JP3210255B2 - Ferritic stainless steel with excellent corrosion resistance and manufacturability - Google Patents

Ferritic stainless steel with excellent corrosion resistance and manufacturability

Info

Publication number
JP3210255B2
JP3210255B2 JP22546196A JP22546196A JP3210255B2 JP 3210255 B2 JP3210255 B2 JP 3210255B2 JP 22546196 A JP22546196 A JP 22546196A JP 22546196 A JP22546196 A JP 22546196A JP 3210255 B2 JP3210255 B2 JP 3210255B2
Authority
JP
Japan
Prior art keywords
mass
less
stainless steel
corrosion resistance
ferritic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22546196A
Other languages
Japanese (ja)
Other versions
JPH09176801A (en
Inventor
伸一 鈴木
好弘 矢沢
工 宇城
真 北沢
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP22546196A priority Critical patent/JP3210255B2/en
Publication of JPH09176801A publication Critical patent/JPH09176801A/en
Application granted granted Critical
Publication of JP3210255B2 publication Critical patent/JP3210255B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、耐食性と製造性
に優れ、特に電気ジャーポットや電気温水器の胴体、貯
水槽部材などの水環境で用いて好適な高合金フェライト
系ステンレス鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high alloy ferritic stainless steel excellent in corrosion resistance and manufacturability, and particularly suitable for use in an aqueous environment such as an electric jar pot, a body of an electric water heater, and a water tank member. is there.

【0002】[0002]

【従来の技術】高耐食特性を有するフェライト系ステン
レス鋼として、一般に、Cr、Mo等の合金成分を多量に含
有し、かつC, Nを安定化するためにNbを添加したもの
が使用されている。特に、電気ジャーポットや電気温水
器の胴体、貯水槽部材などのように、水環境で使用され
る場合においても十分な耐食性を発揮させるためには、
SUS444のように、Cr%+3Mo%≧22%程度の高
合金化が必要となる。ところで、上記高合金フェライト
系ステンレス鋼に含まれるCやNを安定化するために
は、一般に、NbやTiが添加される。
2. Description of the Related Art As ferritic stainless steels having high corrosion resistance, those containing a large amount of alloy components such as Cr and Mo and containing Nb to stabilize C and N are generally used. I have. In particular, in order to exhibit sufficient corrosion resistance even when used in a water environment, such as the body of an electric jar or an electric water heater, a water tank member, etc.
As in SUS444, high alloying of about Cr% + 3Mo% ≧ 22% is required. Incidentally, in order to stabilize C and N contained in the high alloy ferritic stainless steel, Nb and Ti are generally added.

【0003】しかしながら、Nbを添加すると、鋼の再結
晶温度が高くなり、この鋼を効率よく製造する上で大き
なネックとなっていた。というのは、最近、ステンレス
鋼のコストダウンの手段として、普通鋼冷延板の連続焼
鈍ライン(以下、単に「CAL」と略記する。)を用い
てステンレス冷延鋼板を製造する試みが行われており、
このラインで可能な焼鈍温度は900℃程度が上限であ
るからである。すなわち、Nb添加ステンレス鋼の再結晶
温度はNbの添加量に依存し、通常含まれる程度のC, N
をNb添加で安定化すると、鋼の再結晶温度は900℃を
超え、CALで可能な上限温度を外れてしまう。このた
め、Nb添加鋼をCALで焼鈍しても再結晶が不十分とな
り、加工性が著しく劣化するのである。
[0003] However, the addition of Nb increases the recrystallization temperature of steel, which has been a major bottleneck in producing this steel efficiently. This is because recently, as a means of reducing the cost of stainless steel, attempts have been made to produce a cold-rolled stainless steel sheet using a continuous annealing line (hereinafter simply referred to as “CAL”) for cold-rolled ordinary steel sheet. And
This is because the upper limit of the annealing temperature possible in this line is about 900 ° C. That is, the recrystallization temperature of the Nb-added stainless steel depends on the amount of Nb added, and the C, N
Is stabilized by the addition of Nb, the recrystallization temperature of the steel exceeds 900 ° C., which deviates from the upper limit temperature possible with CAL. For this reason, even if the Nb-added steel is annealed with CAL, recrystallization becomes insufficient and workability is significantly deteriorated.

