KR100325708B1 - Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER - Google Patents

Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER Download PDF

Info

Publication number
KR100325708B1
KR100325708B1 KR1019970075375A KR19970075375A KR100325708B1 KR 100325708 B1 KR100325708 B1 KR 100325708B1 KR 1019970075375 A KR1019970075375 A KR 1019970075375A KR 19970075375 A KR19970075375 A KR 19970075375A KR 100325708 B1 KR100325708 B1 KR 100325708B1
Authority
KR
South Korea
Prior art keywords
less
corrosion resistance
stainless steel
ferritic stainless
content
Prior art date
Application number
KR1019970075375A
Other languages
Korean (ko)
Other versions
KR19990055431A (en
Inventor
김희산
니콜라아스 제이.이 도울링
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970075375A priority Critical patent/KR100325708B1/en
Publication of KR19990055431A publication Critical patent/KR19990055431A/en
Application granted granted Critical
Publication of KR100325708B1 publication Critical patent/KR100325708B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper

Abstract

PURPOSE: Provided is a Cr-rich ferritic stainless steel with excellent corrosion resistance against sea water with the addition of Cr and Al to conventional ferritic stainless steel. CONSTITUTION: The Cr-rich ferritic stainless steel with excellent corrosion resistance against sea water comprises 0.01 wt.% or less of C, 0.02 wt.% or less of N, 0.5 wt.% or less of Si, 0.5 wt.% or less of Mn, 0.03 wt.% or less of P, 0.004 wt.% or less of S, 0.01 wt.% or less of O, 0.18 wt.% or less of Ti, 0.18 wt.% or less of Nb, 1.0 wt.% or less of Cu, Al 0.03 to 0.13 wt.%, 4 wt.% or less of Mo, Cr 21 to 35 wt.%, a balance of Fe and incidental impurities, wherein (Ti+Nb) wt.% is less than 9x(C+N) wt.% and C+N wt.% is less than 0.03 wt.%.

Description

해수부식 저항성이 우수한 고 크롬 페라이트계 스테인레스강.High chromium ferritic stainless steel with excellent seawater corrosion resistance.

본 발명은 해수 열교환기관 및 건축외장벽 등의 소재로 사용되는 페라이트계 스테인레스강에 관한 것으로, 보다 상세하게는 기존 페라이트강에 Al과 Cu를 복합첨가하여 대기내구성 및 해수부식 저항성(내해수성)을 증가시킨 고 크롬 페라이트계 스테인레스 강에 관한 것이다.The present invention relates to a ferritic stainless steel used as a material for seawater heat exchange engines and building exterior walls, and more specifically, by adding Al and Cu to the existing ferritic steel to improve air durability and seawater corrosion resistance (seawater resistance). An increased high chromium ferritic stainless steel.

통상 Cr, Mo의 함량이 각각 26%, 3% 이상인 페라이트 스테인레스강은 내해수성을 지니므로 해수용 열교환기나 해안가 지역에서 건축외장벽재로 사용되고 있다. 그러나 취약한 인성 때문에 그 용도가 제한되어 현재 고 내식성 및 고인성을 가진 강종의 개발을 위해 많은 연구가 진행되어지고 있다. 일반적으로 인성의 향상을 위해서는 Cr, Mo, C, N 함량을 줄여야 한다. 그러나 Cr, Mo 함량의 감소는 내식성을 저하시키며 C, N의 함량의 감소는 공정상 어려울 뿐만아니라 많은 비용이 요구된다. 그러므로 일정의 Cr, Mo, C, N 농도에서 미세합금의 첨가를 통해 내식성을 증가시키고 인성을 향상시키는 방법이 요구된다.Usually, ferritic stainless steels with Cr and Mo contents of 26% and 3% or more, respectively, have seawater resistance and are therefore used as seawater heat exchangers or exterior wall materials in coastal areas. However, due to its weak toughness, its use is limited, and many studies have been conducted to develop steel sheets having high corrosion resistance and toughness. In general, to improve toughness, the Cr, Mo, C, N content should be reduced. However, the reduction of Cr and Mo content lowers the corrosion resistance, and the reduction of the content of C and N is not only difficult in process but also requires a large cost. Therefore, there is a need for a method of increasing corrosion resistance and improving toughness by adding microalloys at a constant Cr, Mo, C, and N concentration.

