: 0 .0005-0.0100%, Mg: 0.0005-0.0100%, REM: 0.0005-0.0100%, or one or more selected from the range , May be included.

さらに好ましくは、選択元素として、Nb:0.005〜0.020%、Ti:0.005〜0.017%、B:0.0001〜0.0020%のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜0.2%、Ni:0.01〜2.0%、Mo:0.1〜0.5%、V:0.01〜0.05%、W:0.01〜0.05%、Co:0.01〜0.05%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0040%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0080%のうちから選ばれた1種または2種以上、を必要に応じて選択して、含有してもよい。   More preferably, as the selective element, one or two selected from Nb: 0.005 to 0.020%, Ti: 0.005 to 0.017%, and B: 0.0001 to 0.0020% More than seeds and / or Cu: 0.01 to 0.2%, Ni: 0.01 to 2.0%, Mo: 0.1 to 0.5%, V: 0.01 to 0.05% W: 0.01 to 0.05%, Co: one or more selected from 0.01 to 0.05%, and / or Ca: 0.0005 to 0.0040%, One or more selected from Mg: 0.0005 to 0.0050% and REM: 0.0005 to 0.0080% may be selected as necessary and contained.

Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上
Nb、Ti、Bはいずれも、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素であり、必要に応じて選択して1種または2種以上含有できる。
Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, B: One or more selected from 0.0001 to 0.0100% Nb, Ti, and B are Any of them is an effective element for increasing the hardness of the matrix phase (matrix) and improving the wear resistance, and can be selected as necessary and contained in one or more kinds.

Nbは、基地相(マトリクス)硬さを増加させ、耐摩耗性の向上に寄与する元素であり、このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.100%を超えて含有すると、NbCが多量に析出し、曲げ加工性を低下させる。このようなことから、含有する場合には、Nbは0.005〜0.100%の範囲に限定することが好ましい。なお、好ましくは0.005〜0.020%、より好ましくは0.008〜0.016%、さらに好ましくは0.009〜0.014%である。   Nb is an element that increases the hardness of the matrix phase (matrix) and contributes to the improvement of wear resistance. In order to obtain such an effect, the Nb content needs to be 0.005% or more. On the other hand, when the content exceeds 0.100%, a large amount of NbC is precipitated, and the bending workability is lowered. For these reasons, Nb is preferably limited to a range of 0.005 to 0.100%. In addition, Preferably it is 0.005-0.020%, More preferably, it is 0.008-0.016%, More preferably, it is 0.009-0.014%.

Tiは、窒化物形成傾向が強く、Nを固定して固溶Nを低減するため、母材および溶接部の靭性を向上させる。また、Bを添加する場合には、Nを固定して、BNの析出を抑制し、Bの焼入れ性向上効果を助長して、焼入れ性を向上させ、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.005%以上の含有が必要である。一方、0.100%を超えて含有すると、TiCが多量に析出し、曲げ加工性を低下させる。このため、含有する場合は、Tiは0.005〜0.100%とすることが好ましい。なお、より好ましくは0.005〜0.017%、さらに好ましくは0.007〜0.015%、さらにより好ましくは0.009〜0.013%である。   Ti has a strong tendency to form nitrides, and fixes N to reduce solute N, thereby improving the toughness of the base material and the weld. In addition, when adding B, it is an element that fixes N, suppresses the precipitation of BN, promotes the effect of improving the hardenability of B, improves the hardenability, and contributes to the improvement of wear resistance. is there. In order to acquire such an effect, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.100%, a large amount of TiC precipitates and the bending workability is lowered. For this reason, when it contains, it is preferable to make Ti into 0.005 to 0.100%. In addition, More preferably, it is 0.005-0.017%, More preferably, it is 0.007-0.015%, More preferably, it is 0.009-0.013%.

Bは、微量な添加でも焼入れ性を著しく向上させ、マルテンサイトの形成を助長し、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有が必要である。一方、0.0100%を超える含有は、溶接性を低下させる。このため、含有する場合には、Bは0.0001〜0.0100%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.0020%、さらに好ましくは0.0005〜0.0015%である。さらにより好ましくは0.0007〜0.0013%である。   B is an element that significantly improves the hardenability even when added in a trace amount, promotes the formation of martensite, and contributes to the improvement of wear resistance. In order to acquire such an effect, 0.0001% or more needs to be contained. On the other hand, the content exceeding 0.0100% reduces weldability. For this reason, when it contains, it is preferable to limit B to 0.0001 to 0.0100% of range. In addition, More preferably, it is 0.0001 to 0.0020%, More preferably, it is 0.0005 to 0.0015%. Even more preferably, it is 0.0007 to 0.0013%.

Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上
Cu、Ni、Mo、V、W、Coはいずれも、焼入れ性を向上させ、鋼板内部の硬度を得るために必要に応じて添加する。このような効果を得るためには、Cu:0.01%以上、Ni:0.01%以上、Mo:0.1%以上、V:0.01%以上、W:0.01%以上、Co:0.01%以上含有することが好ましい。一方、Cu:1.0%、Ni:5.0%、Mo:2.0%、V:1.00%、W:1.00%、Co:1.00%、を超えて含有すると、溶接性の劣化、あるいは合金コストの上昇を招く。このようなことから、含有する場合には、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜.00%、W:0.01〜1.00%、Co:0.01〜1.00%に限定することが好ましい。より好ましくは、Cu:0.01〜0.2%、Ni:0.01〜2.0%、Mo:0.1〜0.5%、V:0.01〜0.05%、W:0.01〜0.05%、Co:0.01〜0.05%である。
Cu: 0.01-1.0%, Ni: 0.01-5.0%, Mo: 0.1-2.0%, V: 0.01-1.00%, W: 0.01- One or more selected from 1.00%, Co: 0.01 to 1.00% Cu, Ni, Mo, V, W, Co all improve the hardenability and increase the inside of the steel sheet. Is added as necessary to obtain a hardness of. In order to obtain such an effect, Cu: 0.01% or more, Ni: 0.01% or more, Mo: 0.1% or more, V: 0.01% or more, W: 0.01% or more, Co: It is preferable to contain 0.01% or more. On the other hand, when it contains exceeding Cu: 1.0%, Ni: 5.0%, Mo: 2.0%, V: 1.00%, W: 1.00%, Co: 1.00%, Degradation of weldability or increase in alloy costs. Therefore, when contained, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: 0.01 ~. It is preferable to limit to 00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00%. More preferably, Cu: 0.01-0.2%, Ni: 0.01-2.0%, Mo: 0.1-0.5%, V: 0.01-0.05%, W: 0.01 to 0.05%, Co: 0.01 to 0.05%.

Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上
Ca、Mg、REMはいずれも、Sと結合し、圧延方向に長く伸びるMnS等の形成を抑制して、硫化物系介在物が球状を呈するように形態制御し、溶接部等の靭性向上に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、Ca:0.0005%以上、Mg:0.0005%以上、REM:0.0005%以上、含有することが好ましい。一方、Ca:0.0100%、Mg:0.0100%、REM:0.0100%、を超えて含有すると、鋼の清浄度が低下し、表面疵が多発し表面性状が低下するとともに、曲げ加工性が低下する。このようなことから、含有する場合には、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%、に限定することが好ましい。より好ましくは、Ca:0.0005〜0.0040%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0080%である。
One or more selected from Ca: 0.0005-0.0100%, Mg: 0.0005-0.0100%, REM: 0.0005-0.0100% Ca, Mg, REM are Any of them is an element that combines with S and suppresses the formation of MnS or the like that extends long in the rolling direction, controls the form so that the sulfide inclusions have a spherical shape, and contributes to improved toughness of the welded portion, One or more kinds can be selected and contained as required. In order to acquire such an effect, it is preferable to contain Ca: 0.0005% or more, Mg: 0.0005% or more, REM: 0.0005% or more. On the other hand, if it contains more than Ca: 0.0100%, Mg: 0.0100%, REM: 0.0100%, the cleanliness of the steel is lowered, surface flaws occur frequently and the surface properties are lowered, and bending Workability is reduced. Therefore, when it is contained, it may be limited to Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100%. preferable. More preferably, they are Ca: 0.0005-0.0040%, Mg: 0.0005-0.0050%, REM: 0.0005-0.0080%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.010%以下、N:0.010%以下が許容できる。O:0.010%超え、もしくはN:0.010%超えでは、生成する介在物が多くなることで、介在物を起点として割れが発生しやすくなる。このため、O:0.010%以下、N:0.010%以下、に限定する。なお、好ましくはO:0.0050%以下、N:0.0050%以下である。より好ましくは、O:0.0040%以下、N:0.0040%以下である。   The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include O: 0.010% or less and N: 0.010% or less. If O: exceeds 0.010% or N: exceeds 0.010%, the amount of inclusions to be generated increases, and cracks are likely to occur starting from the inclusions. For this reason, it is limited to O: 0.010% or less and N: 0.010% or less. Preferably, O is 0.0050% or less, and N is 0.0050% or less. More preferably, O: 0.0040% or less and N: 0.0040% or less.

本発明の耐摩耗鋼板は、上記成分組成を有し、鋼板表面に厚さ0.03mm以上1mm未満のフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である組織とする。鋼の組織を上記のように限定する理由を以下に説明する。   The wear-resistant steel sheet of the present invention has the above-described composition, has a ferrite having a thickness of 0.03 mm or more and less than 1 mm on the steel sheet surface, and has a martensite volume ratio of 90% or more at a position 1 mm from the steel sheet surface. Organization. The reason for limiting the steel structure as described above will be described below.