【0004】一方、C, Nの安定化元素として、Nbの代
わりにTiを添加した場合には、再結晶温度は低下する
が、一方では、大きなTi炭窒化物を生成するため、Nb添
加鋼に比べて靱性が劣化するという問題を生じていた。
この靱性の劣化は、低合金フェライト系ステンレス鋼の
場合にはそれほど大きな問題にはならないが、本発明で
対象とする高合金フェライト系ステンレス鋼では、もと
もと靱性が劣るうえに上述したTi添加による悪影響が重
畳して著しく靱性が劣化する。この結果、熱延板のよう
な比較的厚い板をハンドリングする際に、割れが生じ易
くなり、製造上の大きな問題を抱えていた。また、Tiを
添加した場合には、鋳片の表面にTiストリークと呼ばれ
る表面疵が生じ、このまま圧延すると最終製品の表面品
質を低下させる。このため、表面性状が良好な製品を製
造するためには、この表面疵を圧延前に研磨除去するこ
とが必要となり、工数の増加を招くこととなる。このよ
うに、従来のTi添加材は、しばしば著しい歩留りの低下
あるいは工程負荷の増大を招いてコストアップ要因とな
り、このような高合金フェライト系ステンレス鋼をTiで
安定化することは、実質的に難しい状況にあった。
[0004] On the other hand, when Ti is added instead of Nb as a stabilizing element for C and N, the recrystallization temperature is lowered, but on the other hand, a large Ti carbonitride is formed. However, there is a problem that the toughness is deteriorated as compared with the case of
This deterioration of toughness is not a serious problem in the case of low alloy ferritic stainless steel, but in the case of high alloy ferritic stainless steel targeted in the present invention, the toughness is originally inferior and the adverse effect of the above-mentioned addition of Ti Are superimposed and the toughness is significantly deteriorated. As a result, when a relatively thick plate such as a hot rolled plate is handled, cracks are likely to occur, and there is a major problem in manufacturing. In addition, when Ti is added, a surface defect called Ti streak is generated on the surface of the slab, and if it is rolled as it is, the surface quality of the final product is deteriorated. For this reason, in order to manufacture a product having good surface properties, it is necessary to polish and remove these surface defects before rolling, which leads to an increase in the number of steps. As described above, the conventional Ti additive often causes a significant decrease in yield or an increase in process load, resulting in an increase in cost.Stabilizing such a high-alloy ferritic stainless steel with Ti is substantially required. It was a difficult situation.

【0005】Ti添加がもたらすかかる靱性劣化を回避す
るために、TiとNbを複合添加する方法が、特開平6−2
79951号公報, 特開平6−279953号公報, 特
開平5−70899号公報, 特公昭55−21102号
公報, 特開昭55−158254号公報などに提案され
ている。しかし、これらの方法によっても、十分高い靱
性が得られる程度まで、NbによるTiの代替を行うと、再
結晶温度はやはり900℃以上となるため、上記Nb添加
材と同様に、コストの安いCAL工程では焼鈍できない
という製造上の問題を生じていた。
In order to avoid such toughness deterioration caused by the addition of Ti, a method of adding Ti and Nb in combination is disclosed in Japanese Patent Laid-Open No. 6-2 / 1994.
No. 79951, JP-A-6-279953, JP-A-5-70899, JP-B-55-21102, JP-A-55-158254 and the like. However, even with these methods, if Ti is substituted by Nb to the extent that sufficiently high toughness can be obtained, the recrystallization temperature will still be 900 ° C. or higher. There has been a manufacturing problem that annealing cannot be performed in the process.

【0006】[0006]

【発明が解決しようとする課題】上述したように、Nb添
加高合金フェライト系ステンレス鋼では、再結晶温度が
高くCALでは十分な焼鈍ができず、またTi添加高合金
フェライト系ステンレス鋼では、再結晶温度は低いもの
の靱性が悪く、製造時に割れを生じやすく、さらにまた
Tiストリークによる表面性状の悪化を招き、さらにNb−
Ti複合添加フェライト系ステンレス鋼でも、やはりCA
Lでは十分な焼鈍ができないという問題を抱えていた。
As described above, in the case of Nb-added high-alloy ferritic stainless steel, the recrystallization temperature is high and CAL cannot be sufficiently annealed. Although the crystallization temperature is low, the toughness is poor, and cracks are likely to occur during manufacturing.
Deterioration of surface properties due to Ti streak, and Nb-
Even for ferritic stainless steel with Ti composite added, CA
L had a problem that sufficient annealing could not be performed.

【0007】この発明は、従来技術が抱えていた上記問
題点を解決して、十分な耐食性を有する高合金フェライ
ト系ステンレス鋼でありながら、良好な靱性を有し、か
つ再結晶温度が低くCALで焼鈍可能な、製造性に優れ
るフェライト系ステンレス鋼を提供することを目的とす
る。また、この発明は、十分な耐食性を有する高合金フ
ェライト系ステンレス鋼でありながら、良好な靱性を有
し、再結晶温度が低くCALで焼鈍可能であるととも
に、良好な表面性状を有する、製造性に優れるフェライ
ト系ステンレス鋼を提供することを目的とする。
The present invention solves the above-mentioned problems of the prior art and, despite being a high-alloy ferritic stainless steel having sufficient corrosion resistance, has good toughness and a low recrystallization temperature. An object of the present invention is to provide a ferritic stainless steel that can be annealed at a high temperature and has excellent manufacturability. Further, the present invention is a high alloy ferritic stainless steel having sufficient corrosion resistance, has good toughness, has a low recrystallization temperature, can be annealed with CAL, and has good surface properties. An object of the present invention is to provide a ferritic stainless steel having excellent resistance.