페라이트계 스테인레스강의 인성을 증가시키기 위하여 알레히 루드럼(Alleghey Ludlum)사에서는 2% 정도의 Ni의 첨가를 통해 내식성의 감소 없이 인성을 향상시킨 29-4-2 (29%Cr-4%Mo-2%Ni) 강종을 생산하여 시판하고 있다. 이외에도 요시히로(Yoshihiro)등에 의하면 0.06∼0.2% P 첨가로 내식성을 향상시킨다고 보고하고 있다(EP 0 603 402 Al) 이외에도 대한민국 출원번호 1996-61973호에 따르면 Nb 및 AL의 복합첨가로 인성을 향상시키는 것으로 보고되고 있다.In order to increase the toughness of ferritic stainless steel, Alleghey Ludlum Co., Ltd. added 29% of Ni to improve the toughness without reducing corrosion resistance by adding about 2% of Ni (29% Cr-4% Mo-). 2% Ni) steel grade is produced and marketed. In addition, according to Yoshihiro et al., It is reported that the addition of 0.06 to 0.2% P improves the corrosion resistance (EP 0 603 402 Al). In addition, according to Korean Application No. 1996-61973, the toughness is improved by the complex addition of Nb and AL. Is being reported.

따라서 본 발명은 상기와 같은 페라이트강에 비해 추가의 정련설비 및 Cr, Mo 함량의 감소 없이 미세합금원소를 첨가시켜 내식성및 인성을 향상시킨 페라이트계 스테인레스 강을 제공하는 데 그 목적이 있다.Accordingly, an object of the present invention is to provide a ferritic stainless steel which is improved in corrosion resistance and toughness by adding microalloy elements without further refining facilities and reducing Cr and Mo contents compared to the above ferritic steel.

도 1은 합금성분에 따른 내식성 변화를 나타낸 그래프도,1 is a graph showing a change in corrosion resistance according to the alloy component,

도 2는 합금 성분에 따른 인성 변화를 나타낸 그래프도이다.2 is a graph showing the change in toughness according to the alloy component.

본 발명은 상술한 목적을 달성하기 위하여 고크롬 페라이트계 스테인레스강에 있어서 중량%로, C: 0.01% 이하, N: 0.02% 이하, Si: 0.5% 이하, Mn: 0.5% 이하, P: 0.03%이하, S: 0.004%이하, O: 0.01%이하, Ti: 0.18%이하, Nb: 0.18%이하, Cu: 1.0%이하, Al: 0.03∼0.13%, Mo: 4%이하, Cr:21∼35%를 포함하고, 잔부는 Fe 및 불가피한 불순물로 이루어지며,In order to achieve the above-described object, the present invention provides a weight percentage of a high chromium ferritic stainless steel in terms of weight%, C: 0.01% or less, N: 0.02% or less, Si: 0.5% or less, Mn: 0.5% or less, P: 0.03% S: 0.004% or less, O: 0.01% or less, Ti: 0.18% or less, Nb: 0.18% or less, Cu: 1.0% or less, Al: 0.03 to 0.13%, Mo: 4% or less, Cr: 21 to 35 %, The balance consists of Fe and inevitable impurities,

%(Ti+Nb) < 9 ×(C+N), C+N < 0.03% 의 조건을 만족하는 해수부식 저항성이 우수한 고 크롬 페라이트계 스테인레스강을 제공하는 것을 특징으로 하고 있다.It is characterized by providing a high chromium ferritic stainless steel having excellent seawater corrosion resistance satisfying the conditions of% (Ti + Nb) <9 × (C + N) and C + N <0.03%.

이하, 본 발명강의 조성에 대한 한정한 이유를 자세히 설명한다Hereinafter, the limited reason for the composition of the inventive steel will be described in detail.