鋼板表面のフェライトの厚さ:0.03mm以上1mm未満
鋼板表面をフェライトとすることで、曲げ加工性が向上する。このような効果を得るためには0.03mm以上の厚さを必要とする。一方で、1mm以上のフェライトになると、鋼板表面から1mm以降の硬度が低下するため、耐摩耗性が劣化する。そのため、フェライトの厚さは1mm未満とする。なお、より好ましくは0.05mm以上0.5mm未満である。
Thickness of ferrite on steel plate surface: 0.03 mm or more and less than 1 mm Bending workability is improved by making the steel plate surface ferrite. In order to obtain such an effect, a thickness of 0.03 mm or more is required. On the other hand, if the ferrite is 1 mm or more, the hardness after 1 mm from the surface of the steel sheet is lowered, so that the wear resistance is deteriorated. Therefore, the thickness of the ferrite is less than 1 mm. In addition, More preferably, it is 0.05 mm or more and less than 0.5 mm.

鋼板表面から1mmの位置におけるマルテンサイトの体積率:90%以上
鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%未満であると、鋼板の基地組織の硬度が低下するため、耐摩耗性が劣化する。そのため、鋼板表面から1mmの位置におけるマルテンサイトの体積率を90%以上とする。なお、マルテンサイト以外の残部組織は特に限定されないが、フェライト、パーライト、オーステナイト、ベイナイト組織が存在してよい。一方、マルテンサイトの体積率は高いほどよいため、マルテンサイトの体積率の上限は特に限定されず、100%であってよい。また、本発明において、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であれば、鋼板表面1mm以降の鋼板内部についても、マルテンサイトの体積率が90%以上であることを意味する。
Martensite volume ratio at a position 1 mm from the steel sheet surface: 90% or more When the volume ratio of martensite at a position 1 mm from the steel sheet surface is less than 90%, the hardness of the base structure of the steel sheet decreases, so that the wear resistance Deteriorates. Therefore, the volume ratio of martensite at a position 1 mm from the steel sheet surface is set to 90% or more. The remaining structure other than martensite is not particularly limited, but a ferrite, pearlite, austenite, and bainite structure may exist. On the other hand, since the higher the volume ratio of martensite, the better, the upper limit of the volume ratio of martensite is not particularly limited, and may be 100%. In the present invention, if the volume ratio of martensite at a position 1 mm from the steel sheet surface is 90% or more, it means that the volume ratio of martensite is 90% or more also in the steel sheet interior after 1 mm of the steel sheet surface. To do.

さらに、上記組成および上記組織を有する鋼において、鋼板表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度を3.0個/mm以下とすることで、曲げ加工性をさらに向上させることができる。 Further, in the steel having the above composition and the above structure, the bending workability is achieved by setting the density of inclusions and precipitates having an average particle diameter of 500 nm or more at a position 1 mm from the steel sheet surface to 3.0 pieces / mm 2 or less. Can be further improved.

鋼板表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることにより、介在物や析出物を起点とした割れを抑制することができ、曲げ加工性が向上する。介在物や析出物の密度は低いほどよいため、下限は特に限定されないが、過度の低減は精錬コストの高騰を招くため、0.1個/mm以上とすることが好ましい。 The density of inclusions and precipitates having an average particle size of 500 nm or more at a position 1 mm from the steel sheet surface is 3.0 pieces / mm 2 or less, thereby suppressing cracks originating from the inclusions and precipitates. And bending workability is improved. The lower the density of inclusions and precipitates, the better. Therefore, the lower limit is not particularly limited, but excessive reduction leads to an increase in the refining cost, so 0.1 / mm 2 or more is preferable.

つぎに、本発明の耐摩耗鋼板の製造方法について説明する。   Below, the manufacturing method of the abrasion-resistant steel plate of this invention is demonstrated.

上記した成分組成を有する鋼素材を加熱し、熱間圧延して耐摩耗鋼板とする。   A steel material having the above component composition is heated and hot-rolled to obtain a wear-resistant steel plate.

鋼素材の製造方法
鋼素材の製造方法は、とくに限定する必要はないが、上記した成分組成を有する溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で、所定寸法のスラブ等の鋼素材とすることが好ましい。なお、造塊−分解圧延法により、所定寸法のスラブ等の鋼素材としてもなんら問題はない。
Manufacturing method of steel material The manufacturing method of the steel material is not particularly limited, but the molten steel having the above-described component composition is melted by a known melting method such as a converter, and a known method such as a continuous casting method is used. It is preferable to use a steel material such as a slab having a predetermined size by a casting method. In addition, there is no problem even if it is steel materials, such as a slab of a predetermined dimension, by an ingot-making and decomposition rolling method.