【0008】[0008]

【課題を解決するための手段】発明者らは、上掲のごと
き課題解決の実現に向けて鋭意研究を重ねた結果、Ti−
V−Bを複合添加すること、Ti、Vの添加量、C、N含
有量における相互の関係を制御すること等によって、か
かる課題を解決できることを見いだし、この発明を完成
するに至った。すなわち、この発明の要旨構成は次のと
おりである。 (1) C: 0.02 mass%以下、 Si: 0.6 mass%以下、
Mn: 0.6 mass%以下、 P: 0.05 mass%以下、S:
0.01 mass%以下、 Al: 0.15 mass%以下、N: 0.0
2 mass%以下、 Ni: 0.6 mass%以下、Cr: 20.0 ma
ss%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、
V: 0.02 〜0.3 mass%、B: 0.0002 〜0.005 mass%
を含み、かつ上記成分のうちC、N、Ti、Vの含有量
(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies for realizing the solution of the problems as described above, and as a result, Ti-
It has been found that such a problem can be solved by adding VB in a combined manner, controlling the mutual relationship between the added amounts of Ti and V, and the contents of C and N, and have completed the present invention. That is, the gist configuration of the present invention is as follows. (1) C: 0.02 mass% or less, Si: 0.6 mass% or less,
Mn: 0.6 mass% or less, P: 0.05 mass% or less, S:
0.01 mass% or less, Al: 0.15 mass% or less, N: 0.0
2 mass% or less, Ni: 0.6 mass% or less, Cr: 20.0 ma
More than ss% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%,
V: 0.02 to 0.3 mass%, B: 0.0002 to 0.005 mass%
And the contents (mass%) of C, N, Ti, and V in the above components are as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 V / Ti ≧ 0.2 A ferritic stainless steel that is excellent in corrosion resistance and manufacturability, characterized in that it contains Fe and inevitable impurities.

【0009】(2) C: 0.02 mass%以下、 Si: 0.6
mass%以下、Mn: 0.6 mass%以下、 P: 0.05 mass
%以下、S: 0.01 mass%以下、 Al: 0.15 mass%以
下、N: 0.02 mass%以下、 Ni: 0.6 mass%以下、
Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、
V: 0.02 〜0.3 mass%、B: 0.0002 〜0.005 mass% Ca≦ 0.005 mass%を含み、かつ上記成分のうちC、
N、Ti、Vの含有量(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
(2) C: 0.02 mass% or less, Si: 0.6
mass% or less, Mn: 0.6 mass% or less, P: 0.05 mass
%, S: 0.01 mass% or less, Al: 0.15 mass% or less, N: 0.02 mass% or less, Ni: 0.6 mass% or less,
Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%,
V: 0.02 to 0.3 mass%, B: 0.0002 to 0.005 mass% Ca ≦ 0.005 mass%, and among the above components, C,
The contents (mass%) of N, Ti, and V are as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 V / Ti ≧ 0.2, the balance being Fe and inevitable impurities A ferritic stainless steel with excellent corrosion resistance and manufacturability, characterized by comprising:

【0010】(3) C: 0.02 mass%以下、 Si: 0.6
mass%以下、Mn: 0.6 mass%以下、 P: 0.05 mass
%以下、S: 0.01 mass%以下、 Al: 0.15 mass%以
下、N: 0.02 mass%以下、 Ni: 0.6 mass%以下、
Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、
V: 0.02 〜0.3 mass%、B: 0.0002 〜0.005 mass%
を含み、かつ上記成分のうちC、N、Ti、Vの含有量
(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 (7Ti+V)×N≦0.0100 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
(3) C: 0.02 mass% or less, Si: 0.6
mass% or less, Mn: 0.6 mass% or less, P: 0.05 mass
%, S: 0.01 mass% or less, Al: 0.15 mass% or less, N: 0.02 mass% or less, Ni: 0.6 mass% or less,
Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%,
V: 0.02 to 0.3 mass%, B: 0.0002 to 0.005 mass%
And the contents (mass%) of C, N, Ti, and V in the above components are as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 V / Ti ≧ 0.2 (7Ti + V) A ferritic stainless steel excellent in corrosion resistance and manufacturability, characterized in that the content satisfies × N ≦ 0.0100 and the balance consists of Fe and inevitable impurities.

【0011】(4) C: 0.02 mass%以下、 Si: 0.6
mass%以下、Mn: 0.6 mass%以下、 P: 0.05 mass
%以下、S: 0.01 mass%以下、 Al: 0.15 mass%以
下、N: 0.02 mass%以下、 Ni: 0.6 mass%以下、
Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、
V: 0.02 〜0.3 mass%、B: 0.0002 〜0.005 mass% Ca≦ 0.005 mass%を含み、かつ上記成分のうちC、
N、Ti、Vの含有量(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 (7Ti+V)×N≦0.0100 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
(4) C: 0.02 mass% or less, Si: 0.6
mass% or less, Mn: 0.6 mass% or less, P: 0.05 mass
%, S: 0.01 mass% or less, Al: 0.15 mass% or less, N: 0.02 mass% or less, Ni: 0.6 mass% or less,
Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%,
V: 0.02 to 0.3 mass%, B: 0.0002 to 0.005 mass% Ca ≦ 0.005 mass%, and among the above components, C,
The contents (mass%) of N, Ti and V satisfy the following relationship: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 V / Ti ≧ 0.2 (7Ti + V) × N ≦ 0.0100 Ferritic stainless steel with excellent corrosion resistance and manufacturability, characterized in that the balance consists of Fe and unavoidable impurities.

【0012】[0012]

【発明の実施の形態】以下、この発明において成分組成
を上記要旨構成の範囲に定めた理由について説明する。 C:0.02mass%以下 Cは、耐食性および靱性を劣化させる元素であるので、
0.02mass%以下に制限する必要がある。なお、好ま
しくは0.01mass%以下の範囲とするのがよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for setting the component composition in the present invention within the scope of the gist will be described below. C: 0.02 mass% or less C is an element that deteriorates corrosion resistance and toughness.
It must be limited to 0.02 mass% or less. Note that the content is preferably set to 0.01 mass% or less.