C 및 N: 인성의 감소를 최소화하기 위하여 이들 원소 함량 각각의 최대치는 0.01%, 0.02%로 한정한다. 그러나 이들 함량이 적으면 적을수록 재료의 성질, 즉 연신율, 충격인성, 내식성 등을 향상시키므로 최소한은 한정하지 않았다.C and N: The maximum of each of these element contents is limited to 0.01% and 0.02% to minimize the decrease in toughness. However, the less these contents, the more the properties of the material, e.g. elongation, impact toughness, corrosion resistance, etc. improves, so the minimum is not limited.

Si: 탈산 및 내 산화성을 증가시키는 원소이다. 인성의 감소를 억제하기 위해 Si 함량을 0.5% 이내로 제한시킨다.Si: It is an element which increases deoxidation and oxidation resistance. The Si content is limited to within 0.5% to suppress the reduction of toughness.

Mn: 탈산을 증가시키는 원소이다. 그러나 개재물인 MnS은 내식성을 감소시키므로 Mn 함량을 0.5% 이내로 제한시킨다.Mn: Element that increases deoxidation. However, the inclusion MnS reduces the corrosion resistance, limiting the Mn content to within 0.5%.

P: 내식성뿐만 아니라 인성을 감소시키므로 P 함량을 0.03% 이하로 제한시킨다.P: Limits the P content to 0.03% or less as it reduces toughness as well as corrosion resistance.

S: MnS를 형성하여 내식성을 감소시키므로 S 함량을 0.004% 이하로 제한시킨다.S: Since MnS is formed to reduce corrosion resistance, the S content is limited to 0.004% or less.

O: 개재물 함량을 증가시켜서 인성 및 내식성을 감소시킨다. 그러므로 O 함량을 가능한 억제하는 것이 좋으며 0.01% 이하로 제한시킨다.O: Increase the inclusion content to reduce toughness and corrosion resistance. Therefore, it is good to suppress the O content as much as possible and limit it to 0.01% or less.

Cu: 환원성 분위기에서 내식성을 증가시킬 뿐만 아니라 내공식 저항성을 증가시킨다. 그러나 과다한 첨가는 응력부식저항성 및 열간 가공성을 감소시키므로 첨가량을 1.0% 이하로 제한시킨다.Cu: Not only increases corrosion resistance in a reducing atmosphere but also increases pitting resistance. However, excessive addition reduces stress corrosion resistance and hot workability, thus limiting the addition amount to 1.0% or less.

Al: 탈산을 위해 첨가시키는 원소이다. Al의 첨가는 내식성을 증가시킨다. 그러나 산소의 함량이 0.003% 이하일 경우 오히려 강중의 산화성 개재물량을 증가시키므로 주의가 요구된다. Al의 함량이 0.03% 미만에서는 내식성 향상효과가 관찰되지 않으며 Al 함량이 0.13% 초과시 내식성의 향상 없이 개재물의 함량만 증가되므로 Al은 0.03%에서 0.13% 범위로 조절되어야 한다.Al: Element added for deoxidation. The addition of Al increases the corrosion resistance. However, if the oxygen content is less than 0.003%, attention is required because it increases the amount of oxidative inclusions in the steel. When the Al content is less than 0.03%, no improvement in corrosion resistance is observed. When the Al content is more than 0.13%, only the content of inclusions is increased without improving the corrosion resistance. Therefore, Al should be controlled in the range of 0.03% to 0.13%.

Nb, Ti: 예민화를 방지하기 위해 첨가되는 원소이나 인성의 열하를 가져오므로 내식성을 고려하여 첨가량을 최소화 하는 것이 요구된다. 즉 Nb은 0.18%이하, Ti은 0.18%이하로 제한하는 것이 바람직하다. Cr 페라이트강의 경우 (Ti + Nb) 함량이 (C+N)의 함량의 9배가 넘지 않도록 하는 것이 바람직하며, (C+N) 함량의 5배 정도가 보다 바람직하다. 특히 Ti 경우 용접부 굽힘성 및 내식성의 증가를 유해 첨가가 요구되나 과다첨가는 표면 결함을 유발하므로 Nb와의 복합 첨가가 바람직하다.Nb, Ti: Since it brings about the deterioration of element or toughness added to prevent sensitization, it is required to minimize the addition amount in consideration of corrosion resistance. That is, it is preferable to limit Nb to 0.18% or less and Ti to 0.18% or less. In the case of Cr ferritic steel, the content of (Ti + Nb) is preferably not more than 9 times the content of (C + N), and more preferably about 5 times the content of (C + N). In particular, in the case of Ti, the addition of harmfulness is required to increase the weld bendability and the corrosion resistance, but it is preferable to add a complex with Nb because the over addition causes surface defects.

