JP2019123945A - Wear resisting steel sheet and production method therefor - Google Patents

Wear resisting steel sheet and production method therefor Download PDF

Info

Publication number
JP2019123945A
JP2019123945A JP2019066512A JP2019066512A JP2019123945A JP 2019123945 A JP2019123945 A JP 2019123945A JP 2019066512 A JP2019066512 A JP 2019066512A JP 2019066512 A JP2019066512 A JP 2019066512A JP 2019123945 A JP2019123945 A JP 2019123945A
Authority
JP
Japan
Prior art keywords
less
steel plate
mass
wear
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019066512A
Other languages
Japanese (ja)
Other versions
JP6711434B2 (en
Inventor
直樹 ▲高▼山
直樹 ▲高▼山
Naoki Takayama
祐介 寺澤
Yusuke Terasawa
祐介 寺澤
善明 村上
Yoshiaki Murakami
善明 村上
長谷 和邦
Kazukuni Hase
和邦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019123945A publication Critical patent/JP2019123945A/en
Application granted granted Critical
Publication of JP6711434B2 publication Critical patent/JP6711434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

To provide a wear resisting steel sheet combining bending workability with wear resistance and a production method therefor.SOLUTION: The wear resisting steel sheet is provided that has a component composition containing, by mass%, C:0.10 to 0.45%, Si:0.05 to 1.00%, Mn:0.10 to 2.00%, P:0.020% or less, S:0.020% or less, Al:0.050% or less, Cr:0.05 to 2.00%, N:0.010% or less, O:0.010% or less, and the balance Fe with inevitable impurities, and that has ferrite with thickness of 0.03 mm or more and less than 1 mm on a steel sheet surface and a volume percentage of martensite at a position 1 mm from the steel sheet surface of 90% or more.SELECTED DRAWING: Figure 1

Description

本発明は、耐摩耗鋼板に係り、とくに建設、土木および鉱山等の掘削等の分野で使用される産業機械、運搬機器の部材用として好適な、曲げ加工性に優れた耐摩耗鋼板およびその製造方法に関する。   The present invention relates to a wear-resistant steel plate, and in particular, a wear-resistant steel plate excellent in bending workability, which is suitable for use as a member of an industrial machine and a transportation device used in the fields of construction, civil engineering and mining etc. On the way.

従来から、鋼材の耐摩耗性は、高硬度化することにより向上することが知られている。このため、例えば、土、砂等による摩耗を受け、耐摩耗性が要求される部材には、焼入等の熱処理を施して高硬度化した鋼材が使用されてきた。   Heretofore, it has been known that the wear resistance of steel materials is improved by increasing the hardness. For this reason, for example, a steel material which has been subjected to wear due to soil, sand or the like and which is required to have wear resistance, has been subjected to heat treatment such as quenching to increase its hardness.

例えば、特許文献1には、重量%で、C:0.10〜0.20%、Si:0.03〜0.75%、Mn:0.4〜1.5%、N:0.0025%以下、Al:0.001〜0.080%を含み、あるいは更にCu、Ni、Cr、Mo、Bのうちの1種以上を含有する組成の鋼材に、熱間圧延を施して厚鋼板とした後、直接焼入れするか、あるいは熱間圧延後放冷し、その後γ域に再加熱して焼入れする耐摩耗厚鋼板の製造方法が記載されている。特許文献1に記載された技術によれば、焼入れままで340HB以上の硬さと、高靭性とを有し、溶接低温割れ性が改善された耐摩耗厚鋼板が得られるとしている。   For example, in Patent Document 1, C: 0.10 to 0.20%, Si: 0.03 to 0.75%, Mn: 0.4 to 1.5%, N: 0.0025 by weight%. Steel sheet having a composition containing at most 100% Al, 0.001 to 0.080%, or further containing at least one of Cu, Ni, Cr, Mo, and B, and subjected to hot rolling to form a thick steel plate After that, a method of manufacturing a wear-resistant thick steel plate is described in which the steel is directly quenched or after hot rolling and then allowed to cool, and then reheated to the γ region for quenching. According to the technique described in Patent Document 1, it is supposed that a wear-resistant thick steel plate having a hardness of 340 HB or more as quenched and high toughness and having improved welding low temperature cracking properties can be obtained.

また、特許文献2には、C:0.20〜0.45%、Si:0.10〜1.50%、Mn:0.60〜2.50%、Cr:0.60〜2.00%、Al:0.010〜0.080%、Nb:0.010〜0.100%、B:0.0010〜0.0060%、Ca:0.01%以下を含み、残部Feおよび不可避的不純物からなり、あるいは更にTi、Mo、Vのうち1種または2種以上を含有した鋼を、900℃〜Ar変態点の温度で圧下率15%以上の熱間圧延を行い、Ar変態点以上の温度から焼入れすることを特徴とした耐摩耗鋼の製造方法が記載されている。特許文献2に記載された技術によれば、容易に耐摩耗性に有利な高い硬度の耐摩耗鋼が得られるとしている。 Further, in Patent Document 2, C: 0.20 to 0.45%, Si: 0.10 to 1.50%, Mn: 0.60 to 2.50%, Cr: 0.60 to 2.00 %, Al: 0.010 to 0.080%, Nb: 0.010 to 0.100%, B: 0.0010 to 0.0060%, Ca: 0.01% or less, the balance Fe and unavoidable A steel made of impurities or further containing one or more of Ti, Mo, and V is subjected to hot rolling at a rolling reduction of 15% or more at a temperature of 900 ° C. to Ar 3 transformation point, and Ar 3 transformation A method of producing a wear resistant steel characterized by quenching from temperatures above the point is described. According to the technique described in Patent Document 2, it is considered that a high-hardness wear-resistant steel which is advantageous for wear resistance can be easily obtained.

特許文献1〜2に記載された技術は、高硬度化することで、耐摩耗特性を向上させている。一方で、様々な形状の部材への適用や溶接個所の低減のため、耐摩耗鋼板に対して曲げ加工性が重要視されることが少なくない。   The techniques described in Patent Literatures 1 and 2 improve the wear resistance by increasing the hardness. On the other hand, bending workability is often regarded as important for wear-resistant steel plates because of the application to members of various shapes and the reduction of welds.

曲げ加工性に対しては、例えば特許文献3には、重量%で、C:0.05〜0.20%、Mn:0.50〜2.5%、Al:0.02〜2.00%を含有する鋼を、たとえば熱間圧延後にAcとAcの間のフェライト‐オーステナイト2相域に加熱した後急冷することで、フェライト‐ベイナイト母相中に面積分率で5〜50%のマルテンサイト組織を分散させた加工性および溶接性に優れた耐摩耗鋼が記載されている。 For bending workability, for example, in Patent Document 3, C: 0.05 to 0.20%, Mn: 0.50 to 2.5%, Al: 0.02 to 2.00 in weight%. % By 5% to 50% by area fraction in the ferrite-bainite matrix, for example by heating after quenching to a ferrite-austenite two-phase region between Ac 3 and Ac 1 after hot rolling and quenching A wear-resistant steel excellent in workability and weldability in which the martensitic structure of the invention is dispersed is described.

また、特許文献4には、重量%で、C:0.1〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.02%以下、S:0.05%以下、Nb:0.005〜0.03%を含有する鋼を、熱間圧延後直ちにMs点±25℃まで冷却後、いったん冷却を中断し、Ms点+50℃以上に復熱させ、その後室温まで冷却する耐摩耗鋼の製造方法が記載されている。特許文献4によると、鋼板表面から深さ5mmまでの温度分布における最低硬度が、さらに内部の硬度分布における最高硬度よりも40HV以上低値となり、曲げ加工性に優れた耐摩耗鋼が得られるとしている。   Further, in Patent Document 4, C: 0.1 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, P: 0.02 by weight%. %, S: 0.05% or less, Nb: 0.005 to 0.03% immediately after hot rolling, cooling is temporarily stopped after cooling to the Ms point ± 25 ° C, and then the cooling is interrupted and the Ms point + 50 A process is described for producing wear resistant steels that recuperate above 0 C and then cool to room temperature. According to Patent Document 4, the minimum hardness in the temperature distribution from the surface of the steel sheet to a depth of 5 mm is 40 HV or more lower than the maximum hardness in the internal hardness distribution, and a wear resistant steel excellent in bending workability can be obtained. There is.

また、特許文献5には、質量%で、C:0.05〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、B:0.0003〜0.0030%、Ti:0.10〜1.2%、Al:0.1%以下を含み、さらにCu:0.1〜1.0%、Ni:0.1〜0.2%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、W:0.05〜1.0%から選ばれた1種または2種以上を含有し、あるいは更にNb、Vのうちから選ばれた1種または2種以上を含有し、DIを60以上に限定した鋼を、熱間圧延後平均冷却速度で0.5〜2℃/sの冷却速度で400℃以下の温度域まで冷却する耐摩耗鋼板の製造方法が記載されている。これにより、平均粒径0.5〜50μm以上のTi系の炭化物を400個/mm以上析出させて、過度に高硬度化させることなく耐摩耗性を向上させた耐摩耗鋼が得られるとしている。 Further, in Patent Document 5, C: 0.05 to 0.35%, Si: 0.05 to 1.0%, Mn: 0.1 to 2.0%, B: 0.0003 in mass%. -0.0030%, Ti: 0.10 to 1.2%, Al: containing 0.1% or less Cu, further 0.1 to 1.0%, Ni: 0.1 to 0.2%, Cr: 0.1 to 1.0%, Mo: 0.05 to 1.0%, W: 0.05 to 1.0%, containing one or more selected from Nb, A steel containing one or more selected from V and having a DI limited to 60 or more at a cooling rate of 0.5 to 2 ° C./s at an average cooling rate after hot rolling at 400 ° C. or less A method of manufacturing a wear resistant steel sheet for cooling to a temperature range of As a result, it is possible to obtain a wear-resistant steel having improved wear resistance without excessively increasing the hardness by depositing Ti-based carbide having a mean particle size of 0.5 to 50 μm or more at 400 pieces / mm 2 or more. There is.

特開昭63−169359号公報Japanese Patent Application Laid-Open No. 63-169359 特開昭64−31928号公報Japanese Patent Application Laid-Open No. 64-31928 特許第2864960号公報Patent No. 2864960 特開2006−104489号公報Unexamined-Japanese-Patent No. 2006-104489 特許第4899874号公報Patent No. 4899874

しかしながら、特許文献3〜5に記載された技術では、基地相(マトリクス)の硬度が低くなり、耐摩耗性に問題を残していた。   However, in the techniques described in Patent Documents 3 to 5, the hardness of the base phase (matrix) is low, and there is a problem in the wear resistance.

そこで本発明は、このような従来技術の問題を解決し、曲げ加工性と耐摩耗性を兼備した耐摩耗鋼板およびその製造方法を提供することを目的とする。   Then, this invention solves the problem of such a prior art, and an object of this invention is to provide the wear-resistant steel plate which combined bending workability and abrasion resistance, and its manufacturing method.

本発明者らは、上記した目的を達成するために、耐摩耗鋼板の曲げ加工性に影響する各種要因について、鋭意検討を重ねた。その結果、耐摩耗鋼板の曲げ加工性には表層部の硬度および延性が大きく寄与するということを見出し、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトとすることで、耐摩耗性に大きく影響を及ぼす基地相(マトリクス)の硬度を低下させない範囲で、曲げ加工性が向上することを知見した。   MEANS TO SOLVE THE PROBLEM The present inventors repeated earnest examination about various factors which affect the bending workability of a wear-resistant steel plate, in order to achieve the above-mentioned objective. As a result, it was found that the hardness and ductility of the surface layer greatly contribute to the bending workability of the wear resistant steel plate, and the structure of the steel plate surface is made ferrite and the structure inside the steel plate is made martensite. It has been found that bending workability is improved as long as the hardness of the base phase (matrix) which largely affects the hardness of the matrix is not reduced.

まず、本発明の基礎となった実験結果について説明する。   First, experimental results on which the present invention is based will be described.

質量%で、0.27%C−0.35%Si−0.75%Mn−0.005%P−0.002%S−0.015%Ti−0.03%Al−0.38%Cr−0.20Moを含有する組成の鋼素材(スラブ)を、1150℃に加熱した後熱間圧延して、板厚:12mmの熱延板とした。熱間圧延後に空冷し、下記の(1)式で示すAc点以上の加熱温度で再加熱後、室温まで水冷する焼入れ処理を施した。
Ac3(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
ここで、本発明者らは、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトにするために、スラブ加熱を利用して鋼板表面のCを脱炭し、次いで焼入れ処理において、C量が0であるAc点、すなわちAc3(C=0)点以下の温度域で再加熱して焼入れ処理を行うことにより、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトに制御できると考えた。そして、再加熱温度について、Ac3(C=0)点以下で再加熱した熱処理材と、Ac3(C=0)点超えで再加熱した熱処理材についてそれぞれ検討した。
0.27% C-0.35% Si-0.75% Mn-0.005% P-0.002% S-0.015% Ti-0.03% Al-0.38% by mass After heating at 1150 ° C., a steel material (slab) having a composition containing Cr-0.20 Mo was hot-rolled to a hot-rolled sheet having a thickness of 12 mm. After hot rolling, air cooling was performed, and after reheating at a heating temperature of Ac 3 point or more shown by the following (1) formula, a quenching treatment was performed to water cool to room temperature.
Ac3 (° C.) = 912.0−230.5 × C + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo ( 1)
Here, the present inventors decarburize C on the surface of the steel sheet using slab heating in order to make the structure of the surface of the steel sheet ferrite and to make the structure inside the steel sheet martensite, and then, in the quenching process, C Ac 3 point amount is zero, i.e. by performing the hardening process was reheated Ac 3 (C = 0) point below the temperature range, the structure of the steel sheet surface and ferrite, the steel plate inner tissues martensite I thought that I could control it. Then, regarding the reheating temperature, the heat treated material reheated at the Ac 3 (C = 0) point or less and the heat treated material reheated above the Ac 3 (C = 0) point were respectively studied.

得られた鋼板について、圧延方向に垂直な断面が観察面となるようにサンプルを採取した。この観察面を鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて観察面のミクロ写真を撮影し、撮影された像からフェライトの厚さを測定した。   About the obtained steel plate, the sample was extract | collected so that the cross section perpendicular | vertical to the rolling direction might become an observation surface. The observation surface was mirror-polished and further subjected to nital corrosion, and then a microphotograph of the observation surface was photographed using an optical microscope, and the thickness of the ferrite was measured from the photographed image.

また、得られた鋼板から、曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した、限界曲げ半径R/tを求めた。   In addition, a bending test piece (width 150 mm × 300 mm length) is taken from the obtained steel plate, and bending angle: bending to 180 ° according to the provisions of JIS Z 2248, bending radius R without occurrence of cracking The limit bending radius R / t was determined by expressing mm) as a ratio to the plate thickness t (mm).

また、鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から硬さ測定用試験片を採取し、表面のスケールの影響を除くために鋼板表面から1mmの部分までを研削除去して、研削後の鋼板表面の硬さを測定した。測定はJIS Z 2243(1998)の規定に準拠した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。   In addition, the wear resistance of the steel plate is mainly determined by the hardness of the surface layer portion. Therefore, a test piece for hardness measurement was taken from the obtained steel plate, and in order to remove the influence of surface scale, the portion from 1 mm from the surface of the steel plate was ground away, and the hardness of the steel surface after grinding was measured. . The measurement conformed to JIS Z 2243 (1998). In addition, in the case of a measurement, the tungsten hard ball of diameter 10mm was used, and the load was 3000 kgf.

図1(a)は、Ac3(C=0)点超えで再加熱・焼入れした鋼板の、圧延方向に垂直な断面のミクロ写真である。また、図1(b)は、Ac3(C=0)点以下で再加熱・焼入れした鋼板の、圧延方向に垂直な断面のミクロ写真である。図1の結果から、再加熱温度がAc3(C=0)点超えの場合、マルテンサイトのみ存在しており、鋼板表面にフェライトが無いことがわかる。一方、再加熱温度がAc3(C=0)点以下の場合、鋼板表面にフェライトが存在し、かつ鋼板内部にマルテンサイトが存在していることがわかる。 FIG. 1 (a) is a microphotograph of a cross section perpendicular to the rolling direction of a steel sheet reheated and hardened above the Ac 3 (C = 0) point. Moreover, FIG.1 (b) is a microphotograph of the cross section perpendicular | vertical to the rolling direction of the steel plate reheated and hardened below Ac3 (C = 0) point. From the results in FIG. 1, it can be seen that when the reheating temperature exceeds the Ac 3 (C = 0) point, only martensite is present and there is no ferrite on the steel sheet surface. On the other hand, when the reheating temperature is equal to or lower than the Ac 3 (C = 0) point, it can be seen that ferrite is present on the surface of the steel sheet and martensite is present inside the steel sheet.

また、図2は鋼板表面のフェライトの厚さと限界曲げ半径との関係を示す図であり、図3は鋼板表面のフェライトの厚さと表面硬さとの関係を示す図である。鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有する場合、限界曲げ半径が小さく曲げ加工性が向上し、かつ硬さを維持していることがわかった。一方、鋼板表面に1mm厚さ以上のフェライトを有する場合、限界曲げ半径が小さく曲げ加工性は向上するものの、硬さは低下していることがわかった。また、鋼板表面にフェライトを有しない場合(0mm)、硬さは維持しているものの、限界曲げ半径が大きく加工性に劣ることがわかった。   FIG. 2 is a view showing the relationship between the thickness of ferrite on the surface of the steel plate and the limit bending radius, and FIG. 3 is a view showing the relationship between the thickness of ferrite on the surface of the steel plate and the surface hardness. When ferrite having a thickness of 0.03 mm or more and less than 1 mm was provided on the surface of the steel sheet, it was found that the limit bending radius was small, the bending workability was improved, and the hardness was maintained. On the other hand, when ferrite having a thickness of 1 mm or more was provided on the surface of the steel sheet, it was found that although the critical bending radius is small and the bending workability is improved, the hardness is lowered. In addition, it was found that although the hardness was maintained when the steel sheet surface did not have ferrite (0 mm), the critical bending radius was large and the formability was inferior.

以上より、鋼板表面に一定の厚さのフェライトを有し、かつ鋼板内部にマルテンサイトを有することにより、曲げ加工性および耐摩耗性に優れた耐摩耗鋼板を得られるという知見を得た。   From the above, it was found that a wear resistant steel plate excellent in bending workability and wear resistance can be obtained by having ferrite of a certain thickness on the surface of the steel plate and having martensite inside the steel plate.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
[2]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
[3]前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]または[2]に記載の耐摩耗鋼板。
[4]前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]〜[3]のいずれかに記載の耐摩耗鋼板。
[5]前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]〜[4]のいずれかに記載の耐摩耗鋼板。
[6]表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることを特徴とする[1]〜[5]のいずれかに記載の耐摩耗鋼板。
[7]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
[8]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
[9]前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]または[8]に記載の耐摩耗鋼板の製造方法。
[10]記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]〜[9]のいずれかに記載の耐摩耗鋼板の製造方法。
[11]前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]〜[10]のいずれかに記載の耐摩耗鋼板の製造方法。
The present invention has been completed based on such findings, with further studies. That is, the gist of the present invention is as follows.
[1] by mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.050% or less, Cr: 0.05 to 2.00%, N: 0.010% or less, O: 0.010% or less, and the balance from Fe and unavoidable impurities A wear resistant steel plate characterized by having ferrite having a thickness of 0.03 mm or more and less than 1 mm on the surface of the steel plate and having a volume ratio of martensite at a position of 1 mm from the surface of the steel plate .
[2] In mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less, and the balance from Fe and unavoidable impurities A wear resistant steel plate characterized by having ferrite having a thickness of 0.03 mm or more and less than 1 mm on the surface of the steel plate and having a volume ratio of martensite at a position of 1 mm from the surface of the steel plate .
[3] In addition to the above component compositions, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100% by mass% The wear-resistant steel plate as described in [1] or [2], which contains one or more kinds selected from
[4] In addition to the above-mentioned component composition, furthermore, in mass%, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V Characterized in that it contains one or more selected from 0.01 to 1.00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00%. The wear-resistant steel plate according to any one of [1] to [3].
[5] In addition to the above-mentioned component composition, further, by mass%, Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100% The wear resistant steel plate according to any one of [1] to [4], which contains one or more selected from the group consisting of
[6] The inclusions and precipitates having an average particle size of 500 nm or more at a position 1 mm from the surface have a density of 3.0 particles / mm 2 or less [1] to [5] Wear-resistant steel sheet as described.
[7] Mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.050% or less, Cr: 0.05 to 2.00%, N: 0.010% or less, O: 0.010%, and the balance is Fe and inevitable impurities After heating the steel material having the component composition, it is hot-rolled, cooled after the hot-rolling is finished, and then, the hardening treatment is performed to reheat the heating temperature to Ac 3 point or more and Ac 3 (C = 0) point or less A method of manufacturing a wear-resistant steel plate characterized by carrying out. Incidentally, Ac 3 point and Ac 3 (C = 0) point is represented by the following formulas (1) and (2).
Ac 3 (° C.) = 912.0−230.5 × C + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C) = 912.0 + 31.6 x Si-20.4 x Mn-39.8 x Cu-18.1 x Ni-14.8 x Cr + 16.8 x Mo ... ( 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and when not containing, it is set as 0.
[8] Mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020% or less, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less, and the balance from Fe and unavoidable impurities after heating a steel material having a chemical composition comprising, hot rolling, the hot rolled completion after cooling, then, the heating temperature is Ac 3 point or more Ac 3 (C = 0) quenching the reheated below points A method of manufacturing a wear-resistant steel plate characterized in that Incidentally, Ac 3 point and Ac 3 (C = 0) point is represented by the following formulas (1) and (2).
Ac 3 (° C.) = 912.0−230.5 × C + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C) = 912.0 + 31.6 x Si-20.4 x Mn-39.8 x Cu-18.1 x Ni-14.8 x Cr + 16.8 x Mo ... ( 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and when not containing, it is set as 0.
[9] In addition to the above component compositions, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100% by mass% The method for producing a wear-resistant steel sheet according to [7] or [8], comprising one or more selected from the group consisting of
[10] In addition to the component composition, furthermore, by mass%, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V Characterized in that it contains one or more selected from 0.01 to 1.00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00%. The manufacturing method of the wear-resistant steel plate in any one of [7]-[9].
[11] In addition to the above-mentioned component composition, further, by mass%, Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100% The manufacturing method of the wear-resistant steel plate in any one of [7]-[10] characterized by containing 1 type (s) or 2 or more types selected from.

本発明によれば、曲げ加工性と耐摩耗性を兼備した耐摩耗鋼板を、容易に製造することができ、産業上格段の効果を奏する。   According to the present invention, a wear-resistant steel plate having both bending workability and wear resistance can be easily manufactured, and the industrially remarkable effect can be obtained.

図1は、本発明の一実施形態に係る耐摩耗鋼板について、圧延方向に垂直な断面のミクロ写真を示す図であり、(a)は鋼板表面にフェライトが無い場合のミクロ写真、(b)は鋼板表面にフェライトがある場合のミクロ写真を示す図である。FIG. 1 is a view showing a microphotograph of a cross section perpendicular to a rolling direction of a wear resistant steel plate according to an embodiment of the present invention, wherein (a) is a microphotograph when there is no ferrite on the steel sheet surface, (b) Is a figure which shows the microphotograph in case a ferrite exists on the steel plate surface. 図2は、鋼板表面のフェライトの厚さと限界曲げ半径との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the thickness of ferrite on the surface of the steel plate and the limit bending radius. 図3は、鋼板表面のフェライトの厚さと硬さとの関係を示すグラフである。FIG. 3 is a graph showing the relationship between the thickness and hardness of ferrite on the surface of a steel sheet.

本発明の耐摩耗鋼板は、質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。   The wear resistant steel plate of the present invention is, by mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020 %, S: 0.020% or less, Al: 0.050% or less, Cr: 0.05 to 2.00%, N: 0.010% or less, O: 0.010% or less, balance Fe And a component composition consisting of unavoidable impurities.

より好ましくは、本発明の耐摩耗鋼板は、質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。   More preferably, the wear-resistant steel plate of the present invention is, by mass%, C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P S: 0.020% or less, Al: 0.04% or less, Cr: 0.15 to 0.90%, N: 0.0050% or less, O: 0.0050% or less It has a component composition including the balance Fe and the inevitable impurities.

先ず、本発明の耐摩耗鋼板の組成限定の理由について説明する。以下、組成における質量%は単に%で記す。   First, the reason for the composition limitation of the wear resistant steel plate of the present invention will be described. Hereinafter, mass% in the composition is simply expressed as%.

C:0.10〜0.45%
Cは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.45%を超える含有は、基地相(マトリクス)の硬度が過度に増加し、曲げ加工性が低下する。このため、Cは0.10〜0.45%の範囲に限定する。なお、好ましくは0.13〜0.42%である。
C: 0.10 to 0.45%
C is an effective element that increases matrix phase (matrix) hardness and improves abrasion resistance. In order to acquire such an effect, 0.10% or more needs to be contained. On the other hand, if the content is more than 0.45%, the hardness of the base phase (matrix) excessively increases, and the bending workability decreases. For this reason, C is limited to the range of 0.10 to 0.45%. In addition, Preferably it is 0.13 to 0.42%.

Si:0.05〜1.00%
Siは、脱酸剤として作用するとともに、鋼中に固溶して固溶強化により基地相(マトリクス)硬さを増加させる元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.00%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加し、曲げ加工性が低下するなどの問題を生じる。このため、Siは0.05〜1.00%の範囲に限定する。なお、好ましくは0.05〜0.40%である。
Si: 0.05 to 1.00%
Si is an element that acts as a deoxidizing agent and causes solid solution in steel to increase matrix hardness by solid solution strengthening. In order to acquire such an effect, 0.05% or more needs to be contained. On the other hand, when the content exceeds 1.00%, the ductility and the toughness are lowered, the amount of inclusions is further increased, and the bending workability is lowered. For this reason, Si is limited to a range of 0.05 to 1.00%. In addition, Preferably it is 0.05-0.40%.

Mn:0.10〜2.00%
Mnは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、2.00%を超える含有は、溶接性を低下させる。このため、Mnは0.10〜2.00%の範囲に限定する。なお、好ましくは0.50〜2.00%、より好ましくは0.60〜1.80%、さらに好ましくは0.70〜1.60%、さらにより好ましくは0.80〜1.40%である。
Mn: 0.10 to 2.00%
Mn is an effective element that increases matrix phase (matrix) hardness and improves abrasion resistance. In order to acquire such an effect, 0.10% or more needs to be contained. On the other hand, the content exceeding 2.00% reduces the weldability. For this reason, Mn is limited to the range of 0.10 to 2.00%. In addition, preferably it is 0.50 to 2.00%, more preferably 0.60 to 1.80%, still more preferably 0.70 to 1.60%, still more preferably 0.80 to 1.40% is there.

P:0.020%以下
Pは、粒界に偏析し母材および溶接部の靱性を低下させるなど、悪影響を及ぼす元素であり、不可避的不純物として、本発明ではできるだけ低減することが好ましいが、0.020%以下であれば許容できる。このため、Pは0.020以下に限定する。なお、過剰の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
P: 0.020% or less P is an element that adversely affects, for example, segregating at grain boundaries to reduce the toughness of the base material and the weld zone, and as an unavoidable impurity, it is preferable to reduce as much as possible in the present invention It is acceptable if it is 0.020% or less. For this reason, P is limited to 0.020 or less. In addition, it is preferable to make it 0.001% or more, since excessive reduction causes a steep rise in refining costs.

S:0.020%以下
Sは、MnS等の硫化物系介在物として鋼中に存在し、破壊の発生起点となるなど、悪影響を及ぼす元素である。本発明では不可避的不純物として、できるだけ低減することが好ましいが、0.020%以下であれば、許容できる。このため、Sは0.020%以下に限定する。なお、好ましくは、0.010%以下である。なお、過剰の低減は、精錬コストの高騰を招くため、0.0005%以上とすることが好ましい。
S: 0.020% or less S is an element that exerts an adverse effect such as being present in steel as a sulfide-based inclusion such as MnS and becoming a starting point of occurrence of fracture. In the present invention, it is preferable to reduce as possible impurities as much as possible, but it is acceptable if it is 0.020% or less. For this reason, S is limited to 0.020% or less. In addition, Preferably, it is 0.010% or less. In addition, it is preferable to make it 0.0005% or more, since excessive reduction causes a steep rise in refining costs.

Al:0.050%以下
Alは、脱酸剤として作用するとともに、結晶粒を微細化する作用を有する元素であり、このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.050%を超えて多量に含有すると、酸化物系介在物が増加し、清浄度が低下し、表面疵が多発して表面性状が低下するとともに、曲げ加工性が低下する。このため、Alは0.050%以下に限定する。なお、好ましくは0.04%以下、より好ましくは、0.03%以下、さらにより好ましくは0.02%以下である。
Al: 0.050% or less Al is an element that acts as a deoxidizing agent and has the function of refining the crystal grains, and in order to obtain such an effect, it is necessary to contain 0.01% or more. desirable. On the other hand, if the content is more than 0.050%, oxide inclusions increase, the cleanliness decreases, the surface wrinkles frequently occur, the surface property decreases, and the bending workability decreases. Therefore, Al is limited to 0.050% or less. In addition, it is preferably 0.04% or less, more preferably 0.03% or less, and still more preferably 0.02% or less.

Cr:0.05〜2.00%
Crは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.00%を超える含有は、溶接性を低下させる。このため、Crは0.05〜2.00%の範囲に限定する。なお、好ましくは0.15〜0.90%、より好ましくは0.20〜0.80%、さらに好ましくは0.30〜0.70%である。
Cr: 0.05 to 2.00%
Cr is an effective element that increases the base phase (matrix) hardness and improves the wear resistance. In order to acquire such an effect, 0.05% or more needs to be contained. On the other hand, the content exceeding 2.00% reduces the weldability. For this reason, Cr is limited to 0.05 to 2.00% of range. In addition, Preferably it is 0.15 to 0.90%, More preferably, it is 0.20 to 0.80%, More preferably, it is 0.30 to 0.70%.

上記した成分が基本の成分である。なお、本発明では基本の組成に加えてさらに、選択元素として、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上、を必要に応じて選択して、含有してもよい。   The components mentioned above are basic components. In the present invention, in addition to the basic composition, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, and B: 0.0001 to 0.0100 as selective elements. And / or Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: One or more selected from 0.01 to 1.00%, W: 0.01 to 1.00%, Co: 0.01 to 1.00%, and / or Ca: 0 If necessary, select one or more selected from 0005 to 0.0100%, Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100%. , May be contained.

さらに好ましくは、選択元素として、Nb:0.005〜0.020%、Ti:0.005〜0.017%、B:0.0001〜0.0020%のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜0.2%、Ni:0.01〜2.0%、Mo:0.1〜0.5%、V:0.01〜0.05%、W:0.01〜0.05%、Co:0.01〜0.05%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0040%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0080%のうちから選ばれた1種または2種以上、を必要に応じて選択して、含有してもよい。   More preferably, as a selection element, Nb: 0.005 to 0.020%, Ti: 0.005 to 0.017%, B: 0.0001 to 0.0020%, one or two selected from Or more, and / or Cu: 0.01 to 0.2%, Ni: 0.01 to 2.0%, Mo: 0.1 to 0.5%, V: 0.01 to 0.05% , W: 0.01 to 0.05%, Co: one or more selected from 0.01 to 0.05%, and / or Ca: 0.0005 to 0.0040%, One or more selected from Mg: 0.0005 to 0.0050%, and REM: 0.0005 to 0.0080% may be selected and contained as necessary.

Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上
Nb、Ti、Bはいずれも、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素であり、必要に応じて選択して1種または2種以上含有できる。
Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100% One or more selected from Nb, Ti, and B All are elements effective in increasing matrix phase (matrix) hardness and improving abrasion resistance, and can be selected and contained as necessary, as necessary.

Nbは、基地相(マトリクス)硬さを増加させ、耐摩耗性の向上に寄与する元素であり、このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.100%を超えて含有すると、NbCが多量に析出し、曲げ加工性を低下させる。このようなことから、含有する場合には、Nbは0.005〜0.100%の範囲に限定することが好ましい。なお、好ましくは0.005〜0.020%、より好ましくは0.008〜0.016%、さらに好ましくは0.009〜0.014%である。   Nb is an element that increases the base phase (matrix) hardness and contributes to the improvement of the wear resistance, and in order to obtain such an effect, the content needs to be 0.005% or more. On the other hand, if the content is more than 0.100%, a large amount of NbC precipitates and the bending workability is reduced. From such a thing, when it contains, it is preferable to limit Nb to 0.005 to 0.100% of range. In addition, Preferably it is 0.005 to 0.020%, More preferably, it is 0.008 to 0.016%, More preferably, it is 0.009 to 0.014%.

Tiは、窒化物形成傾向が強く、Nを固定して固溶Nを低減するため、母材および溶接部の靭性を向上させる。また、Bを添加する場合には、Nを固定して、BNの析出を抑制し、Bの焼入れ性向上効果を助長して、焼入れ性を向上させ、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.005%以上の含有が必要である。一方、0.100%を超えて含有すると、TiCが多量に析出し、曲げ加工性を低下させる。このため、含有する場合は、Tiは0.005〜0.100%とすることが好ましい。なお、より好ましくは0.005〜0.017%、さらに好ましくは0.007〜0.015%、さらにより好ましくは0.009〜0.013%である。   Ti has a strong tendency to form a nitride and fixes N to reduce solid solution N, thereby improving the toughness of the base material and the weld. When B is added, N is fixed to suppress precipitation of BN, promote the hardenability improvement effect of B, improve hardenability, and contribute to the improvement of wear resistance. is there. In order to acquire such an effect, 0.005% or more needs to be contained. On the other hand, if the content exceeds 0.100%, a large amount of TiC precipitates and the bending workability is reduced. For this reason, when it contains, it is preferable to make Ti into 0.005 to 0.100%. More preferably, it is 0.005 to 0.017%, further preferably 0.007 to 0.015%, and still more preferably 0.009 to 0.013%.

Bは、微量な添加でも焼入れ性を著しく向上させ、マルテンサイトの形成を助長し、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有が必要である。一方、0.0100%を超える含有は、溶接性を低下させる。このため、含有する場合には、Bは0.0001〜0.0100%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.0020%、さらに好ましくは0.0005〜0.0015%である。さらにより好ましくは0.0007〜0.0013%である。   B is an element which remarkably improves the hardenability even with a very small amount of addition, promotes the formation of martensite, and contributes to the improvement of the wear resistance. In order to obtain such an effect, it is necessary to contain 0.0001% or more. On the other hand, the content exceeding 0.0100% reduces the weldability. For this reason, when it contains, it is preferable to limit B to the range of 0.0001 to 0.0100%. In addition, More preferably, it is 0.0001-0.0020%, More preferably, it is 0.0005-0.0015%. Still more preferably, it is 0.0007 to 0.0013%.

Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上
Cu、Ni、Mo、V、W、Coはいずれも、焼入れ性を向上させ、鋼板内部の硬度を得るために必要に応じて添加する。このような効果を得るためには、Cu:0.01%以上、Ni:0.01%以上、Mo:0.1%以上、V:0.01%以上、W:0.01%以上、Co:0.01%以上含有することが好ましい。一方、Cu:1.0%、Ni:5.0%、Mo:2.0%、V:1.00%、W:1.00%、Co:1.00%、を超えて含有すると、溶接性の劣化、あるいは合金コストの上昇を招く。このようなことから、含有する場合には、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜.00%、W:0.01〜1.00%、Co:0.01〜1.00%に限定することが好ましい。より好ましくは、Cu:0.01〜0.2%、Ni:0.01〜2.0%、Mo:0.1〜0.5%、V:0.01〜0.05%、W:0.01〜0.05%、Co:0.01〜0.05%である。
Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: 0.01 to 1.00%, W: 0.01 One or more selected from 1.00% and Co: 0.01 to 1.00% Cu, Ni, Mo, V, W, and Co all improve the hardenability, and the inside of the steel sheet Add as needed to obtain the hardness of In order to obtain such effects, Cu: 0.01% or more, Ni: 0.01% or more, Mo: 0.1% or more, V: 0.01% or more, W: 0.01% or more, It is preferable to contain Co: 0.01% or more. On the other hand, Cu: 1.0%, Ni: 5.0%, Mo: 2.0%, V: 1.00%, W: 1.00%, Co: 1.00%, when contained in excess of This leads to deterioration of weldability or increase in alloy cost. From such a thing, when it contains, Cu: 0.01-1.0%, Ni: 0.01-5.0%, Mo: 0.1-2.0%, V: 0.01 ~. It is preferable to limit to 00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00%. More preferably, Cu: 0.01 to 0.2%, Ni: 0.01 to 2.0%, Mo: 0.1 to 0.5%, V: 0.01 to 0.05%, W: 0.01 to 0.05%, Co: 0.01 to 0.05%.

Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上
Ca、Mg、REMはいずれも、Sと結合し、圧延方向に長く伸びるMnS等の形成を抑制して、硫化物系介在物が球状を呈するように形態制御し、溶接部等の靭性向上に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、Ca:0.0005%以上、Mg:0.0005%以上、REM:0.0005%以上、含有することが好ましい。一方、Ca:0.0100%、Mg:0.0100%、REM:0.0100%、を超えて含有すると、鋼の清浄度が低下し、表面疵が多発し表面性状が低下するとともに、曲げ加工性が低下する。このようなことから、含有する場合には、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%、に限定することが好ましい。より好ましくは、Ca:0.0005〜0.0040%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0080%である。
Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: one or more selected from 0.0005 to 0.0100% Ca, Mg, REM Both are elements that combine with S and suppress the formation of MnS and the like elongated in the rolling direction to control the morphology of sulfide inclusions so as to exhibit a spherical shape and contribute to the improvement of toughness such as welds, As necessary, one or more can be selected and contained. In order to obtain such an effect, it is preferable to contain Ca: 0.0005% or more, Mg: 0.0005% or more, and REM: 0.0005% or more. On the other hand, if the content is more than Ca: 0.0100%, Mg: 0.0100%, REM: 0.0100%, the cleanliness of the steel decreases, the surface wrinkles frequently occur, and the surface properties decrease, and bending occurs. Processability is reduced. From such a thing, when it contains, it may be limited to Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, REM: 0.0005 to 0.0100%. preferable. More preferably, it is Ca: 0.0005 to 0.0040%, Mg: 0.0005 to 0.0050%, and REM: 0.0005 to 0.0080%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.010%以下、N:0.010%以下が許容できる。O:0.010%超え、もしくはN:0.010%超えでは、生成する介在物が多くなることで、介在物を起点として割れが発生しやすくなる。このため、O:0.010%以下、N:0.010%以下、に限定する。なお、好ましくはO:0.0050%以下、N:0.0050%以下である。より好ましくは、O:0.0040%以下、N:0.0040%以下である。   The balance other than the above components consists of Fe and unavoidable impurities. As unavoidable impurities, O: 0.010% or less and N: 0.010% or less are acceptable. When O: more than 0.010% or N: more than 0.010%, the generation of a large amount of inclusions makes it easy to generate cracks starting from the inclusions. For this reason, it limits to O: 0.010% or less and N: 0.010% or less. In addition, Preferably it is O: 0.0050% or less, N: 0.0050% or less. More preferably, O: 0.0040% or less and N: 0.0040% or less.

本発明の耐摩耗鋼板は、上記成分組成を有し、鋼板表面に厚さ0.03mm以上1mm未満のフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である組織とする。鋼の組織を上記のように限定する理由を以下に説明する。   The wear resistant steel plate of the present invention has the above-described composition, has ferrite of 0.03 mm or more and less than 1 mm in thickness on the surface of the steel plate, and has a volume ratio of martensite of 90% or more at a position of 1 mm from the surface of the steel plate. Be an organization. The reason for limiting the steel structure as described above will be described below.

鋼板表面のフェライトの厚さ:0.03mm以上1mm未満
鋼板表面をフェライトとすることで、曲げ加工性が向上する。このような効果を得るためには0.03mm以上の厚さを必要とする。一方で、1mm以上のフェライトになると、鋼板表面から1mm以降の硬度が低下するため、耐摩耗性が劣化する。そのため、フェライトの厚さは1mm未満とする。なお、より好ましくは0.05mm以上0.5mm未満である。
Thickness of Ferrite on Surface of Steel Sheet: 0.03 mm or More and Less than 1 mm By making the surface of the steel sheet ferrite, bending workability is improved. In order to obtain such an effect, a thickness of 0.03 mm or more is required. On the other hand, if the ferrite is 1 mm or more, the hardness after 1 mm from the surface of the steel sheet is reduced, so that the wear resistance is deteriorated. Therefore, the thickness of the ferrite is less than 1 mm. In addition, More preferably, they are 0.05 mm or more and less than 0.5 mm.

鋼板表面から1mmの位置におけるマルテンサイトの体積率:90%以上
鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%未満であると、鋼板の基地組織の硬度が低下するため、耐摩耗性が劣化する。そのため、鋼板表面から1mmの位置におけるマルテンサイトの体積率を90%以上とする。なお、マルテンサイト以外の残部組織は特に限定されないが、フェライト、パーライト、オーステナイト、ベイナイト組織が存在してよい。一方、マルテンサイトの体積率は高いほどよいため、マルテンサイトの体積率の上限は特に限定されず、100%であってよい。また、本発明において、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であれば、鋼板表面1mm以降の鋼板内部についても、マルテンサイトの体積率が90%以上であることを意味する。
The volume fraction of martensite at a position of 1 mm from the steel sheet surface: 90% or more The hardness of the base structure of the steel sheet decreases if the volume fraction of martensite at a position of 1 mm from the steel sheet surface is less than 90%. Is degraded. Therefore, the volume ratio of martensite at a position of 1 mm from the surface of the steel sheet is 90% or more. The structure of the remainder other than martensite is not particularly limited, but ferrite, pearlite, austenite, and bainite may be present. On the other hand, since the higher the volume fraction of martensite, the better, the upper limit of the volume fraction of martensite is not particularly limited, and may be 100%. Further, in the present invention, if the volume ratio of martensite at a position of 1 mm from the steel plate surface is 90% or more, this means that the volume ratio of martensite is 90% or more also for the inside of the steel plate of 1 mm or later on the steel plate surface. Do.

さらに、上記組成および上記組織を有する鋼において、鋼板表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度を3.0個/mm以下とすることで、曲げ加工性をさらに向上させることができる。 Furthermore, in the steel having the above composition and the above structure, bending workability is achieved by setting the density of inclusions and precipitates having an average particle diameter of 500 nm or more at a position 1 mm from the steel sheet surface to 3.0 pieces / mm 2 or less. Can be further improved.

鋼板表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることにより、介在物や析出物を起点とした割れを抑制することができ、曲げ加工性が向上する。介在物や析出物の密度は低いほどよいため、下限は特に限定されないが、過度の低減は精錬コストの高騰を招くため、0.1個/mm以上とすることが好ましい。 Suppression of cracks originating from inclusions or precipitates by the density of inclusions and precipitates having an average particle diameter of 500 nm or more at a position 1 mm from the steel sheet surface being 3.0 pieces / mm 2 or less The bending processability is improved. The lower limit is not particularly limited because the density of inclusions and precipitates is preferably as low as possible, but excessive reduction causes a rise in the refining cost, and therefore, it is preferable to be 0.1 piece / mm 2 or more.

つぎに、本発明の耐摩耗鋼板の製造方法について説明する。   Below, the manufacturing method of the wear-resistant steel plate of this invention is demonstrated.

上記した成分組成を有する鋼素材を加熱し、熱間圧延して耐摩耗鋼板とする。   A steel material having the above-described composition is heated and hot-rolled to form a wear-resistant steel plate.

鋼素材の製造方法
鋼素材の製造方法は、とくに限定する必要はないが、上記した成分組成を有する溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で、所定寸法のスラブ等の鋼素材とすることが好ましい。なお、造塊−分解圧延法により、所定寸法のスラブ等の鋼素材としてもなんら問題はない。
Method of producing a steel material The method of producing a steel material is not particularly limited, but molten steel having the above-described component composition is melted by a known melting method such as a converter, and known methods such as a continuous casting method It is preferable to use a steel material such as a slab of a predetermined size by a casting method. In addition, there is no problem at all also as steel materials, such as a slab of a predetermined dimension, by the ingot-decomposition rolling method.

鋼素材を加熱
得られた鋼素材(スラブ)は、冷却することなく直接、あるいは冷却したのち、加熱炉で好ましくは加熱温度:900〜1200℃に加熱して、さらに熱間圧延し所望板厚(肉厚)の鋼板とする。本発明では、得られた鋼素材(スラブ)を加熱することにより表面から脱炭させ、さらに後述する焼入れ温度で焼入れ処理を行うことにより、鋼板表面に所定厚さのフェライト組織を得ることができる。加熱温度は、900〜1250℃が好ましい。加熱温度が900℃未満では、加熱温度が低すぎて変形抵抗が高くなり、熱間圧延機への負荷が増大し、熱間圧延が困難になる。一方、1250℃を超えて高温となると、酸化が著しくなり、酸化ロスが増大し歩留りが低下する。このようなことから、加熱温度は900〜1250℃が好ましい。なお、より好ましくは950〜1150℃である。
Heating the steel material The obtained steel material (slab) is cooled directly or without cooling, and then heated preferably to a heating temperature of 900 to 1200 ° C. in a heating furnace and further hot-rolled to a desired thickness (Thick) steel plate. In the present invention, by heating the obtained steel material (slab) to decarburize it from the surface, and further performing quenching treatment at a quenching temperature described later, it is possible to obtain a ferrite structure of a predetermined thickness on the steel plate surface . The heating temperature is preferably 900 to 1250 ° C. If the heating temperature is less than 900 ° C., the heating temperature is too low, the deformation resistance is increased, the load on the hot rolling mill is increased, and the hot rolling becomes difficult. On the other hand, when the temperature becomes higher than 1250 ° C., the oxidation becomes remarkable, the oxidation loss increases and the yield decreases. From such a thing, 900-1250 degreeC of heating temperature is preferable. In addition, More preferably, it is 950-1150 degreeC.

熱間圧延
熱間圧延については、特に限定されず、常法により熱間圧延を行えばよい。
Hot rolling Hot rolling is not particularly limited, and hot rolling may be performed by a conventional method.

加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理
さらに、熱間圧延終了後冷却したのち、下記式(1)および(2)式で示されるAc点以上Ac3(C=0)点以下の加熱温度で再加熱する焼入れ処理を行う。これは、オーステナイト状態からの焼入れによってマルテンサイト組織を得るためである。Ac点未満からの焼入れでは十分に焼きが入らず、硬度が低下し、耐摩耗性が高いミクロ組織は得られない。また、加熱温度がAc3(C=0)点超えでは、鋼板表面がマルテンサイト組織となり、所望のフェライト組織を得ることができない。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
Heating temperature Ac 3 point or more Ac 3 (C = 0) point following reheating quenching treatment further After cooling after completion of hot rolling, the following formula (1) and (2) shown are Ac 3 point or more by the formula A hardening treatment is performed to reheat the heating temperature to a temperature equal to or lower than Ac 3 (C = 0) . This is to obtain a martensitic structure by quenching from the austenitic state. If the hardening is less than Ac 3 point, hardening is not sufficient, the hardness is reduced, and a microstructure with high wear resistance can not be obtained. Further, when the heating temperature exceeds the Ac 3 (C = 0) point, the surface of the steel sheet has a martensitic structure, and a desired ferrite structure can not be obtained.
Ac 3 (° C.) = 912.0−230.5 × C + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C) = 912.0 + 31.6 x Si-20.4 x Mn-39.8 x Cu-18.1 x Ni-14.8 x Cr + 16.8 x Mo ... ( 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and when not containing, it is set as 0.

なお、焼入れ処理の冷却速度は、マルテンサイト組織が形成される冷却速度であればとくに限定されない。また、冷却停止温度は、Mf点以下の温度、好ましくは200℃以下まで水冷することが好ましい。   The cooling rate of the quenching treatment is not particularly limited as long as it is a cooling rate at which a martensitic structure is formed. Further, the cooling stop temperature is preferably water-cooled to a temperature not higher than the Mf point, preferably not higher than 200 ° C.

表1に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表2に示す条件で加熱および熱間圧延を施し、表2に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表1中のMf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
The molten steel of the composition shown in Table 1 was melted and used as a steel material (slab). These steel materials (slabs) were subjected to heating and hot rolling under the conditions shown in Table 2 to obtain hot-rolled sheets having the thicknesses shown in Table 2. Thereafter, it was allowed to cool, reheated, and then subjected to quenching and reheat hardening treatment. Mf and Ar 3 in Table 1 were determined by the following equations.
Mf (° C.) = 410.5-407.3 × C-7.3 × Si-37.8 × Mn-20.5 × Cu-19.5 × Ni-19.8 × Cr-4.5 × Mo
Ar 3 (° C.) = 910-273 × C-74 × Mn-57 × Ni-16 × Cr-9 × Mo-5 × Cu

得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが360以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが1.5以下を合格とした。
About the obtained steel plate, the measurement of the thickness of the ferrite on the surface of a steel plate, the volume fraction measurement of martensite, the hardness test of a surface layer part, and the bending test were implemented, respectively. The test method is as follows.
(1) Measurement of Thickness of Ferrite A sample was taken from each steel plate such that a cross section perpendicular to the rolling direction was an observation surface. The sample was mirror-polished and further subjected to nital corrosion, and then three-view photography was performed at × 400 magnification using an optical microscope. The thickness of an arbitrary five ferrites in one field of view was measured to obtain an average value, and the average value of three fields of view was used as the ferrite thickness.
(2) Volume fraction measurement of martensite A sample was taken from each steel plate so that a position of 1 mm from the steel plate surface was an observation position. The surface of the sample was mirror-polished and further subjected to nital corrosion, and then an area of 10 mm × 10 mm was photographed using a scanning electron microscope (SEM). The photographed image was analyzed using an image analysis device to determine the area fraction of martensite. The area fraction of martensite was determined for any three images, and the average value was taken as the volume fraction of martensite in the present invention.
(3) Measurement of Inclusions and Precipitates Samples were taken from each steel plate such that the position 1 mm from the surface of the steel plate was the observation position. The surface of the sample was mirror-polished and an area of 10 mm × 10 mm was photographed using an SEM. The image taken was analyzed using an image analyzer to determine the particle size and number of inclusions and precipitates, and the number of inclusions and precipitates having an average particle size of 500 nm or more was measured to determine the density . The densities of inclusions and precipitates were determined for any three images, and the average value was taken as the density of inclusions and precipitates in the present invention.
(4) Surface hardness test The wear resistance of the steel plate is mainly determined by the hardness of the surface layer. Therefore, a test piece for hardness measurement was taken from the obtained steel plate, and the hardness at a position of 1 mm in the thickness direction from the surface was measured in accordance with JIS Z 2243 (1998). In order to remove the influence of surface scale and decarburized layer, 1 mm was ground away from the surface, and the surface hardness was measured on the surface of 1 mm from the surface. In addition, in the case of a measurement, the tungsten hard ball of diameter 10mm was used, and the load was 3000 kgf. The hardness passed 360 or more.
(5) Bending test A bending test piece (width 150 mm × 300 mm length) is taken from the obtained steel plate, and bending angle: bending bending to 180 ° according to the provisions of JIS Z 2248, bending radius without cracking. The limit bending radius R / t which represented R (mm) by the ratio with respect to board thickness t (mm) was calculated | required. R / t made 1.5 or less pass.

得られた結果を表2に示す。   The obtained results are shown in Table 2.

発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。   The invention example is a wear-resistant steel plate having bending workability and wear resistance. On the other hand, in the comparative example, the hardness is equal and the bending radius is large, or the hardness is low and the bending radius is small, and the bending workability or the wear resistance is inferior.

表3に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表4に示す条件で加熱および熱間圧延を施し、表4に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表3中のMs、Mf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
The molten steel of the composition shown in Table 3 was melted and used as a steel material (slab). These steel materials (slabs) were subjected to heating and hot rolling under the conditions shown in Table 4 to obtain hot-rolled sheets having the thicknesses shown in Table 4. Thereafter, it was allowed to cool, reheated, and then subjected to quenching and reheat hardening treatment. Ms, Mf and Ar 3 in Table 3 were determined by the following equations.
Mf (° C.) = 410.5-407.3 × C-7.3 × Si-37.8 × Mn-20.5 × Cu-19.5 × Ni-19.8 × Cr-4.5 × Mo
Ar 3 (° C.) = 910-273 × C-74 × Mn-57 × Ni-16 × Cr-9 × Mo-5 × Cu

得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが490以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが2.5以下を合格とした。
About the obtained steel plate, the measurement of the thickness of the ferrite on the surface of a steel plate, the volume fraction measurement of martensite, the hardness test of a surface layer part, and the bending test were implemented, respectively. The test method is as follows.
(1) Measurement of Thickness of Ferrite A sample was taken from each steel plate such that a cross section perpendicular to the rolling direction was an observation surface. The sample was mirror-polished and further subjected to nital corrosion, and then three-view photography was performed at × 400 magnification using an optical microscope. The thickness of an arbitrary five ferrites in one field of view was measured to obtain an average value, and the average value of three fields of view was used as the ferrite thickness.
(2) Volume fraction measurement of martensite A sample was taken from each steel plate so that a position of 1 mm from the steel plate surface was an observation position. The surface of the sample was mirror-polished and further subjected to nital corrosion, and then an area of 10 mm × 10 mm was photographed using a scanning electron microscope (SEM). The photographed image was analyzed using an image analysis device to determine the area fraction of martensite. The area fraction of martensite was determined for any three images, and the average value was taken as the volume fraction of martensite in the present invention.
(3) Measurement of Inclusions and Precipitates Samples were taken from each steel plate such that the position 1 mm from the surface of the steel plate was the observation position. The surface of the sample was mirror-polished and an area of 10 mm × 10 mm was photographed using an SEM. The image taken was analyzed using an image analyzer to determine the particle size and number of inclusions and precipitates, and the number of inclusions and precipitates having an average particle size of 500 nm or more was measured to determine the density . The densities of inclusions and precipitates were determined for any three images, and the average value was taken as the density of inclusions and precipitates in the present invention.
(4) Surface hardness test The wear resistance of the steel plate is mainly determined by the hardness of the surface layer. Therefore, a test piece for hardness measurement was taken from the obtained steel plate, and the hardness at a position of 1 mm in the thickness direction from the surface was measured in accordance with JIS Z 2243 (1998). In order to remove the influence of surface scale and decarburized layer, 1 mm was ground away from the surface, and the surface hardness was measured on the surface of 1 mm from the surface. In addition, in the case of a measurement, the tungsten hard ball of diameter 10mm was used, and the load was 3000 kgf. The hardness passed 490 or more.
(5) Bending test A bending test piece (width 150 mm × 300 mm length) is taken from the obtained steel plate, and bending angle: bending bending to 180 ° according to the provisions of JIS Z 2248, bending radius without cracking. The limit bending radius R / t which represented R (mm) by the ratio with respect to board thickness t (mm) was calculated | required. R / t passed 2.5 or less.

得られた結果を表4に示す。   The obtained results are shown in Table 4.

発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。   The invention example is a wear-resistant steel plate having bending workability and wear resistance. On the other hand, in the comparative example, the hardness is equal and the bending radius is large, or the hardness is low and the bending radius is small, and the bending workability or the wear resistance is inferior.

表5に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表6に示す条件で加熱および熱間圧延を施し、表6に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表5中のMs、Mf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
The molten steel of the composition shown in Table 5 was melted and used as a steel material (slab). These steel materials (slabs) were subjected to heating and hot rolling under the conditions shown in Table 6 to obtain hot-rolled sheets having the thicknesses shown in Table 6. Thereafter, it was allowed to cool, reheated, and then subjected to quenching and reheat hardening treatment. Ms, Mf and Ar 3 in Table 5 were determined by the following equations.
Mf (° C.) = 410.5-407.3 × C-7.3 × Si-37.8 × Mn-20.5 × Cu-19.5 × Ni-19.8 × Cr-4.5 × Mo
Ar 3 (° C.) = 910-273 × C-74 × Mn-57 × Ni-16 × Cr-9 × Mo-5 × Cu

得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが560以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが3.5以下を合格とした。
About the obtained steel plate, the measurement of the thickness of the ferrite on the surface of a steel plate, the volume fraction measurement of martensite, the hardness test of a surface layer part, and the bending test were implemented, respectively. The test method is as follows.
(1) Measurement of Thickness of Ferrite A sample was taken from each steel plate such that a cross section perpendicular to the rolling direction was an observation surface. The sample was mirror-polished and further subjected to nital corrosion, and then three-view photography was performed at × 400 magnification using an optical microscope. The thickness of an arbitrary five ferrites in one field of view was measured to obtain an average value, and the average value of three fields of view was used as the ferrite thickness.
(2) Volume fraction measurement of martensite A sample was taken from each steel plate so that a position of 1 mm from the steel plate surface was an observation position. The surface of the sample was mirror-polished and further subjected to nital corrosion, and then an area of 10 mm × 10 mm was photographed using a scanning electron microscope (SEM). The photographed image was analyzed using an image analysis device to determine the area fraction of martensite. The area fraction of martensite was determined for any three images, and the average value was taken as the volume fraction of martensite in the present invention.
(3) Measurement of Inclusions and Precipitates Samples were taken from each steel plate such that the position 1 mm from the surface of the steel plate was the observation position. The surface of the sample was mirror-polished and an area of 10 mm × 10 mm was photographed using an SEM. The image taken was analyzed using an image analyzer to determine the particle size and number of inclusions and precipitates, and the number of inclusions and precipitates having an average particle size of 500 nm or more was measured to determine the density . The densities of inclusions and precipitates were determined for any three images, and the average value was taken as the density of inclusions and precipitates in the present invention.
(4) Surface hardness test The wear resistance of the steel plate is mainly determined by the hardness of the surface layer. Therefore, a test piece for hardness measurement was taken from the obtained steel plate, and the hardness at a position of 1 mm in the thickness direction from the surface was measured in accordance with JIS Z 2243 (1998). In order to remove the influence of surface scale and decarburized layer, 1 mm was ground away from the surface, and the surface hardness was measured on the surface of 1 mm from the surface. In addition, in the case of a measurement, the tungsten hard ball of diameter 10mm was used, and the load was 3000 kgf. The hardness passed 560 or more.
(5) Bending test A bending test piece (width 150 mm × 300 mm length) is taken from the obtained steel plate, and bending angle: bending bending to 180 ° according to the provisions of JIS Z 2248, bending radius without cracking. The limit bending radius R / t which represented R (mm) by the ratio with respect to board thickness t (mm) was calculated | required. R / t made 3.5 or less pass.

得られた結果を表6に示す。   The obtained results are shown in Table 6.

発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。   The invention example is a wear-resistant steel plate having bending workability and wear resistance. On the other hand, in the comparative example, the hardness is equal and the bending radius is large, or the hardness is low and the bending radius is small, and the bending workability or the wear resistance is inferior.

Claims (9)

質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.37〜2.00%、N:0.010%以下、O:0.010%以下を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。   C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020 by mass% %, Al: 0.050% or less, Cr: 0.37 to 2.00%, N: 0.010% or less, O: 0.010% or less, and further, in mass%, Nb: 0. Containing one or more selected from 005 to 0.019%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100%, balance Fe and unavoidable impurities Abrasive resistance characterized in that it has a component composition comprising: ferrite having a thickness of at least 0.03 mm and less than 1 mm on the surface of the steel plate, and a volume fraction of martensite at a position of 1 mm from the surface of the steel plate steel sheet. 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.37〜2.00%、N:0.0050%以下、O:0.0050%以下を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。   C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020 by mass% %, Al: 0.04% or less, Cr: 0.37 to 2.00%, N: 0.0050% or less, O: 0.0050% or less, and further, by mass%, Nb: 0. Containing one or more selected from 005 to 0.019%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100%, balance Fe and unavoidable impurities Abrasive resistance characterized in that it has a component composition comprising: ferrite having a thickness of at least 0.03 mm and less than 1 mm on the surface of the steel plate, and a volume fraction of martensite at a position of 1 mm from the surface of the steel plate steel sheet. 前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載の耐摩耗鋼板。   In addition to the above component compositions, furthermore, in mass%, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: 0. One or two or more selected from 01 to 1.00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00%. The wear-resistant steel plate as described in 1 or 2. 前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の耐摩耗鋼板。   In addition to the above-mentioned component composition, further, in mass%, Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100% are selected. The wear resistant steel sheet according to any one of claims 1 to 3, which contains one or more kinds. 表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることを特徴とする請求項1〜4のいずれかに記載の耐摩耗鋼板。 The wear-resistant steel plate according to any one of claims 1 to 4, wherein the density of inclusions and precipitates having an average particle diameter of 500 nm or more at a position of 1 mm from the surface is 3.0 pieces / mm 2 or less. . 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.37〜2.00%、N:0.010%以下、O:0.010%を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下および保持時間が10min以上で再加熱する焼入れ処理を行うことを特徴とする、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.10 to 2.00%, P: 0.020% or less, S: 0.020 by mass% % Or less, Al: 0.050% or less, Cr: 0.37 to 2.00%, N: 0.010% or less, O: 0.010%, further, by mass%, Nb: 0.005 1 0.019%, Ti: 0.005 to 0.100%, B: one or more selected from 0.0001 to 0.0100%, and the balance from Fe and unavoidable impurities The steel material having the following composition is heated and then hot rolled, and cooled after the hot rolling is finished, and then the heating temperature is Ac 3 or more and Ac 3 (C = 0) or less and the holding time is 10 minutes or more Is characterized by performing quenching treatment to reheat by Has the full thickness of the ferrite, the manufacturing method of the wear-resistant steel volume fraction of martensite is 90% or more at a position of 1mm from the surface of the steel sheet. Incidentally, Ac 3 point and Ac 3 (C = 0) point is represented by the following formulas (1) and (2).
Ac 3 (° C.) = 912.0−230.5 × C + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C) = 912.0 + 31.6 x Si-20.4 x Mn-39.8 x Cu-18.1 x Ni-14.8 x Cr + 16.8 x Mo ... ( 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and when not containing, it is set as 0.
質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.37〜2.00%、N:0.0050%以下、O:0.0050%以下を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下および保持時間が10min以上で再加熱する焼入れ処理を行うことを特徴とする、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
C: 0.10 to 0.45%, Si: 0.05 to 1.00%, Mn: 0.50 to 2.00%, P: 0.020% or less, S: 0.020 by mass% %, Al: 0.04% or less, Cr: 0.37 to 2.00%, N: 0.0050% or less, O: 0.0050% or less, and further, by mass%, Nb: 0. Containing one or more selected from 005 to 0.019%, Ti: 0.005 to 0.100%, B: 0.0001 to 0.0100%, balance Fe and unavoidable impurities after heating a steel material having a chemical composition consisting of, hot rolling, the hot rolled completion after cooling, then, the heating temperature is Ac 3 point or more Ac 3 (C = 0) point below and holding time 10min It is characterized by performing hardening treatment which reheats by the above, and is 0.03 mm or more on the steel plate surface Has a thickness of ferrite of less than mm, the manufacturing method of the wear-resistant steel volume fraction of martensite is 90% or more at a position of 1mm from the surface of the steel sheet. Incidentally, Ac 3 point and Ac 3 (C = 0) point is represented by the following formulas (1) and (2).
Ac 3 (° C.) = 912.0−230.5 × C + 31.6 × Si−20.4 × Mn−39.8 × Cu−18.1 × Ni−14.8 × Cr + 16.8 × Mo. (1)
Ac 3 (C = 0) (° C) = 912.0 + 31.6 x Si-20.4 x Mn-39.8 x Cu-18.1 x Ni-14.8 x Cr + 16.8 x Mo ... ( 2)
However, the element symbol in Formula (1) and Formula (2) is content (mass%) of each element, and when not containing, it is set as 0.
前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6または7に記載の耐摩耗鋼板の製造方法。   In addition to the above component compositions, furthermore, in mass%, Cu: 0.01 to 1.0%, Ni: 0.01 to 5.0%, Mo: 0.1 to 2.0%, V: 0. One or two or more selected from 01 to 1.00%, W: 0.01 to 1.00%, and Co: 0.01 to 1.00%. The manufacturing method of the wear-resistant steel plate as described in 6 or 7. 前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6〜8のいずれかに記載の耐摩耗鋼板の製造方法。   In addition to the above-mentioned component composition, further, in mass%, Ca: 0.0005 to 0.0100%, Mg: 0.0005 to 0.0100%, and REM: 0.0005 to 0.0100% are selected. The method for producing a wear resistant steel sheet according to any one of claims 6 to 8, characterized in that it contains one or more kinds.
JP2019066512A 2016-09-16 2019-03-29 Abrasion resistant steel plate and manufacturing method thereof Active JP6711434B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016181284 2016-09-16
JP2016181284 2016-09-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017174653A Division JP6540764B2 (en) 2016-09-16 2017-09-12 Wear-resistant steel plate and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2019123945A true JP2019123945A (en) 2019-07-25
JP6711434B2 JP6711434B2 (en) 2020-06-17

Family

ID=61766038

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017174653A Active JP6540764B2 (en) 2016-09-16 2017-09-12 Wear-resistant steel plate and method of manufacturing the same
JP2019066512A Active JP6711434B2 (en) 2016-09-16 2019-03-29 Abrasion resistant steel plate and manufacturing method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017174653A Active JP6540764B2 (en) 2016-09-16 2017-09-12 Wear-resistant steel plate and method of manufacturing the same

Country Status (1)

Country Link
JP (2) JP6540764B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102175570B1 (en) * 2018-09-27 2020-11-06 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
KR102119959B1 (en) * 2018-09-27 2020-06-05 주식회사 포스코 Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
JP7163888B2 (en) * 2019-08-21 2022-11-01 Jfeスチール株式会社 Manufacturing method for wear-resistant steel with excellent fatigue resistance
JP7163887B2 (en) * 2019-08-21 2022-11-01 Jfeスチール株式会社 Wear-resistant steel with excellent fatigue resistance
EP4015659A4 (en) * 2019-09-17 2023-09-20 JFE Steel Corporation Wear-resistant steel sheet and method for producing same
CN111187984A (en) * 2020-02-17 2020-05-22 本钢板材股份有限公司 Steel for worm gear and worm transmission device and preparation method thereof
CN113699437A (en) * 2021-06-25 2021-11-26 武汉钢铁有限公司 Hot continuous rolling dual-phase wear-resistant steel for carriage plate and production method thereof
CN114318155A (en) * 2022-01-05 2022-04-12 河北普阳钢铁有限公司 Chromium-containing ASTM A36 steel plate and production method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2011179122A (en) * 2011-03-07 2011-09-15 Jfe Steel Corp Wear-resistant steel sheet excellent in low temperature toughness
JP2014194043A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method thereof
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321727A (en) * 2002-05-01 2003-11-14 Kobe Steel Ltd Low yield ratio high-tensile steel plate of excellent bendability and method for manufacturing the same
JP2011179122A (en) * 2011-03-07 2011-09-15 Jfe Steel Corp Wear-resistant steel sheet excellent in low temperature toughness
JP2014194043A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method thereof
JP2014194042A (en) * 2013-03-28 2014-10-09 Jfe Steel Corp Abrasion resistant steel plate having low-temperature toughness, and manufacturing method thereof

Also Published As

Publication number Publication date
JP6540764B2 (en) 2019-07-10
JP2018048399A (en) 2018-03-29
JP6711434B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6540764B2 (en) Wear-resistant steel plate and method of manufacturing the same
KR102250916B1 (en) Abrasion-resistant steel plate and method of manufacturing same
US10093998B2 (en) Abrasion resistant steel plate having excellent low-temperature toughness and method for manufacturing the same
JP5655356B2 (en) Wear-resistant steel plate with excellent low-temperature temper embrittlement cracking
JP5145805B2 (en) Wear-resistant steel plate with excellent gas cut surface properties and low-temperature tempering embrittlement cracking resistance
WO2012133910A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JP5145803B2 (en) Wear-resistant steel plate with excellent low-temperature toughness and low-temperature tempering embrittlement cracking properties
WO2012133911A1 (en) Abrasion-resistant steel sheet exhibiting excellent resistance to stress corrosion cracking, and method for producing same
JP6583374B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
WO2014156078A1 (en) Abrasion resistant steel plate having low-temperature toughness and hydrogen embrittlement resistance, and manufacturing method therefor
JP4899874B2 (en) Wear-resistant steel plate with excellent workability and method for producing the same
JP2007302974A (en) High strength steel plate having excellent delayed fracture resistance and method for producing the same
JP6572952B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP2008297571A (en) Abrasion resistant steel sheet having excellent workability, and its production method
JP7226598B2 (en) Abrasion-resistant steel plate and manufacturing method thereof
JP6583375B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP7211530B2 (en) WEAR RESISTANT STEEL AND METHOD FOR MANUFACTURING WEAR RESISTANT STEEL
JP2010222682A (en) Wear resistant steel sheet having excellent workability and method for producing the same
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP7063419B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet
JP2020132914A (en) Wear-resistant thick steel plate
JP7063420B1 (en) Manufacturing method of wear-resistant steel sheet and wear-resistant steel sheet
KR20230173169A (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250