【0013】Si:0.6mass%以下 Siは、ステンレス鋼の製鋼時に脱酸剤として使用する
が、含有量が多過ぎると靱性および加工性を劣化させる
ので、上限を0.6mass%とする。
Si: 0.6 mass% or less Si is used as a deoxidizing agent during steelmaking of stainless steel, but if the content is too large, the toughness and workability are deteriorated. Therefore, the upper limit is set to 0.6 mass%.

【0014】Mn:0.6mass%以下 Mnは、Siと同様に脱酸剤として添加するが、あまり多量
に含むと硬くなり加工性を劣化させ、耐食性にも有害で
あるので、上限を0.6mass%、好ましくは0.3 mass%
とする。
Mn: 0.6% by mass or less Mn is added as a deoxidizing agent in the same manner as Si, but if contained in an excessively large amount, Mn becomes hard and deteriorates workability and is harmful to corrosion resistance. 6 mass%, preferably 0.3 mass%
And

【0015】P:0.05mass%以下 Pは、製鋼原料から不可避的に入ってくる元素であり、
ステンレス鋼を硬くして、靱性および加工性を劣化させ
るので、0.05mass%以下とする必要がある。
P: 0.05 mass% or less P is an element that inevitably enters from steelmaking raw materials,
Since the stainless steel is hardened to deteriorate toughness and workability, the content needs to be 0.05 mass% or less.

【0016】S:0.01mass%以下 Sも、同じく製鋼原料から不可避的に混入する元素であ
り、硫化物を生成して耐食性を劣化させるので、0.0
1mass%以下、好ましくは0.006mass%以下とする
必要がある。
S: 0.01 mass% or less S is also an element inevitably mixed from steelmaking raw materials, and forms sulfide to deteriorate corrosion resistance.
It is necessary to be 1 mass% or less, preferably 0.006 mass% or less.

【0017】Al:0.15mass%以下 Alは、製鋼時に脱酸剤として添加するが、添加量が多く
なると大型のAl系介在物が生成して表面欠陥の原因とな
るため、上限を0.15mass%とする。
Al: 0.15 mass% or less Al is added as a deoxidizing agent at the time of steel making. However, when the added amount is large, large Al-based inclusions are formed and cause surface defects. 15 mass%.

【0018】N:0.02mass%以下、C+N≦0.0
2mass% Nは、Cと同様に耐食性および靱性を劣化させる元素で
あるので、0.02mass%以下に制限する必要がある。
なお、好ましくは0.01mass%以下の範囲とするのが
よい。また、この発明が対象とする高合金フェライト系
ステンレス鋼において、これらの効果を一層発揮させる
ためには、さらに、CとNの総量を0.02mass%以下
に規制する必要がある。
N: 0.02 mass% or less, C + N ≦ 0.0
2 mass% N is an element that deteriorates the corrosion resistance and toughness like C, and therefore it is necessary to limit it to 0.02 mass% or less.
Note that the content is preferably set to 0.01 mass% or less. Further, in the high alloy ferritic stainless steel targeted by the present invention, in order to further exert these effects, it is necessary to further restrict the total amount of C and N to 0.02 mass% or less.

【0019】Cr:20.0mass%超〜25.0mass%未
満 Crは、鋼に耐食性を付与するために、ステンレス鋼にと
って基本的に必須な元素である。Cr量が多いほど耐食性
は向上するが、靱性は劣化する。特に水環境において十
分な耐食性を得るためには、20.0mass%を超えるCr
添加が必要である。しかし、25.0mass%以上になる
と、Ti添加による靱性劣化を回避することが難しくなる
ため、上限を25.0mass%未満とする。
Cr: more than 20.0 mass% to less than 25.0 mass% Cr is basically an essential element for stainless steel in order to impart corrosion resistance to steel. As the Cr content increases, the corrosion resistance improves, but the toughness deteriorates. In particular, in order to obtain sufficient corrosion resistance in a water environment, the Cr content exceeds 20.0 mass%.
Addition is required. However, if the content is 25.0 mass% or more, it is difficult to avoid toughness deterioration due to the addition of Ti, so the upper limit is set to less than 25.0 mass%.

【0020】Ni:0.6mass%以下 Niは、フェライト系ステンレス鋼の靱性を改善する元素
であるが、添加量が多くなると、硬さが増して加工性を
劣化させ、また、比較的高価なためにコストアップを招
くので、上限を0.6mass%、好ましくは0.3mass%
とする。
Ni: 0.6% by mass or less Ni is an element that improves the toughness of ferritic stainless steel. However, as the amount of addition increases, the hardness increases, the workability is deteriorated, and the cost is relatively high. Therefore, the cost is increased, so the upper limit is 0.6 mass%, preferably 0.3 mass%.
And

【0021】Mo:0.5〜4.0mass% Moは、ステンレス鋼の耐食性を著しく向上させる元素で
あり、特に水環境においては0.5mass%以上が必須で
ある。しかし、添加量が多過ぎると、ステンレス鋼を硬
くして、靱性および加工性を劣化させるため、上限を
4.0mass%とする。
Mo: 0.5 to 4.0 mass% Mo is an element which remarkably improves the corrosion resistance of stainless steel, and in particular, 0.5 mass% or more is essential in a water environment. However, if the addition amount is too large, the stainless steel is hardened and the toughness and workability are deteriorated, so the upper limit is set to 4.0 mass%.