Cr, Mo: 내식성을 증가시키나 인성을 감소시키므로 Cr, Mo의 적정 범위로 첨가되어야 하는 데 Cr함량이 너무 낮으면 내식성 향상에 영향을 미치지 못하므로 21%이상은 되어야 하고, 그러나 Cr함량이 35%를 초과하면 강도가 너무 높아지고 연신율이 낮아져서 성형성이 나빠지며, 냉각할 때 시그마상 석출로 인성이 급격하게 감소한다. 또 Mo은 내식성을 증가시키지만 그 함량이 4%를 초과하면 연신율이 낮아져서 성형성이 나빠지며, 냉각할 때 시그마상 석출로 인성이 급격하게 감소하므로 4%이하로 제한한다.Cr, Mo: To increase the corrosion resistance but decrease the toughness, it should be added in the appropriate range of Cr and Mo. If the Cr content is too low, it does not affect the improvement of corrosion resistance, so it should be more than 21%, but the Cr content is 35% If exceeds, the strength is too high and the elongation is low, resulting in poor moldability, and when cooled, the toughness decreases rapidly due to sigma precipitation. In addition, Mo increases the corrosion resistance, but if the content exceeds 4%, the elongation is lowered, resulting in poor moldability, and when cooled, the toughness decreases rapidly due to sigma precipitation, so it is limited to 4% or less.

이하 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

(실시예)(Example)

표 1과 같은 화학조성을 갖는 스테인레스강을 진공 유도로에서 용해하여 30Kg 잉고트(ingot)를 제조하고, 이 잉고트들을 Ar 분위기에서 1200℃에서 2시간 동안 열처리를 통해 균일화 처리를 하였다. 열처리 후 6mm 두께로 열간압연하고 수냉하였다. 이들 판들을 1000℃에서 1분 동안 열처리로에서 소둔후 3mm 두깨로 냉간 압연을 실시하였다. 최종적으로 950℃에서 30초 동안 냉간 소둔을 실시하여 시편을 만들고, 각각의 시편은 실험전에 SIC #200로까지 연마하였다. 또한 내식성을 비교하기 위해 상용 재인 SUS304과 SUS316에 대하여도 실험을 실시하였다. 여기에서 표 1 내지 4에서의 No.1∼11,13,19,20은 실험재로서 비교재를 나타내며, No.16∼18은 실험재로서 발명재를 나타내고, No.21,22는 상용재를 나타낸다. 또한 표 1의 각 성분함량은 중량%를 나타낸다.The stainless steel having the chemical composition as shown in Table 1 was dissolved in a vacuum induction furnace to prepare 30Kg ingots, and these ingots were subjected to homogenization by heat treatment at 1200 ° C. for 2 hours in an Ar atmosphere. After the heat treatment, hot-rolled and water cooled to a thickness of 6mm. These plates were annealed in a heat treatment furnace at 1000 ° C. for 1 minute and then cold rolled to 3 mm thick. Finally, the specimens were made by cold annealing at 950 ° C. for 30 seconds, and each specimen was ground to SIC # 200 before the experiment. In addition, experiments were also conducted on commercially available SUS304 and SUS316 to compare the corrosion resistance. Nos. 1 to 11, 13, 19, and 20 in Tables 1 to 4 represent comparative materials as test materials, Nos. 16 to 18 represent invention materials as test materials, and Nos. 21 and 22 are commercial materials. Indicates. In addition, each component content of Table 1 represents weight%.