鋼素材を加熱
得られた鋼素材(スラブ)は、冷却することなく直接、あるいは冷却したのち、加熱炉で好ましくは加熱温度:900〜1200℃に加熱して、さらに熱間圧延し所望板厚(肉厚)の鋼板とする。本発明では、得られた鋼素材(スラブ)を加熱することにより表面から脱炭させ、さらに後述する焼入れ温度で焼入れ処理を行うことにより、鋼板表面に所定厚さのフェライト組織を得ることができる。加熱温度は、900〜1250℃が好ましい。加熱温度が900℃未満では、加熱温度が低すぎて変形抵抗が高くなり、熱間圧延機への負荷が増大し、熱間圧延が困難になる。一方、1250℃を超えて高温となると、酸化が著しくなり、酸化ロスが増大し歩留りが低下する。このようなことから、加熱温度は900〜1250℃が好ましい。なお、より好ましくは950〜1150℃である。
Heating the steel material The obtained steel material (slab) is cooled directly or without cooling, and then heated in a heating furnace, preferably at a heating temperature of 900 to 1200 ° C., and further hot-rolled to obtain a desired plate thickness. (Thickness) steel plate. In the present invention, the obtained steel material (slab) is decarburized from the surface by heating, and a ferrite structure having a predetermined thickness can be obtained on the steel sheet surface by performing a quenching treatment at a quenching temperature described later. . The heating temperature is preferably 900 to 1250 ° C. If the heating temperature is less than 900 ° C., the heating temperature is too low and the deformation resistance becomes high, the load on the hot rolling mill increases, and hot rolling becomes difficult. On the other hand, when the temperature is higher than 1250 ° C., the oxidation becomes remarkable, the oxidation loss increases, and the yield decreases. Therefore, the heating temperature is preferably 900 to 1250 ° C. In addition, More preferably, it is 950-1150 degreeC.

熱間圧延
熱間圧延については、特に限定されず、常法により熱間圧延を行えばよい。
Hot rolling Hot rolling is not particularly limited, and hot rolling may be performed by a conventional method.

加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理
さらに、熱間圧延終了後冷却したのち、下記式(1)および(2)式で示されるAc点以上Ac3(C=0)点以下の加熱温度で再加熱する焼入れ処理を行う。これは、オーステナイト状態からの焼入れによってマルテンサイト組織を得るためである。Ac点未満からの焼入れでは十分に焼きが入らず、硬度が低下し、耐摩耗性が高いミクロ組織は得られない。また、加熱温度がAc3(C=0)点超えでは、鋼板表面がマルテンサイト組織となり、所望のフェライト組織を得ることができない。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
Quenching treatment in which heating temperature is reheated at Ac 3 points or more and Ac 3 (C = 0) points or less. Further, after cooling after completion of hot rolling, Ac 3 points or more shown by the following formulas (1) and (2) A quenching process is performed in which reheating is performed at a heating temperature of Ac 3 (C = 0) or lower. This is to obtain a martensite structure by quenching from the austenite state. Ac quenching from less than 3 points does not sufficiently quench, the hardness decreases, and a microstructure with high wear resistance cannot be obtained. On the other hand, if the heating temperature exceeds the Ac 3 (C = 0) point, the steel sheet surface has a martensite structure, and a desired ferrite structure cannot be obtained.
Ac 3 (° C.) = 912.0-230.5 × C + 31.6 × Si-20.4 × Mn-39.8 × Cu-18.1 × Ni-14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C.) = 912.0 + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and is set to 0 when not containing.

なお、焼入れ処理の冷却速度は、マルテンサイト組織が形成される冷却速度であればとくに限定されない。また、冷却停止温度は、Mf点以下の温度、好ましくは200℃以下まで水冷することが好ましい。   The cooling rate of the quenching process is not particularly limited as long as it is a cooling rate at which a martensite structure is formed. The cooling stop temperature is preferably water-cooled to a temperature below the Mf point, preferably 200 ° C. or below.

表1に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表2に示す条件で加熱および熱間圧延を施し、表2に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表1中のMf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
Molten steel having the composition shown in Table 1 was melted to obtain a steel material (slab). These steel materials (slabs) were heated and hot-rolled under the conditions shown in Table 2 to obtain hot-rolled sheets having the thicknesses shown in Table 2. Thereafter, the mixture was allowed to cool, reheated, and then reheated and quenched. In addition, Mf and Ar 3 in Table 1 were obtained by the following formula.
Mf (° C.) = 410.5−407.3 × C−7.3 × Si-37.8 × Mn−20.5 × Cu−19.5 × Ni−19.8 × Cr−4.5 × Mo
Ar 3 (° C.) = 910-273 × C-74 × Mn-57 × Ni-16 × Cr-9 × Mo-5 × Cu