【0022】Ti:0.02〜0.3mass% Tiは、この発明において特に重要な元素であり、その強
力なC, N安定化効果によって、ステンレス鋼の耐食性
を改善させる。しかし、添加量が多過ぎると、粗大なTi
Nを析出して、靱性を劣化させ、また表面性状を悪化さ
せる。したがって、Tiの添加量は0.02〜0.3mass
%の範囲とする。
Ti: 0.02 to 0.3 mass% Ti is a particularly important element in the present invention, and improves the corrosion resistance of stainless steel due to its strong C, N stabilizing effect. However, if too much is added, coarse Ti
Precipitation of N deteriorates toughness and surface properties. Therefore, the addition amount of Ti is 0.02 to 0.3 mass
% Range.

【0023】V:0.02〜0.3mass% V/Ti≧ 0.2 (Ti+V)/(C+N)=5〜50 Vも、この発明において特に重要な元素である。元来、
VはC, N安定化元素の一種であるが、この発明におい
ては、Tiの一部をVで代替し、さらにBと複合添加する
ことにより、高合金レベルにおける著しい靱性の改善を
もたらす。発明者らはこれについて、図1に示すような
結果を得た。すなわち、図1から、脆性遷移温度は、B
を添加したTi−V−B系とし、V/Tiを大きくすれば低
温となること、そしてこの発明に従うTi−V−B複合添
加鋼はすべて脆性遷移温度が0℃以下となり、製造性が
極めて良好になることが判る。なお、Ti−V複合添加の
場合には、Ti−Nb複合添加のように再結晶温度を上げる
ことがないので、コスト的に有利なCALで焼鈍するこ
とも可能となる。このような効果を得るためには、Vは
少なくとも0.02mass%添加する必要があり、かつV
/Ti≧0.2の関係を満足する必要がある。しかし、多
量に添加すると硬くなって加工性を劣化させるため、そ
の上限を0.3mass%とした。これらの条件に加えて、
さらにC, Nを十分固定させるためには、TiとVを上記
の範囲としたうえ、(Ti+V)/(C+N)=5〜50
の関係を満たすように配慮する必要がある。
V: 0.02 to 0.3 mass% V / Ti ≧ 0.2 (Ti + V) / (C + N) = 5 to 50 V are also particularly important elements in the present invention. originally,
V is a kind of C, N stabilizing element, but in the present invention, a part of Ti is replaced by V and further added in combination with B, thereby significantly improving toughness at a high alloy level. The inventors obtained a result as shown in FIG. 1 for this. That is, from FIG. 1, the brittle transition temperature is B
The Ti-VB system to which Ti is added, the lower the temperature, the higher the V / Ti, and the brittle transition temperature of all the Ti-VB composite-added steels according to the present invention is 0 ° C. or lower, and the productivity is extremely high. It turns out that it becomes favorable. In the case of adding a Ti-V composite, since the recrystallization temperature is not increased unlike the case of adding a Ti-Nb composite, it is also possible to perform annealing with CAL which is advantageous in cost. In order to obtain such an effect, V needs to be added at least 0.02 mass%.
It is necessary to satisfy the relationship of /Ti≧0.2. However, if added in a large amount, it becomes hard and deteriorates workability. Therefore, the upper limit is set to 0.3 mass%. In addition to these conditions,
In order to further fix C and N sufficiently, Ti and V are set in the above range, and (Ti + V) / (C + N) = 5 to 50
Care must be taken to satisfy the relationship.

【0024】B:0.0002〜0.005mass% Bも、この発明において特に重要な元素である。このB
は、Ti−V複合添加による靱性の改善効果をより一層高
める作用を有する。その機構は、必ずしも十分には解明
されてはいないが、Vのみでは十分に抑制できないTiN
の析出を、BNの形成により抑制していることが考えら
れる。Bはまた、微量添加でも効果をもたらすことか
ら、粒界強度への影響も考えられる。Bによるこのよう
な複合添加効果を得るためには少なくとも0.0002
mass%以上添加する必要がある。しかし、あまりに多量
に添加すると熱間加工性を劣化させるので、その上限は
0.005mass%とする。
B: 0.0002 to 0.005 mass% B is also a particularly important element in the present invention. This B
Has an effect of further enhancing the effect of improving the toughness by adding a Ti-V composite. Although the mechanism is not always fully understood, TiN cannot be sufficiently suppressed by V alone.
It is considered that the precipitation of is suppressed by the formation of BN. B also exerts an effect even when added in a small amount, so that the influence on the grain boundary strength may be considered. In order to obtain such a combined effect of B, at least 0.0002
It is necessary to add more than mass%. However, if added in an excessively large amount, the hot workability deteriorates, so the upper limit is made 0.005 mass%.