Figure pat00001
Figure pat00001

표 2는 안정화 원소의 첨가에 따른 입계 부식 저항성을 평가하기 위하여 2종류의 실험이 이용되었다. 전자는 EPR(Electropotentiokinetic reactivation) 실험(Corrosion vol 40 1984, 584-593)이며, 후자는 Modified strauss test(ASTMA262-91A-F)이다. 전자의 실험을 위하여 2M H2SO4+ 0.5M NaCl + 0.05M KSCN 용액이 사용되었다. 전자는 입계 부식 저항성을 정량화 하기 위한 실험으로 EPR 값이 낮을수록 저항성이 우수함을 의미한다. 반면 후자는 많이 사용되는 실험 방법으로 입계 부식의 발생 유무를 확인하기 위해 사용되는 실험 법이다. 입계 부식성 평가를 위하여 입계 부식 저항성 실험에 사용된 모든 시편은 실험 전에 620℃에서 10 분간 예민화 열처리를 실시하였다. 상기 실험재의 경우 안정화비가 증가할수록 EPR값은 감소하였다. Strauss test 결과에 따르면 안정화 비((Ti+Nb)/(C+N))가 약9 경우(비교재 1) 에도 예민화가 발생하지 않은 것으로 보아 안정화비가 9이면 예민화를 방지하기에 충분할 것으로 판단된다. 또한 안정화 원소(Ti,Nb)를 첨가하지 않은 경우(비교재 19, 20) 에도 상용재에 비해 EPR 값이 낮았을 뿐만 아니라 그 값이 안정화비가 9인 강과 유사한 것으로 보아 입계부식에 대한 저항성은 우수하였다. 일반적으로 안전화 원소가 입계부식을 방지하기 위한 최소양 이상으로 과첨가되어도 입계부식성에는 큰 변화가 없으나 본 발명강의 경우 인성 저하가 발생되므로 가능한 안정화 원소를 적게 첨가하는 것이 요구된다. 그러므로 인성과 입계 부식성을 고려하여 안정화비를 9이하로 하였다.In Table 2, two experiments were used to evaluate the grain boundary corrosion resistance according to the addition of stabilizing elements. The former is an electropotentiokinetic reactivation (EPR) experiment (Corrosion vol 40 1984, 584-593) and the latter is a modified strauss test (ASTMA262-91A-F). 2M H 2 SO 4 + 0.5M NaCl + 0.05M KSCN solution was used for the former experiment. The former is an experiment to quantify grain boundary corrosion resistance, which means that the lower the EPR value, the better the resistance. On the other hand, the latter is a commonly used test method used to check the occurrence of intergranular corrosion. All specimens used in the intergranular corrosion resistance test were subjected to sensitization heat treatment at 620 ° C. for 10 min before the intergranular corrosion evaluation. In the case of the test material, the EPR value decreased as the stabilization ratio was increased. According to the Strauss test results, no sensitization occurred even when the stabilization ratio ((Ti + Nb) / (C + N)) was about 9 (Comparative Material 1). A stabilization ratio of 9 would be sufficient to prevent sensitization. do. In addition, even when stabilizing elements (Ti, Nb) were not added (Comparative Materials 19 and 20), the EPR value was lower than that of the commercially available material, and the value was similar to that of the steel having a stabilization ratio of 9, which is excellent in resistance to grain boundary corrosion. It was. In general, even if the stabilization element is over-added to the minimum amount to prevent intergranular corrosion, there is no significant change in the intergranular corrosion resistance, but in the case of the steel of the present invention, it is required to add as few stabilizing elements as possible because toughness is lowered. Therefore, the stabilization ratio was set to 9 or less in consideration of toughness and intergranular corrosion.

Figure pat00002
Figure pat00002

표 3은 합금 원소의 변화에 따른 틈 부식 저항성을 측정하기 위해 인위적으로 틈을 만들어서 30, 32.5℃ FeCl3용액(ASTMG48A)에서 실시하였다. 틈 부식 저항성은 개재물 함량이 감소함에 따라 증가하였다. 특히 Al원소의 단독 첨가시 틈부식 저항성은 비교재(1,20)에 비해 증가하였으나 그 정도는 Al함량이 높을 수록(10,11) 비교적 양호하였고, 낮을 수록(8,9) 미비하였다. 또한 Cu 단독 첨가(13)시에도 미비하였다. 그러나 Al과 Cu를 복합 첨가한 발명재(16)는 그 틈부식 저항성은 매우 우수하게 나타났다.Table 3 was performed in 30, 32.5 ℃ FeCl 3 solution (ASTMG48A) artificially made a gap in order to measure the crack corrosion resistance according to the change of alloying elements. The gap corrosion resistance increased with decreasing inclusion content. In particular, the crack corrosion resistance of Al alone was increased compared to the comparative materials (1,20), but the degree of Al was high (10,11), and relatively poor (8,9). It was also inadequate at the time of addition of Cu alone (13). However, the inventive inventive material 16, in which Al and Cu were added in combination, exhibited excellent corrosion resistance.

Figure pat00003
Figure pat00003

도 1은 염수 분위기에서 내식성을 측정하기 위하여 40℃ 2.5M NaC1 용액에서 분극실험을 통하여 공식전위 및 부동태피막에서 전류를 측정하였다. Cu, Al이 복합 첨가된 발명재(Heat No. 16, 18)의 공식전위가 가장 높고 부동태피막에서 전류가 가장 작았다. 즉 두 원소를 복합 첨가시 해수부식 저항성이 가장 우수하였다.Figure 1 was measured the current in the formula potential and passivation film through the polarization test in 40 ℃ 2.5M NaC1 solution in order to measure the corrosion resistance in brine atmosphere. The formula potential of the composite material added with Cu and Al (Heat No. 16, 18) was the highest and the current was smallest in the passivation film. That is, the seawater corrosion resistance was the best when the two elements were combined.

도 2는 안정화 원소 및 불순물이 전체 함량(C+N+O+Nb+Ti)에 따른 인성의 변화를 나타내었다. 여기서 연성 취성 천이온도(DBTT)가 낮을수록 인성이 높음을 의미한다. 인성은 상기 예민화 열처리된 시편 모두에 대해 측정하였다. 이들 농도의 함량이 0.15% 이상에서는 DBTT가 상온에 도달하였으므로 이들 전체 농도의 합이 0.15% 이하로 줄이는 것이 요구된다.Figure 2 shows the change in toughness according to the total content (C + N + O + Nb + Ti) of stabilizing elements and impurities. The lower the soft brittle transition temperature (DBTT) means the higher the toughness. Toughness was measured for all of the sensitized heat treated specimens. When the content of these concentrations is 0.15% or more, since DBTT has reached room temperature, it is required to reduce the sum of these total concentrations to 0.15% or less.

표 4는 해안가 분위기에서 실험재로서 비교재인(1,3,6,6,10,13,20), 발명재인(16) 및 상용재인(21,22)를 대기부식 저항성을 측정하기 위하여 해안선으로부터 30m 떨어진바닷가(포항, 월포)에서 3달간 폭로실험을 실시하였다. 부식정도는 표면 백색도의 감소 정도를 측정하여 판단하였다. 폭로전의 소재의 백색도를 100의 상대적인 값으로 환산후 상대적인 변화량을 측정하였다. 즉 백색도가 100%인 경우 부식이 발생하지 않음을 의미하며 백색도가 감소할수록 부식이 가속됨을 의미한다. 개재물 함량이 감소하고 안정화 원소 함량이 증가함에 따라 내식성은 개선되었다. 표3과 도 1에 각각 나타낸 것처럼 Al 첨가가 틈부식성 및 내식성을 향상시킨다는 사실은 표 4에 나타난 것 처럼 Al 단독 첨가강인 비교재(10)가 대기 내구성(대기 부식 저항성)을 향상시킨다는 실험결과를 잘 설명해주고 있다. 그러나 Cu의 단독첨가강인 비교재(13)은 틈부식성 및 내식성을 저하시킨다는 결과(표3, 도 1)와 상이하게 대기 내구성을 더 향상시켰다. 위의 상이한 결과는 다음의 원인에 기인한다. 즉 Cu가 부동태 피막의 형성에 참여하지 않기 때문에 틈부식 및 부동태 영역에서 저항성은 저하되지만 Cu는 활성화영역 및 이산화황 분위기에서 강한 내식성을 나타내기 때문에 대기 부식성에 강한 저항성을 지니는 것으로 생각된다. 따라서 Cu 및 Al이 복합 첨가된 발명재(16)가 가장 우수한 대기 내구성을 나타내었는데 이는 이들 각 첨가 원소의 영향이 복합적으로 나타났기 때문이다.Table 4 shows the comparative materials (1,3,6,6,10,13,20), the inventors (16) and the commercials (21,22) from the shoreline to measure the atmospheric corrosion resistance as experimental materials in a coastal atmosphere. An experiment was conducted for three months at a beach 30 meters away from Pohang and Wolpo. The degree of corrosion was determined by measuring the degree of decrease in surface whiteness. The relative amount of change after converting the whiteness of the material before exposure to the relative value of 100 was measured. That is, when the whiteness is 100%, it means that no corrosion occurs and that as the whiteness decreases, the corrosion accelerates. Corrosion resistance improved with decreasing inclusion content and increasing stabilizing element content. As shown in Table 3 and FIG. 1, the fact that Al addition improves the gap corrosion resistance and corrosion resistance shows that the comparative material 10, which is an Al-addition steel as shown in Table 4, improves the air durability (air corrosion resistance). It explains well. However, the comparative material 13, which is a single additive steel of Cu, further improved the atmospheric durability unlike the results of reducing the gap corrosion resistance and the corrosion resistance (Table 3, Fig. 1). The different results above are due to the following causes. In other words, since Cu does not participate in the formation of the passivation film, resistance in gap corrosion and passivation regions is lowered, but Cu is considered to have strong resistance to atmospheric corrosiveness because Cu exhibits strong corrosion resistance in the activating region and sulfur dioxide atmosphere. Therefore, the inventive material 16 having a complex addition of Cu and Al exhibited the best atmospheric durability because the influence of each of these additional elements was compounded.

Figure pat00004
Figure pat00004

본 발명에서는 기존 페라이트강에 추가의 정련설비 및 Cr, Mo 함량이 감소없이 미세합금원소를 첨가시켜 내식성 및 인성을 향상시킴과 동시에 Al과 Cu를 복합첨가하여 대기내구성 및 내해수성을 증가시킨 효과가 있다.In the present invention, the additional refinery and the addition of fine alloying elements to the existing ferritic steel without reducing the Cr and Mo content to improve the corrosion resistance and toughness, and at the same time to add Al and Cu composite effect to increase the air durability and sea water resistance have.

Claims (1)

페라이트계 스테인레스강에 있어서, 화학조성이 중량%로, C: 0.01% 이하, N: 0.02% 이하, Si: 0.5% 이하, Mn: 0.5% 이하, P: 0.03%이하, S: 0.004%이하, O: 0.01%이하, Ti: 0.18%이하, Nb: 0.18%이하, Cu: 1.0%이하, Al: 0.03∼0.13%, Mo: 4%이하, Cr:21∼35%를 포함하고, 잔부는 Fe 및 불가피한 불순물로 이루어지며,In ferritic stainless steel, the chemical composition is in weight%, C: 0.01% or less, N: 0.02% or less, Si: 0.5% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.004% or less, O: 0.01% or less, Ti: 0.18% or less, Nb: 0.18% or less, Cu: 1.0% or less, Al: 0.03 to 0.13%, Mo: 4% or less, Cr: 21 to 35%, and the balance is Fe And inevitable impurities, %(Ti+Nb) < 9×(C+N), C+N < 0.03% 의 조건을 만족하는 것을 특징으로 하는 해수부식 저항성이 우수한 고크롬 페라이트계 스테인레스강.A high chromium ferritic stainless steel having excellent seawater corrosion resistance, characterized by satisfying the conditions of% (Ti + Nb) <9 × (C + N) and C + N <0.03%.
KR1019970075375A 1997-12-27 1997-12-27 Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER KR100325708B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970075375A KR100325708B1 (en) 1997-12-27 1997-12-27 Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970075375A KR100325708B1 (en) 1997-12-27 1997-12-27 Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER

Publications (2)

Publication Number Publication Date
KR19990055431A KR19990055431A (en) 1999-07-15
KR100325708B1 true KR100325708B1 (en) 2002-06-29

Family

ID=37478253

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075375A KR100325708B1 (en) 1997-12-27 1997-12-27 Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER

Country Status (1)

Country Link
KR (1) KR100325708B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059440A (en) * 1975-02-01 1977-11-22 Nippon Steel Corporation Highly corrosion resistant ferritic stainless steel
JPS56158850A (en) * 1980-05-13 1981-12-07 Nippon Yakin Kogyo Co Ltd Ferrite stainless steel with superior corrosion resistance, formability and weldability
KR900014620A (en) * 1989-03-17 1990-10-24 야기 야스히로 Stainless steel sheet for building exterior materials and its manufacturing method
JPH09176801A (en) * 1995-10-25 1997-07-08 Kawasaki Steel Corp Ferritic stainless steel excellent in corrosion resistance and productivity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4059440A (en) * 1975-02-01 1977-11-22 Nippon Steel Corporation Highly corrosion resistant ferritic stainless steel
JPS56158850A (en) * 1980-05-13 1981-12-07 Nippon Yakin Kogyo Co Ltd Ferrite stainless steel with superior corrosion resistance, formability and weldability
KR900014620A (en) * 1989-03-17 1990-10-24 야기 야스히로 Stainless steel sheet for building exterior materials and its manufacturing method
JPH09176801A (en) * 1995-10-25 1997-07-08 Kawasaki Steel Corp Ferritic stainless steel excellent in corrosion resistance and productivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
논문1991.1 *

Also Published As

Publication number Publication date
KR19990055431A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
KR100444248B1 (en) High manganese duplex stainless steel having superior hot workabilities and method for manufacturing thereof
JP6223351B2 (en) Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel
EP0545753B1 (en) Duplex stainless steel having improved strength and corrosion resistance
KR101827748B1 (en) Ferrite-martensite dual-phase stainless steel and method for manufacturing the same
KR101632516B1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
PL122888B1 (en) Austenitic stainless steel
JP2009235555A (en) Heat resistant ferritic stainless steel sheet having excellent oxidation resistance
US20120003116A1 (en) Austenitic stainless steel
JP2012193432A (en) Two phase stainless steel for chemical tanker excellent in performance in linear heating
JP5111910B2 (en) Ferritic stainless steel with low surface defects and excellent weldability and crevice corrosion resistance
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP2005089828A (en) Ferritic stainless steel sheet improved in crevice corrosion resistance
JP2021075758A (en) Fe-Ni-Cr-Mo-Cu ALLOY HAVING EXCELLENT CORROSION RESISTANCE
NO149851B (en) AUSTENITIC STAINLESS STEEL.
KR20130034349A (en) Lean duplex stainless steel excellent in corrosion resistance and hot workability
KR100325708B1 (en) Cr-RICH FERRITIC STAINLESS STEEL WITH EXCELLENT CORROSION RESISTANCE AGAINST SEA WATER
US11142814B2 (en) Ferritic-austenitic duplex stainless steel sheet
KR100411286B1 (en) High strength austenitic stainless steel having superior corrosion resistance and weatherability and method for manufacturing steel sheet using the same
JPH06336659A (en) High alloy austenitic stainless steel excellent in hot workability
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
KR102249965B1 (en) Austenitic stainless steel having excellent corrosion resistance of weld
KR100381522B1 (en) High Cr Ferritic Stainless Steel with Excellent Corrosion Resistance and Toughness
JPS59159975A (en) Ferritic chromium stainless steel containing al
KR20220132862A (en) Austenitic stainless steel with excellent corrosion characterisitcs of welding zone and surface characterisitics
JP3525014B2 (en) Austenitic stainless steel with excellent stress corrosion cracking resistance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130129

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20140128

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20150203

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20160202

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20170117

Year of fee payment: 16

EXPY Expiration of term