得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが360以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが1.5以下を合格とした。
About the obtained steel plate, the thickness measurement of the ferrite of the steel plate surface, the volume ratio measurement of a martensite, the hardness test of the surface layer part, and the bending test were each implemented. The test method is as follows.
(1) Measurement of ferrite thickness Samples were taken from each steel sheet so that the cross section perpendicular to the rolling direction was the observation surface. The sample was mirror-polished and further subjected to nital corrosion, and then three field-of-view photographs were taken at × 400 magnification using an optical microscope. The average thickness was determined by measuring the ferrite thickness at any five locations per field of view, and the average value for the three fields of view was defined as the ferrite thickness.
(2) Measurement of martensite volume ratio Samples were taken from each steel sheet so that the position 1 mm from the steel sheet surface was the observation position. The surface of the sample was mirror-polished and further subjected to nital corrosion, and then a range of 10 mm × 10 mm was photographed using a scanning electron microscope (SEM). The photographed image was analyzed using an image analyzer, and the area fraction of martensite was obtained. The area fraction of martensite was determined for any three images, and the average value was taken as the volume ratio of martensite in the present invention.
(3) Inclusion and Precipitate Measurement Samples were taken from each steel sheet so that the position of 1 mm from the steel sheet surface was the observation position. The surface of the sample was mirror-polished and an area of 10 mm × 10 mm was photographed using SEM. By analyzing the photographed image using an image analyzer, the particle size and number of inclusions and precipitates were determined, the number of inclusions and precipitates having an average particle size of 500 nm or more was measured, and the density was determined. . For any three images, the density of inclusions and precipitates was determined, and the average value was taken as the density of inclusions and precipitates in the present invention.
(4) Surface hardness test The wear resistance of the steel sheet is mainly determined by the hardness of the surface layer portion. Therefore, a test piece for hardness measurement was collected from the obtained steel plate, and the hardness at the 1 mm position in the thickness direction from the surface was measured in accordance with the provisions of JIS Z 2243 (1998). In order to remove the influence of the surface scale and the decarburized layer, 1 mm from the surface was ground and removed, and the surface hardness was measured on a surface 1 mm from the surface. In the measurement, a tungsten hard sphere having a diameter of 10 mm was used, and the load was 3000 kgf. Hardness of 360 or more was accepted.
(5) Bending test A bending test piece (width 150 mm x 300 mm length) was taken from the obtained steel sheet, and bent according to JIS Z 2248, bending angle: 180 °, bending radius without cracking. The critical bending radius R / t, which represents R (mm) as a ratio to the plate thickness t (mm), was determined. R / t was determined to be 1.5 or less.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。   The invention example is a wear-resistant steel plate having bending workability and wear resistance. On the other hand, the comparative example has the same hardness and a large bending radius, or has a low hardness and a small bending radius, and is inferior in bending workability or wear resistance.

表3に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表4に示す条件で加熱および熱間圧延を施し、表4に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表3中のMs、Mf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
Molten steel having the composition shown in Table 3 was melted to obtain a steel material (slab). These steel materials (slabs) were heated and hot-rolled under the conditions shown in Table 4 to obtain hot-rolled sheets having a thickness shown in Table 4. Thereafter, the mixture was allowed to cool, reheated, and then reheated and quenched. In addition, Ms, Mf, and Ar 3 in Table 3 were obtained by the following formula.
Mf (° C.) = 410.5−407.3 × C−7.3 × Si-37.8 × Mn−20.5 × Cu−19.5 × Ni−19.8 × Cr−4.5 × Mo
Ar 3 (° C.) = 910-273 × C-74 × Mn-57 × Ni-16 × Cr-9 × Mo-5 × Cu

得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが490以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが2.5以下を合格とした。
About the obtained steel plate, the thickness measurement of the ferrite of the steel plate surface, the volume ratio measurement of a martensite, the hardness test of the surface layer part, and the bending test were each implemented. The test method is as follows.
(1) Measurement of ferrite thickness Samples were taken from each steel sheet so that the cross section perpendicular to the rolling direction was the observation surface. The sample was mirror-polished and further subjected to nital corrosion, and then three field-of-view photographs were taken at × 400 magnification using an optical microscope. The average thickness was determined by measuring the ferrite thickness at any five locations per field of view, and the average value for the three fields of view was defined as the ferrite thickness.
(2) Measurement of martensite volume ratio Samples were taken from each steel sheet so that the position 1 mm from the steel sheet surface was the observation position. The surface of the sample was mirror-polished and further subjected to nital corrosion, and then a range of 10 mm × 10 mm was photographed using a scanning electron microscope (SEM). The photographed image was analyzed using an image analyzer, and the area fraction of martensite was obtained. The area fraction of martensite was determined for any three images, and the average value was taken as the volume ratio of martensite in the present invention.
(3) Inclusion and Precipitate Measurement Samples were taken from each steel sheet so that the position of 1 mm from the steel sheet surface was the observation position. The surface of the sample was mirror-polished and an area of 10 mm × 10 mm was photographed using SEM. By analyzing the photographed image using an image analyzer, the particle size and number of inclusions and precipitates were determined, the number of inclusions and precipitates having an average particle size of 500 nm or more was measured, and the density was determined. . For any three images, the density of inclusions and precipitates was determined, and the average value was taken as the density of inclusions and precipitates in the present invention.
(4) Surface hardness test The wear resistance of the steel sheet is mainly determined by the hardness of the surface layer portion. Therefore, a test piece for hardness measurement was collected from the obtained steel plate, and the hardness at the 1 mm position in the thickness direction from the surface was measured in accordance with the provisions of JIS Z 2243 (1998). In order to remove the influence of the surface scale and the decarburized layer, 1 mm from the surface was ground and removed, and the surface hardness was measured on a surface 1 mm from the surface. In the measurement, a tungsten hard sphere having a diameter of 10 mm was used, and the load was 3000 kgf. The hardness was 490 or more.
(5) Bending test A bending test piece (width 150 mm x 300 mm length) was taken from the obtained steel sheet, and bent according to JIS Z 2248, bending angle: 180 °, bending radius without cracking. The critical bending radius R / t, which represents R (mm) as a ratio to the plate thickness t (mm), was determined. An R / t of 2.5 or less was accepted.