【0025】Ca:0.005mass%以下 Caは、Ti添加鋼の連続鋳造時に生じやすいノズル詰まり
を改善する元素であり、必要に応じて添加する。ただ
し、添加量が多過ぎると耐食性を劣化させるので、上限
を0.005mass%とする。なお、このCaの不純物とし
ての含有量は、通常、0.0002mass%程度である。
Ca: 0.005 mass% or less Ca is an element for improving nozzle clogging which is likely to occur during continuous casting of Ti-added steel, and is added as necessary. However, if the added amount is too large, the corrosion resistance is deteriorated, so the upper limit is made 0.005 mass%. The content of Ca as an impurity is usually about 0.0002 mass%.

【0026】(7Ti+V)×N≦0.0100 パラメーター(7Ti+V)×Nと鋳片の表面疵との間に
は良好な相関がみられ、この値が0.0100(mass%)を超
えると、鋳片の表面疵が顕在化しやすくなる。したがっ
て、良好な表面性状の製品を経済的に製造する場合に
は、(7Ti+V)×N≦0.0100を満たすように成分調整
するのが好ましい。
(7Ti + V) × N ≦ 0.0100 There is a good correlation between the parameter (7Ti + V) × N and the surface flaw of the slab, and when this value exceeds 0.0100 (mass%), the surface of the slab Flaws are likely to become apparent. Therefore, when economically producing a product having good surface properties, it is preferable to adjust the components so as to satisfy (7Ti + V) × N ≦ 0.0100.

【0027】[0027]

【実施例】表1に示す化学組成からなる50kg鋼塊を
真空溶解炉にて溶製し、1200℃の加熱と熱間圧延を
繰り返すことにより4mm厚とした後、直ちに水靱し熱
延板を得た。この熱延板から、シャルピー衝撃試験片を
採取し、JIS Z2242に従い衝撃試験を行い、脆
性破面率を測定した。得られた結果から、脆性破面率が
50%となる温度を脆性遷移温度とした。なお、予め、
脆性遷移温度は製造時の割れとよい相関があり、この温
度が0℃以上になると割れが発生することを確認してい
る。
EXAMPLE A 50 kg steel ingot having the chemical composition shown in Table 1 was melted in a vacuum melting furnace, and heated to 1200 ° C. and hot-rolled repeatedly to obtain a 4 mm-thick steel sheet. I got From this hot-rolled sheet, a Charpy impact test specimen was sampled, subjected to an impact test according to JIS Z2242, and the brittle fracture rate was measured. From the results obtained, the temperature at which the brittle fracture rate was 50% was defined as the brittle transition temperature. In addition,
The brittle transition temperature has a good correlation with cracking during manufacturing, and it has been confirmed that cracking occurs when this temperature exceeds 0 ° C.

【0028】次に、熱延板を1050℃で1分間焼鈍
し、スケールを除去した後、1.2mm厚まで冷間圧延
した。得られた冷延板を温度を変えて30秒間焼鈍した
ときに、材料が急激に軟化し硬度がほぼ一定値となる温
度を求め再結晶温度とした。さらに、求めた上記再結晶
温度でそれぞれの冷延板を焼鈍して冷延焼鈍板とした。
この冷延焼鈍板から、20mm×20mmの電位測定用
試験片を切り出し、表面を湿式#800研磨仕上げした
後、JIS G0577に従い3.5%NaCl、70
℃の条件で孔食電位を測定した。また、一部の供試材に
ついては、グラインダで鋳片の表面を1mm程度研磨し
たのち、浸透探傷法にて長さ1mm以上の疵を目視でカ
ウントすることにより、表面性状を調査した。得られた
これらの結果を表2に併せて示す。
Next, the hot-rolled sheet was annealed at 1050 ° C. for 1 minute to remove scale, and then cold-rolled to a thickness of 1.2 mm. When the obtained cold-rolled sheet was annealed for 30 seconds while changing the temperature, the temperature at which the material rapidly softened and the hardness became almost constant was determined as the recrystallization temperature. Furthermore, each cold-rolled sheet was annealed at the determined recrystallization temperature to obtain a cold-rolled annealed sheet.
From this cold-rolled annealed plate, a test piece for measuring electric potential of 20 mm × 20 mm was cut out, and the surface was polished by wet # 800, followed by 3.5% NaCl, 70 according to JIS G0577.
The pitting potential was measured under the condition of ° C. Moreover, about some test materials, the surface property was investigated by grind | polishing the surface of the slab about 1 mm with a grinder, and visually counting the flaw of 1 mm or more by the penetrant flaw detection method. The obtained results are also shown in Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】表2から、Ti−V−B複合添加による発明
材は、いずれも良好な靱性(脆性遷移温度0℃以下)を
有し、再結晶温度が900℃以下である。しかも、発明
材は高合金フェライト系ステンレス鋼としての十分な耐
孔食性を有し、従来材と比べて遜色のない耐食性を示し
ている。また、このうち特にパラメーター(7Ti+V)
×Nを調整したものは優れた表面性状を示していること
が分かる。これに対し、従来のNb単独添加鋼やNb−Ti複
合添加鋼は、再結晶温度が950℃以上である。
From Table 2, it can be seen that all of the inventive materials obtained by adding the Ti-VB composite have good toughness (brittle transition temperature of 0 ° C. or less) and a recrystallization temperature of 900 ° C. or less. In addition, the inventive material has sufficient pitting corrosion resistance as a high alloy ferritic stainless steel, and exhibits corrosion resistance comparable to conventional materials. In particular, the parameter (7Ti + V)
It can be seen that those with adjusted × N show excellent surface properties. On the other hand, the conventional Nb-added steel and Nb-Ti composite-added steel have a recrystallization temperature of 950 ° C. or higher.

【0032】[0032]

【発明の効果】以上説明したように、この発明にかかる
フェライト系ステンレス鋼によれば、脆性遷移温度が0
℃以下と低く、再結晶温度も900℃以下にまで低下し
ているので、耐食性を損なうことなく、良好な製造性を
提供することができる。したがって、この発明にかかる
フェライト系ステンレス鋼によれば、普通鋼の冷延板焼
鈍ライン(CAL)を用いて焼鈍できるので、生産性、
経済性の面で著効が発揮される。また、本発明におい
て、(7Ti+V)×Nを調整することにより、上記効果
に加えて、一層良好な表面性状を付与したフェライト系
ステンレス鋼を提供することができる。
As described above, according to the ferritic stainless steel according to the present invention, the brittle transition temperature is zero.
° C or less, and the recrystallization temperature is also reduced to 900 ° C or less, so that good manufacturability can be provided without impairing corrosion resistance. Therefore, according to the ferritic stainless steel according to the present invention, annealing can be performed using the cold-rolled sheet annealing line (CAL) of ordinary steel, so that productivity,
It is very economical. Further, in the present invention, by adjusting (7Ti + V) × N, it is possible to provide a ferritic stainless steel having more excellent surface properties in addition to the above effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延板の脆性遷移温度に及ぼす成分系とV/Ti
の影響を示すグラフである。
Fig. 1 Influence of component system and V / Ti on brittle transition temperature of hot rolled sheet
5 is a graph showing the effect of the above.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 北沢 真 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (72)発明者 佐藤 進 千葉県千葉市中央区川崎町1番地 川崎 製鉄株式会社 技術研究所内 (56)参考文献 特開 平6−158233(JP,A) 特開 平4−228542(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 C22C 38/54 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Makoto Kitazawa 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Kawasaki Steel Engineering Co., Ltd. (72) Inventor Susumu Suto 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba (56) References JP-A-6-158233 (JP, A) JP-A-4-228542 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38 / 00 C22C 38/54

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】C: 0.02 mass%以下、 Si: 0.6 mass%以下、 Mn: 0.6 mass%以下、 P: 0.05 mass%以下、 S: 0.01 mass%以下、 Al: 0.15 mass%以下、 N: 0.02 mass%以下、 Ni: 0.6 mass%以下、 Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、 V: 0.02 〜0.3 mass%、 B: 0.0002 〜0.005 mass% を含み、かつ上記成分のうちC、N、Ti、Vの含有量
(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
[Claim 1] C: 0.02 mass% or less, Si: 0.6 mass% or less, Mn: 0.6 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.15 mass% or less, N: 0.02 mass% or less, Ni: 0.6 mass% or less, Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%, V: 0.02 to 0.3 mass%, B: 0.0002 to The content of C, N, Ti, and V (mass%) among the above components is as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 V / Ti ≧ 0.2 A ferritic stainless steel excellent in corrosion resistance and manufacturability, characterized by containing and containing Fe and inevitable impurities.
【請求項2】C: 0.02 mass%以下、 Si: 0.6 mass%以下、 Mn: 0.6 mass%以下、 P: 0.05 mass%以下、 S: 0.01 mass%以下、 Al: 0.15 mass%以下、 N: 0.02 mass%以下、 Ni: 0.6 mass%以下、 Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、 V: 0.02 〜0.3 mass%、 B: 0.0002 〜0.005 mass% Ca≦ 0.005 mass% を含み、かつ上記成分のうちC、N、Ti、Vの含有量
(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
2. C: 0.02 mass% or less, Si: 0.6 mass% or less, Mn: 0.6 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.15 mass% or less, N: 0.02 mass% or less, Ni: 0.6 mass% or less, Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%, V: 0.02 to 0.3 mass%, B: 0.0002 to 0.005 mass% Ca ≦ 0.005 mass%, and among the above components, the contents (mass%) of C, N, Ti, and V are as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 A ferritic stainless steel excellent in corrosion resistance and manufacturability, characterized by satisfying V / Ti ≧ 0.2, with the balance being Fe and unavoidable impurities.
【請求項3】C: 0.02 mass%以下、 Si: 0.6 mass%以下、 Mn: 0.6 mass%以下、 P: 0.05 mass%以下、 S: 0.01 mass%以下、 Al: 0.15 mass%以下、 N: 0.02 mass%以下、 Ni: 0.6 mass%以下、 Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、 V: 0.02 〜0.3 mass%、 B: 0.0002 〜0.005 mass% を含み、かつ上記成分のうちC、N、Ti、Vの含有量
(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 (7Ti+V)×N≦0.0100 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
C: 0.02 mass% or less, Si: 0.6 mass% or less, Mn: 0.6 mass% or less, P: 0.05 mass% or less, S: 0.01 mass% or less, Al: 0.15 mass% or less, N: 0.02 mass% or less, Ni: 0.6 mass% or less, Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%, V: 0.02 to 0.3 mass%, B: 0.0002 to The content of C, N, Ti, and V (mass%) among the above components is as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 V / Ti ≧ 0.2 (7Ti + V) × N ≦ 0.0100. Ferritic stainless steel excellent in corrosion resistance and manufacturability, characterized in that the balance is Fe and unavoidable impurities.
【請求項4】C: 0.02 mass%以下、 Si: 0.6 mass%以下、 Mn: 0.6 mass%以下、 P: 0.05 mass%以下、 S: 0.01 mass%以下、 Al: 0.15 mass%以下、 N: 0.02 mass%以下、 Ni: 0.6 mass%以下、 Cr: 20.0 mass%超〜 25.0 mass%未満 Mo: 0.5〜4.0 mass%、 Ti: 0.02 〜0.3 mass%、 V: 0.02 〜0.3 mass%、 B: 0.0002 〜0.005 mass% Ca≦ 0.005 mass% を含み、かつ上記成分のうちC、N、Ti、Vの含有量
(mass%)は下記関係; C+N≦ 0.02 mass% (Ti+V)/(C+N)=5〜50 V/Ti≧ 0.2 (7Ti+V)×N≦0.0100 を満たして含有し、残部がFeおよび不可避的不純物より
なることを特徴とする、耐食性と製造性に優れるフェラ
イト系ステンレス鋼。
C: 0.02% by mass or less, Si: 0.6% by mass or less, Mn: 0.6% by mass or less, P: 0.05% by mass or less, S: 0.01% by mass or less, Al: 0.15% by mass or less, N: 0.02% mass% or less, Ni: 0.6 mass% or less, Cr: more than 20.0 mass% to less than 25.0 mass% Mo: 0.5 to 4.0 mass%, Ti: 0.02 to 0.3 mass%, V: 0.02 to 0.3 mass%, B: 0.0002 to 0.005 mass% Ca ≦ 0.005 mass%, and among the above components, the contents (mass%) of C, N, Ti, and V are as follows: C + N ≦ 0.02 mass% (Ti + V) / (C + N) = 5 to 50 A ferritic stainless steel excellent in corrosion resistance and manufacturability, characterized by satisfying V / Ti ≧ 0.2 (7Ti + V) × N ≦ 0.0100, with the balance being Fe and inevitable impurities.
JP22546196A 1995-10-25 1996-08-27 Ferritic stainless steel with excellent corrosion resistance and manufacturability Expired - Fee Related JP3210255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22546196A JP3210255B2 (en) 1995-10-25 1996-08-27 Ferritic stainless steel with excellent corrosion resistance and manufacturability