得られた結果を表4に示す。   Table 4 shows the obtained results.

発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。   The invention example is a wear-resistant steel plate having bending workability and wear resistance. On the other hand, the comparative example has the same hardness and a large bending radius, or has a low hardness and a small bending radius, and is inferior in bending workability or wear resistance.

表5に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表6に示す条件で加熱および熱間圧延を施し、表6に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表5中のMs、Mf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
Molten steel having the composition shown in Table 5 was melted to obtain a steel material (slab). These steel materials (slabs) were heated and hot-rolled under the conditions shown in Table 6 to obtain hot-rolled sheets having the thicknesses shown in Table 6. Thereafter, the mixture was allowed to cool, reheated, and then reheated and quenched. In addition, Ms, Mf, and Ar 3 in Table 5 were obtained by the following equations.
Mf (° C.) = 410.5−407.3 × C−7.3 × Si-37.8 × Mn−20.5 × Cu−19.5 × Ni−19.8 × Cr−4.5 × Mo
Ar 3 (° C.) = 910-273 × C-74 × Mn-57 × Ni-16 × Cr-9 × Mo-5 × Cu

得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが560以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが3.5以下を合格とした。
About the obtained steel plate, the thickness measurement of the ferrite of the steel plate surface, the volume ratio measurement of a martensite, the hardness test of the surface layer part, and the bending test were each implemented. The test method is as follows.
(1) Measurement of ferrite thickness Samples were taken from each steel sheet so that the cross section perpendicular to the rolling direction was the observation surface. The sample was mirror-polished and further subjected to nital corrosion, and then three field-of-view photographs were taken at × 400 magnification using an optical microscope. The average thickness was determined by measuring the ferrite thickness at any five locations per field of view, and the average value for the three fields of view was defined as the ferrite thickness.
(2) Measurement of martensite volume ratio Samples were taken from each steel sheet so that the position 1 mm from the steel sheet surface was the observation position. The surface of the sample was mirror-polished and further subjected to nital corrosion, and then a range of 10 mm × 10 mm was photographed using a scanning electron microscope (SEM). The photographed image was analyzed using an image analyzer, and the area fraction of martensite was obtained. The area fraction of martensite was determined for any three images, and the average value was taken as the volume ratio of martensite in the present invention.
(3) Inclusion and Precipitate Measurement Samples were taken from each steel sheet so that the position of 1 mm from the steel sheet surface was the observation position. The surface of the sample was mirror-polished and an area of 10 mm × 10 mm was photographed using SEM. By analyzing the photographed image using an image analyzer, the particle size and number of inclusions and precipitates were determined, the number of inclusions and precipitates having an average particle size of 500 nm or more was measured, and the density was determined. . For any three images, the density of inclusions and precipitates was determined, and the average value was taken as the density of inclusions and precipitates in the present invention.
(4) Surface hardness test The wear resistance of the steel sheet is mainly determined by the hardness of the surface layer portion. Therefore, a test piece for hardness measurement was collected from the obtained steel plate, and the hardness at the 1 mm position in the thickness direction from the surface was measured in accordance with the provisions of JIS Z 2243 (1998). In order to remove the influence of the surface scale and the decarburized layer, 1 mm from the surface was ground and removed, and the surface hardness was measured on a surface 1 mm from the surface. In the measurement, a tungsten hard sphere having a diameter of 10 mm was used, and the load was 3000 kgf. The hardness was 560 or more.
(5) Bending test A bending test piece (width 150 mm x 300 mm length) was taken from the obtained steel sheet, and bent according to JIS Z 2248, bending angle: 180 °, bending radius without cracking. The critical bending radius R / t, which represents R (mm) as a ratio to the plate thickness t (mm), was determined. R / t was determined to be 3.5 or less.

得られた結果を表6に示す。   The results obtained are shown in Table 6.

発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。   The invention example is a wear-resistant steel plate having bending workability and wear resistance. On the other hand, the comparative example has the same hardness and a large bending radius, or has a low hardness and a small bending radius, and is inferior in bending workability or wear resistance.

Claims (11)

質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。   In mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020 %, Al: 0.050% or less, Cr: 0.05 to 2.00%, N: 0.010% or less, O: 0.010% or less, and the remaining composition of Fe and inevitable impurities A wear-resistant steel sheet having ferrite having a thickness of 0.03 mm or more and less than 1 mm on the steel sheet surface, and having a martensite volume ratio of 90% or more at a position of 1 mm from the steel sheet surface. 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。   In mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020 %, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less, and the component composition consisting of the balance Fe and inevitable impurities A wear-resistant steel sheet having ferrite having a thickness of 0.03 mm or more and less than 1 mm on the steel sheet surface, and having a martensite volume ratio of 90% or more at a position of 1 mm from the steel sheet surface. 前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載の耐摩耗鋼板。   In addition to the above component composition, it is further selected by mass% from Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, and B: 0.0001 to 0.0100%. The wear-resistant steel sheet according to claim 1 or 2, further comprising one or more kinds. 前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の耐摩耗鋼板。   In addition to the above-mentioned component composition, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: 0.0. One or more kinds selected from 01 to 1.00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00% are contained. The wear-resistant steel sheet according to any one of 1 to 3. 前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1〜4のいずれかに記載の耐摩耗鋼板。   In addition to the above component composition, it is further selected by mass% from Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100%. The wear-resistant steel sheet according to any one of claims 1 to 4, further comprising one or more kinds. 表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることを特徴とする請求項1〜5のいずれかに記載の耐摩耗鋼板。 The wear-resistant steel sheet according to any one of claims 1 to 5, wherein the density of inclusions and precipitates having an average particle diameter of 500 nm or more at a position of 1 mm from the surface is 3.0 pieces / mm 2 or less. . 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
In mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020 %, Al: 0.050% or less, Cr: 0.05-2.00%, N: 0.010% or less, O: 0.010%, and the component composition consisting of the remainder Fe and inevitable impurities After heating the steel material, it is hot-rolled, cooled after the hot rolling is completed, and then subjected to a quenching process in which the heating temperature is reheated at Ac 3 points or more and Ac 3 (C = 0) points or less. A method for producing a wear-resistant steel sheet. The Ac 3 point and Ac 3 (C = 0) point are represented by the following formulas (1) and (2), respectively.
Ac 3 (° C.) = 912.0-230.5 × C + 31.6 × Si-20.4 × Mn-39.8 × Cu-18.1 × Ni-14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C.) = 912.0 + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and is set to 0 when not containing.
質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
In mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020 %, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less, and the component composition consisting of the balance Fe and inevitable impurities After heating the steel material having heat, it is hot-rolled, cooled after completion of the hot-rolling, and then subjected to a quenching treatment in which the heating temperature is reheated at Ac 3 points or more and Ac 3 (C = 0) points or less. A method for producing a wear-resistant steel sheet. The Ac 3 point and Ac 3 (C = 0) point are represented by the following formulas (1) and (2), respectively.
Ac 3 (° C.) = 912.0-230.5 × C + 31.6 × Si-20.4 × Mn-39.8 × Cu-18.1 × Ni-14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C.) = 912.0 + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and is set to 0 when not containing.
前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項7または8に記載の耐摩耗鋼板の製造方法。   In addition to the above component composition, it is further selected by mass% from Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, and B: 0.0001 to 0.0100%. 1 or 2 types or more are contained, The manufacturing method of the wear-resistant steel plate of Claim 7 or 8 characterized by the above-mentioned. 前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項7〜9のいずれかに記載の耐摩耗鋼板の製造方法。   In addition to the above-mentioned component composition, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: 0.0. One or more kinds selected from 01 to 1.00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00% are contained. The manufacturing method of the abrasion-resistant steel plate in any one of 7-9. 前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項7〜10のいずれかに記載の耐摩耗鋼板の製造方法。   In addition to the above component composition, it is further selected by mass% from Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100%. The method for producing a wear-resistant steel sheet according to any one of claims 7 to 10, further comprising one kind or two or more kinds.
JP2017174653A 2016-09-16 2017-09-12 Wear-resistant steel plate and method of manufacturing the same Active JP6540764B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016181284 2016-09-16
JP2016181284 2016-09-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019066512A Division JP6711434B2 (en) 2016-09-16 2019-03-29 Abrasion resistant steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018048399A true JP2018048399A (en) 2018-03-29
JP6540764B2 JP6540764B2 (en) 2019-07-10

Family

ID=61766038

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017174653A Active JP6540764B2 (en) 2016-09-16 2017-09-12 Wear-resistant steel plate and method of manufacturing the same
JP2019066512A Active JP6711434B2 (en) 2016-09-16 2019-03-29 Abrasion resistant steel plate and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019066512A Active JP6711434B2 (en) 2016-09-16 2019-03-29 Abrasion resistant steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (2) JP6540764B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187984A (en) * 2020-02-17 2020-05-22 本钢板材股份有限公司 Steel for worm gear and worm transmission device and preparation method thereof
JP2021031709A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Method for manufacturing wear resistant steel material excellent in fatigue resistance property
JP2021031708A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Abrasion resistant steel material excellent in fatigue resistant characteristics
WO2021054015A1 (en) * 2019-09-17 2021-03-25 Jfeスチール株式会社 Wear-resistant steel sheet and method for producing same
CN113699437A (en) * 2021-06-25 2021-11-26 武汉钢铁有限公司 Hot continuous rolling dual-phase wear-resistant steel for carriage plate and production method thereof
JP2022502569A (en) * 2018-09-27 2022-01-11 ポスコPosco Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2022502570A (en) * 2018-09-27 2022-01-11 ポスコPosco Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
CN114318155A (en) * 2022-01-05 2022-04-12 河北普阳钢铁有限公司 Chromium-containing ASTM A36 steel plate and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2011179122A (en) * 2011-03-07 2011-09-15 Jfe Steel Corp Wear-resistant steel sheet excellent in low temperature toughness
JP2014194043A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method thereof
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2011179122A (en) * 2011-03-07 2011-09-15 Jfe Steel Corp Wear-resistant steel sheet excellent in low temperature toughness
JP2014194043A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method thereof
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7368461B2 (en) 2018-09-27 2023-10-24 ポスコ カンパニー リミテッド Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP7240486B2 (en) 2018-09-27 2023-03-15 ポスコ カンパニー リミテッド Abrasion-resistant steel plate with excellent hardness and impact toughness and method for producing the same
JP2022502569A (en) * 2018-09-27 2022-01-11 ポスコPosco Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
JP2022502570A (en) * 2018-09-27 2022-01-11 ポスコPosco Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method
US20220042152A1 (en) * 2018-09-27 2022-02-10 Posco Abrasion resistant steel having excellent hardness and impact toughness and manufacturing method therefor
JP7163887B2 (en) 2019-08-21 2022-11-01 Jfeスチール株式会社 Wear-resistant steel with excellent fatigue resistance
JP2021031709A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Method for manufacturing wear resistant steel material excellent in fatigue resistance property
JP2021031708A (en) * 2019-08-21 2021-03-01 Jfeスチール株式会社 Abrasion resistant steel material excellent in fatigue resistant characteristics
JP7163888B2 (en) 2019-08-21 2022-11-01 Jfeスチール株式会社 Manufacturing method for wear-resistant steel with excellent fatigue resistance
JPWO2021054015A1 (en) * 2019-09-17 2021-10-21 Jfeスチール株式会社 Abrasion resistant steel sheet and its manufacturing method
CN114402086A (en) * 2019-09-17 2022-04-26 杰富意钢铁株式会社 Wear-resistant steel sheet and method for producing same
JP7088407B2 (en) 2019-09-17 2022-06-21 Jfeスチール株式会社 Wear-resistant steel sheet and its manufacturing method
JP2022050705A (en) * 2019-09-17 2022-03-30 Jfeスチール株式会社 Wear resistant steel sheet and method for manufacturing the same
JP7226598B2 (en) 2019-09-17 2023-02-21 Jfeスチール株式会社 Abrasion-resistant steel plate and manufacturing method thereof
EP4015659A4 (en) * 2019-09-17 2023-09-20 JFE Steel Corporation Wear-resistant steel sheet and method for producing same
WO2021054015A1 (en) * 2019-09-17 2021-03-25 Jfeスチール株式会社 Wear-resistant steel sheet and method for producing same
CN111187984A (en) * 2020-02-17 2020-05-22 本钢板材股份有限公司 Steel for worm gear and worm transmission device and preparation method thereof
CN113699437A (en) * 2021-06-25 2021-11-26 武汉钢铁有限公司 Hot continuous rolling dual-phase wear-resistant steel for carriage plate and production method thereof
CN114318155A (en) * 2022-01-05 2022-04-12 河北普阳钢铁有限公司 Chromium-containing ASTM A36 steel plate and production method thereof

Also Published As

Publication number Publication date
JP6540764B2 (en) 2019-07-10
JP6711434B2 (en) 2020-06-17
JP2019123945A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6711434B2 (en) Abrasion resistant steel plate and manufacturing method thereof
US10093998B2 (en) Abrasion resistant steel plate having excellent low-temperature toughness and method for manufacturing the same
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP5186809B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5145805B2 (en) Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
JP6583374B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
CA2766028A1 (en) High-strength seamless steel tube, having excellent resistance to sulfide stress cracking, for oil wells and method for manufacturing the same
JP6572952B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6583375B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
WO2015174424A1 (en) Seamless steel pipe for line pipe, and method for producing same
JP6131890B2 (en) Manufacturing method and selection method of low-alloy high-strength seamless steel pipe for oil well with excellent resistance to sulfide stress corrosion cracking
JP5458624B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP5217191B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP2021031711A (en) Method for manufacturing wear resistant steel material excellent in fatigue resistance property
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JP2018044223A (en) Abrasion resistant steel sheet and manufacturing method therefor
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP6791179B2 (en) Non-microalloyed steel and its manufacturing method
JP5053187B2 (en) Perlite high carbon steel rail with excellent ductility
JP7063419B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet
JP7063420B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180419

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190527

R150 Certificate of patent or registration of utility model

Ref document number: 6540764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250