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-277704 1995-10-25
JP27770495 1995-10-25
JP22546196A JP3210255B2 (en) 1995-10-25 1996-08-27 Ferritic stainless steel with excellent corrosion resistance and manufacturability

Publications (2)

Publication Number Publication Date
JPH09176801A JPH09176801A (en) 1997-07-08
JP3210255B2 true JP3210255B2 (en) 2001-09-17

Family

ID=26526652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22546196A Expired - Fee Related JP3210255B2 (en) 1995-10-25 1996-08-27 Ferritic stainless steel with excellent corrosion resistance and manufacturability

Country Status (1)

Country Link
JP (1) JP3210255B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325708B1 (en) * 1997-12-27 2002-06-29 이구택 Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER
CN104508168B (en) * 2012-09-24 2017-09-26 杰富意钢铁株式会社 Ferrite-group stainless steel
KR101718757B1 (en) * 2012-09-24 2017-03-22 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet with excellent formability
WO2014147655A1 (en) * 2013-03-18 2014-09-25 Jfeスチール株式会社 Ferritic stainless steel sheet

Also Published As

Publication number Publication date
JPH09176801A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
US4878955A (en) Process for preparing a high strength stainless steel having excellent workability and free form weld softening
CN108884531B (en) Wear-resistant steel sheet and method for producing wear-resistant steel sheet
JP6807690B2 (en) Square steel pipe
KR20100113642A (en) Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
EP3034642A1 (en) Martensitic stainless steel having excellent wear resistance and corrosion resistance, and method for producing same
JP2011174122A (en) Low-chromium-containing stainless steel superior in corrosion resistance at welded part
JP6036645B2 (en) Ferritic-martensitic duplex stainless steel with excellent low-temperature toughness and method for producing the same
JP4210010B2 (en) Manufacturing method of high toughness and high strength steel
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP3210255B2 (en) Ferritic stainless steel with excellent corrosion resistance and manufacturability
JP4289756B2 (en) High strength metastable austenitic stainless steel wire
JP4427521B2 (en) Method for producing high strength thick steel plate with tensile strength of 780 MPa excellent in weldability
JPH0830253B2 (en) Precipitation hardening type martensitic stainless steel with excellent workability
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP4222073B2 (en) H-section steel with excellent fillet part toughness and method for producing the same
JP3858647B2 (en) High strength steel excellent in low temperature joint toughness and SSC resistance and method for producing the same
JPH07188840A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JP5653269B2 (en) Stainless steel wire and steel wire excellent in corrosion resistance, strength, and ductility, and methods for producing them.
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JPH0717988B2 (en) Ferritic stainless steel with excellent toughness and corrosion resistance
JP3705161B2 (en) High tensile steel plate
JP7009666B1 (en) Ni—Cr—Mo alloy for welded pipes with excellent workability and corrosion resistance
JPH07233438A (en) High tensile strength steel and its production

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees