JPS59159975A - Ferritic chromium stainless steel containing al - Google Patents

Ferritic chromium stainless steel containing al

Info

Publication number
JPS59159975A
JPS59159975A JP3287983A JP3287983A JPS59159975A JP S59159975 A JPS59159975 A JP S59159975A JP 3287983 A JP3287983 A JP 3287983A JP 3287983 A JP3287983 A JP 3287983A JP S59159975 A JPS59159975 A JP S59159975A
Authority
JP
Japan
Prior art keywords
steel
less
corrosion resistance
impurities
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3287983A
Other languages
Japanese (ja)
Other versions
JPH0536492B2 (en
Inventor
Yoshio Taruya
芳男 樽谷
Takeo Kudo
赳夫 工藤
Kaoru Masame
真目 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3287983A priority Critical patent/JPS59159975A/en
Publication of JPS59159975A publication Critical patent/JPS59159975A/en
Publication of JPH0536492B2 publication Critical patent/JPH0536492B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled steel having improved toughness and corrosion resistance by specifying a composition consisting of Cr, Mo, Ni, Al and Fe and by reducing the amounts of C, N, S, Si, Mn and O contained in the composition as impurities. CONSTITUTION:Ferritic chromium stainless steel contg. Al is obtd. by providing a composition consisting of, by weight, 15.00-50.00% Cr, <=5.00% Mo, 0.01- 6.00% Ni, <=1.00% Al and the balance Fe with impurities and by reducing the amounts of C, N, S, Si, Mn and O as the impurities to <=0.0060% C, <=0.0150% N, <=0.0020% S, <=0.15% Si, <=0.15% Mn and <=0.015% O by refining. The composition may further contain 5X(C+N)%-1.00% Ti and/or 8X(C+N)% -1.00% Nb. The steel has superior toughness and intergranular corrosion resistance at the weld zone, and it has superior corrosion resistance, especially pitting corrosion resistance and acid resistance at the base metal.

Description

【発明の詳細な説明】 本発明は、溶接部の靭性と耐粒間腐食性ならびに母材の
耐食性、特に耐孔食性および耐酸性に優れたフェライト
系クロムステンレス鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ferritic chromium stainless steel having excellent welded part toughness and intergranular corrosion resistance, and base metal corrosion resistance, particularly pitting corrosion resistance and acid resistance.

フェライト系クロムステンレス鋼は余り多量のNiを含
有せずCrとMoとにより耐食性の改善がなされている
ため製造時の原料コストが安価であるが、オーステナイ
ト系鋼に比べて靭性、延性が低(また耐食性が劣るとさ
れてきた。しかし、近年の製鋼技術の進歩に伴ってその
ような特性劣化の原因としての鋼中不純物であるC、N
を著しく低減する技術が確立され、また、合金元素ある
いは安定化元素の添加技術が確立したため、その原料コ
ストの安価さに着目した高純度フェライト系クロムステ
ンレス鋼の生産量増加が図られ、一方、耐食性の一層の
向上の方策への検討がなされてきた。
Ferritic chromium stainless steel does not contain a large amount of Ni and has improved corrosion resistance with Cr and Mo, so the raw material cost during production is low, but it has lower toughness and ductility than austenitic steel ( It has also been said that its corrosion resistance is poor.However, with the progress of steel manufacturing technology in recent years, the impurities in steel, such as C and N, have become the cause of such property deterioration.
As technology has been established to significantly reduce the Studies have been conducted on measures to further improve corrosion resistance.

代表的な高純度フェライト系クロムステンレス鋼としで
は、18%Cr−2%Mo、 26%Cr−1%Mo、
 29%Cr−4%Mo、 29%Cr−4%Mo−2
%Ni、 30%Cr−2%門Q等がある。これらの高
純度フェライト系クロムステンレス鋼の最大の特長は、
塩化物を含む溶液中で優れた耐応力腐食割れ性(耐S、
C,C,性−5tress CorrosionCra
ckingの略−ともいう)を発揮する点であり、オー
ステナイト系ステンレス鋼を使用できないC1−イオン
含有の中性環境下での用途を主体にその用途拡大が図ら
れている。
Typical high-purity ferritic chromium stainless steels include 18%Cr-2%Mo, 26%Cr-1%Mo,
29%Cr-4%Mo, 29%Cr-4%Mo-2
%Ni, 30%Cr-2% Q, etc. The biggest features of these high purity ferritic chrome stainless steels are:
Excellent stress corrosion cracking resistance in solutions containing chlorides (resistance to S,
C,C,Sex-5tress CorrosionCra
The use of this material is expected to be expanded, mainly in neutral environments containing C1- ions, where austenitic stainless steel cannot be used.

ところで、今日実施されているフェライト系クロムステ
ンレス鋼の耐食性改善方法は、高Cr化、Mo添加、N
i添加、極低(C+N )化、さらにはTi、Nbなど
の安定化元素添加等である。しかしながら、高Cr化お
よびMo添加はいずれもフェライト系ステンレス鋼とし
ての靭性、特に溶接部靭性を劣化させる方向に作用する
ものであり、常温以下での急激な靭性劣化が見られ、し
たがって、そのような靭性劣化が高純度フェライト系ク
ロムステンレス鋼の広範なる用途拡大をはばんできた。
By the way, methods of improving the corrosion resistance of ferritic chromium stainless steel that are being implemented today include increasing the Cr content, adding Mo, and adding N.
These include addition of i, extremely low (C+N), and addition of stabilizing elements such as Ti and Nb. However, both the increase in Cr and the addition of Mo act in the direction of deteriorating the toughness of ferritic stainless steel, especially the toughness of welds, and rapid deterioration of toughness is observed below room temperature. This deterioration in toughness has hindered the wide range of applications for high-purity ferritic chromium stainless steel.

また、(C十N )の低減化というも溶接部の靭性劣化
防止には十分ではなく、ましてTi、 Nbなどの安定
化元素を添加して(C+N )の影響を軽減しようとす
る場合には、それらの元素の炭、窒化物が多量に生成す
る結果、溶接部の靭性劣化は免れない。
In addition, reducing (C+N) is not sufficient to prevent deterioration of the toughness of the weld, and even more so when attempting to reduce the effect of (C+N) by adding stabilizing elements such as Ti and Nb. As a result of the generation of large amounts of carbon and nitrides of these elements, deterioration of the toughness of the weld is inevitable.

かくして、本発明の目的とするところは、従来の高純度
フェライト系クロムステンレス鋼の欠点とされていた靭
性、耐食性の劣化の問題をなくし、むしろそれらの特性
をいずれも飛躍的に向上させた高純度フェライト系クロ
ムステンレス鋼を提供することにある。
Thus, the purpose of the present invention is to eliminate the problems of deterioration in toughness and corrosion resistance, which were considered drawbacks of conventional high-purity ferritic chromium stainless steels, and to create a high-quality stainless steel that dramatically improves both of these properties. Our goal is to provide high purity ferritic chrome stainless steel.

ここに、本発明者らは、従来の靭性改善の方法について
種々検討したところ、極低C,N化とともに低Si、M
n化、さらに超極細S化および旧添加を図ることにより
、それらの総合的作用効果として、予想外にも、溶接部
も含めたフェライト系クロムステンレス鋼の低温靭性を
著しく改善することを見い出して、本発明を完成したの
である。
Here, the present inventors investigated various conventional methods of improving toughness and found that in addition to extremely low C and N, low Si and M
Unexpectedly, we discovered that by adding n, ultra-fine sulfur, and old additives, the low-temperature toughness of ferritic chromium stainless steel, including welded parts, was significantly improved as a result of their overall effect. , completed the present invention.

さらに、本発明者らは鋼中Sを従来とは一線を画するレ
ベルまで極低化することにより、予想外にも、低Mn化
に伴う熱間変形能の低下、耐食性の劣化を防止し、むし
ろ鋼中Sの超極低化と低Mn化との相乗的作用効果によ
り母材の耐食性、特に耐孔食性、耐誘性、耐酸性を著し
く改善することを見い出して本発明を完成したのである
Furthermore, by extremely lowering the S content in the steel to a level that is in line with conventional methods, the present inventors have unexpectedly been able to prevent the decline in hot deformability and deterioration in corrosion resistance that accompany the reduction in Mn. Rather, the present invention was completed by discovering that the synergistic effect of ultra-low S content and low Mn in steel significantly improves the corrosion resistance of the base material, particularly pitting corrosion resistance, corrosion resistance, and acid resistance. It is.

また、本発明者らは、真空精錬により極低C,N化、お
よびAl添加、さらに所望により、安定化元素としての
Ti、Nbの添加により、溶接部の靭性改善と溶接部の
耐粒間腐食性改善とが著しいことを見い出して、本発明
を完成したのである。
In addition, the present inventors have improved the toughness of the weld zone and the grain resistance of the weld zone by ultra-low C, N content and addition of Al through vacuum refining, and furthermore, if desired, addition of Ti and Nb as stabilizing elements. They discovered that the corrosion resistance was significantly improved and completed the present invention.

ここに、本発明は、重量%で、 Cr : 15.00−50.00%、 Mo : 5
.00%以下。
Here, the present invention includes, in weight%, Cr: 15.00-50.00%, Mo: 5
.. 00% or less.

Ni : 0.01−6.00%、  Al : 1.
00%以下。
Ni: 0.01-6.00%, Al: 1.
00% or less.

さらに、所望により、Ti : 1.00%以下〔ただ
し、Ti上5x (C+N )%〕およびNb : 1
.00%以下〔ただし、Nb上8×(C+N )%〕の
1種または2種を含み、 残部Feおよび不純物 からなり、精錬により不純物としてのC+ N+ S+
 Sl + Mn。
Furthermore, if desired, Ti: 1.00% or less [however, 5x (C+N)% on Ti] and Nb: 1
.. 00% or less [however, 8×(C+N)% on Nb], the remainder consists of Fe and impurities, and by refining, C+ N+ S+ as impurities
Sl + Mn.

0をそれぞれ下記の範囲にまで低減したことを特徴−を
する、旧含有フェライト系クロムステンレス6Ii! 
:C:0.0060%以下、  、 N  :0.01
50%以下、 −3:0.0020%以下、  Si 
: 0.15%以下。
Ferritic chromium stainless steel 6Ii, which is characterized by reducing 0 to the following range.
:C: 0.0060% or less, , N: 0.01
50% or less, -3:0.0020% or less, Si
: 0.15% or less.

Mn : 0.15%以下、   O:0.015%以
下にある。
Mn: 0.15% or less, O: 0.015% or less.

以上からも明らかなように、本発明鋼にあっては、C,
N、S、Si+Mnおよび0の各不純物を極低化したこ
とを特長とするものであって、かかる不純物の同時的低
下は後述する新たに開発された特殊真空精錬法により初
めて可能となったものである。
As is clear from the above, in the steel of the present invention, C,
It is characterized by extremely low levels of N, S, Si+Mn, and 0 impurities, and simultaneous reduction of these impurities was made possible for the first time by a newly developed special vacuum refining method described below. It is.

なお、従来の高純度フェライト系クロムステンレス鋼は
AOD法、VOD法、VIM法、電子ビーム熔解法等に
より溶製されてきたが、これらの従来技術にあっては不
純物としてのC+N+S+5IJnそして0をそれぞれ
同時に上述のような範囲(以下、本発明鋼レベルという
)にまで低減することは不可能であった。すなわち、例
えばAOD法においては鋼中Sを0.0020%以下に
まで低減することは可能であったが、一方、鋼中C,N
を本発明鋼レベルにまで低減することはできず、さらに
また、Si、Mnを本発明鋼レベルにまで低減すること
も脱酸上の制約よりできなかった。また、VOD法、V
IM法、電子ビーム熔解法等の真空溶解法では鋼中のC
5N+Mn+Oを本発明鋼し・\ルにまで低減すること
は可能であったが、鋼中のSを本発明鋼レベルにまで低
減することは不可能であった。
In addition, conventional high-purity ferritic chromium stainless steel has been produced by AOD method, VOD method, VIM method, electron beam melting method, etc., but in these conventional techniques, C+N+S+5IJn and 0 as impurities are removed respectively. At the same time, it was impossible to reduce it to the above range (hereinafter referred to as the steel level of the present invention). That is, for example, in the AOD method, it was possible to reduce S in steel to 0.0020% or less, but on the other hand, C and N in steel
could not be reduced to the level of the steel of the present invention, and furthermore, it was not possible to reduce the content of Si and Mn to the level of the steel of the present invention due to deoxidation restrictions. In addition, VOD method, V
In vacuum melting methods such as IM method and electron beam melting method, carbon in steel is
Although it was possible to reduce 5N+Mn+O to the level of the steel of the present invention, it was not possible to reduce S in the steel to the level of the steel of the present invention.

このように、従来技術にあっても前述の各不純物C+N
+Si+Mn、0のうちの一部のみを極低化させること
は行われていたが、それらのすべてを同時に低下させる
ことはできなかったのであり、そして、そのときの効果
についても知られなかった。すなわち、従来の高純度フ
ェライト系クロムステンレス鋼の如くC,N、S、Si
、Mn、Oのうちのいずれか1種の元素でもが高い場合
には、これらの元素を同時に本発明鋼レベルにまで低減
した際に発揮される筈の各元素低減の本来の性質が本発
明鋼レベルよりも高い一部の不純物元素の存在により隠
蔽されているといえる。そして、それらの各不純物の相
互の関連が明らかにされなかったため、不純物としての
低減効果は、例えば、Sでは50ppm程度で、またC
、Hについてはそれぞれ1100pp、200ppm程
度で飽和してしまうと考えられていたのである。
In this way, even in the conventional technology, each of the above-mentioned impurities C+N
+Si+Mn, although it has been attempted to extremely reduce only a part of 0, it has not been possible to reduce all of them at the same time, and the effect at that time has not been known. That is, like conventional high-purity ferritic chromium stainless steel, C, N, S, and Si
, Mn, and O, the original properties of the reduction of each element that should be exhibited when these elements are simultaneously reduced to the level of the present invention steel are the same as those of the present invention. It can be said that it is hidden by the presence of some impurity elements higher than the steel level. Since the mutual relationship between these impurities was not clarified, the reduction effect as an impurity was, for example, about 50 ppm for S, and for C.
, H were thought to be saturated at about 1100 ppm and 200 ppm, respectively.

次に、本発明鋼のフェライト系クロムステンレス鋼にお
いて各成分の組成範囲を前述のように限定した理由を説
明する。以下、特にことわりがない限り、本明細書にお
いて「%」は「重量%」である。クロム(Cr) : Crは本発明鋼の基本的な耐食性を決、定する重要な元
素である。その含有量を増すに従い耐食性は向上するが
、50.00%を越えて含有せる場合には鍛造が不可能
であり、一方、15.00%未満ではフェライト系ステ
ンレス鋼として十分な耐食性が得られないため、その含
有量を15.00−50.00%と定めた。
Next, the reason why the composition range of each component in the ferritic chromium stainless steel of the steel of the present invention is limited as described above will be explained. Hereinafter, unless otherwise specified, "%" in this specification means "% by weight." Chromium (Cr): Cr is an important element that determines the basic corrosion resistance of the steel of the present invention. Corrosion resistance improves as the content increases, but if the content exceeds 50.00%, forging is impossible, while if it is less than 15.00%, sufficient corrosion resistance is obtained as a ferritic stainless steel. Therefore, its content was set at 15.00-50.00%.

モリブデン(Mo)  : 14oは本発明鋼の耐食性を著しく高める作用を有する
添加元素である。耐誘性、耐酸性、耐孔食性、耐隙間腐
食性改善に対し大きな効果を有する。5.00%を越え
て含有せる場合にはσ(シグマ)相、χ (カイ)相等
の金属間化合物析出に伴う機械的性質の劣化が顕著とな
るため、上限を5.00%とした。
Molybdenum (Mo): 14o is an additive element that has the effect of significantly increasing the corrosion resistance of the steel of the present invention. It has great effects on improving induction resistance, acid resistance, pitting corrosion resistance, and crevice corrosion resistance. If the content exceeds 5.00%, the deterioration of mechanical properties due to the precipitation of intermetallic compounds such as σ (sigma) phase and χ (chi) phase becomes significant, so the upper limit was set at 5.00%.

ニッケル(Ni) : Niは耐酸性を向上し、本発明鋼の不動態化能力を向上
させる。6.00%を越えて含有せる場合にはフェライ
ト単相とすることが困難となり、更にはσ相の析出が顕
著となるため、その上限を6.00%とした。
Nickel (Ni): Ni improves acid resistance and improves the passivation ability of the steel of the present invention. If the content exceeds 6.00%, it becomes difficult to obtain a single ferrite phase, and furthermore, precipitation of the σ phase becomes significant, so the upper limit was set at 6.00%.

0.01%未満では前記作用が認められない。The above effect is not observed at less than 0.01%.

アルミニウム(At)  : A1は溶接熱影響部の靭性改善に対し、鋼中Nによる靭
性劣化を軽減する効果を有する。更に鋼中0を低減する
作用を有し、切欠き効果を有する非金属介在物を減少さ
せ、さらに固溶Nを安定化させることで母材靭性を改善
する。一方、1.00%を越えて添加せる場合には母材
の脆化が顕著となり、さらに熱間での割れを惹起するた
め、上限を1.00%とした。
Aluminum (At): A1 has the effect of improving the toughness of the weld heat affected zone and reducing toughness deterioration due to N in steel. Furthermore, it has the effect of reducing zero in the steel, reduces nonmetallic inclusions that have a notch effect, and improves the toughness of the base metal by stabilizing solid solution N. On the other hand, if it is added in excess of 1.00%, the base material will become noticeably brittle and cracking will occur in hot conditions, so the upper limit was set at 1.00%.

本発明鋼ではAIは積極的に添加される元素であり、残
留Al量としては通常のAt脱酸において残存する不可
避不純物レベルのへ1量とは区別されるものであり、一
般には例えば0.01%を下限とする。好ましくは0゜
015%−0,4%である。
In the steel of the present invention, Al is an element that is actively added, and the amount of residual Al is distinguished from the amount of unavoidable impurities remaining in normal At deoxidation, and is generally, for example, 0. The lower limit is 0.01%. Preferably it is 0°015%-0.4%.

チタン、ニオブ(Ti、Nb )  :TiおよびNb
は、所望により、溶接の際の外部要因によりC,N汚染
に伴う溶接部での耐食性劣化および靭性劣化を防止する
ために添加する。
Titanium, niobium (Ti, Nb): Ti and Nb
is added, if desired, in order to prevent corrosion resistance deterioration and toughness deterioration in the welded part due to C and N contamination caused by external factors during welding.

Tiおよび/またはNbを添加する場合、TiおよびN
bには母材の結晶粒ならびに溶接熱影響部の結晶粒粗大
化を抑制する作用があり、このような効果を十分に発1
車させるためにはTi≧5x (C十N )%、および
Nb≧8x (C+N )%の量だけ必要とする。しか
し、Ti、Nbいずれも多量に存在せる場合にはLav
es相析出が顕著となるほか、靭性の劣化が目立つよう
になるため、それぞれその上限を1.00%とした。
When adding Ti and/or Nb, Ti and Nb
b has the effect of suppressing the coarsening of the crystal grains of the base metal and the weld heat affected zone, and it is necessary to sufficiently develop these effects.
In order to drive a car, amounts of Ti≧5x (C+N)% and Nb≧8x (C+N)% are required. However, if both Ti and Nb are present in large amounts, Lav
Since ES phase precipitation becomes noticeable and deterioration of toughness becomes noticeable, the upper limit was set at 1.00%.

次に本発明鋼において重要な特徴としての不純物の抑制
の理由およびそれにより得られる効果について更に説明
する。
Next, the reason for suppressing impurities as an important feature of the steel of the present invention and the effects obtained thereby will be further explained.

炭素、窒素(C,N ): CおよびNは高純度フェライト系クロムステンレス鋼の
靭性ならびに溶接部の耐粒間腐食性、耐誘性、耐酸性に
大きな影響を有する成分元素であり、本発明者らの知見
によれば、それらの元素の低減効果は飽和することがな
く、鋼中のCおよびNの含有量は少ない程望ましい。本
発明鋼において許容されるC2N!!!度はCr濃度の
上昇に伴い著しく低下する。Cを0.0060%、Nを
0.015%を越えて含有せる場合には溶接部靭性の劣
化が顕著であり、耐粒間腐食性も劣化するため、その上
限をCについては0.006%、Nについては0.01
50%とした。好ましくはCF 0.003%以下、N
  :0.0060%以下である。
Carbon, nitrogen (C, N): C and N are component elements that have a large effect on the toughness of high-purity ferritic chromium stainless steel, as well as the intergranular corrosion resistance, induction resistance, and acid resistance of welded parts. According to their knowledge, the effect of reducing these elements does not reach saturation, and the lower the content of C and N in steel, the more desirable it is. C2N allowed in the steel of the present invention! ! ! The temperature decreases significantly as the Cr concentration increases. If C exceeds 0.0060% and N exceeds 0.015%, the weld toughness deteriorates significantly and intergranular corrosion resistance also deteriorates, so the upper limit for C is set at 0.006%. %, 0.01 for N
It was set at 50%. Preferably CF 0.003% or less, N
: 0.0060% or less.

硫黄(S): Sは耐食性と熱間加工性とを著しく劣化させ、さらには
常温における延性破壊領域における衝撃値を低下させる
傾向がある。Sは0.0020%以下、望ましくは0.
0010%以下とする。後述のように、本発明鋼では靭
性改善の目的などでMn量を0.15%以下に制服する
が、S量が高い場合には鋼中の硫化物がMnSでなく、
むしろ(Fe、Mn ) ”の形態となり母材の耐食性
と熱間における変形能が低下する。それ故Sは上記範囲
に限定する必要がある。
Sulfur (S): S significantly deteriorates corrosion resistance and hot workability, and also tends to lower the impact value in the ductile fracture region at room temperature. S is 0.0020% or less, preferably 0.0020% or less.
0010% or less. As described later, in the steel of the present invention, the Mn content is kept at 0.15% or less for the purpose of improving toughness, but when the S content is high, the sulfides in the steel are not MnS,
Rather, it takes the form of (Fe, Mn)'', which reduces the corrosion resistance and hot deformability of the base metal.Therefore, it is necessary to limit S to the above range.

ケイ素(Si)  : Siは固溶強化により母材の伸びを低下させ、脆性破面
遷移温度を高温側に移行させる。従来の溶製法ではSi
は脱酸材として通常0.20%程度必要であったが、本
発明鋼では高度の真空精錬技術の採用により脱酸材とし
てのSiの添加は不必要である。しかし、溶製時に不可
避不純物として約0.15%程度極微量混入してくるこ
とがあるので、許容上限を0.15%とした。好ましく
はSi : 0.10%以下である。
Silicon (Si): Si reduces the elongation of the base material through solid solution strengthening and shifts the brittle fracture surface transition temperature to the high temperature side. In the conventional melting method, Si
Usually, about 0.20% of Si is required as a deoxidizing agent, but in the steel of the present invention, the addition of Si as a deoxidizing agent is unnecessary due to the adoption of advanced vacuum refining technology. However, since a very small amount of about 0.15% may be mixed in as unavoidable impurities during melting, the allowable upper limit was set at 0.15%. Preferably Si: 0.10% or less.

マンガン(門n): Mnは脆性破面遷移温度を高温側へ移行させる性質が顕
著であり、Mn量は低い程望ましい。その許容上限は不
可避不純物のレベルである0、15%とした。好ましく
は0.10%以下である。
Manganese (phylum n): Mn has a remarkable property of shifting the brittle fracture surface transition temperature to the high temperature side, and the lower the Mn content, the more desirable it is. The allowable upper limit was set at 0.15%, which is the level of unavoidable impurities. Preferably it is 0.10% or less.

酸素(0): 酸素は鋼中で酸化物系非金属介在物として存在し、切欠
き部の割れ発生地点として作用するため、酸素の存在に
よって脆性破面遷移温度が上昇する。さらに、脆性破面
遷移温度以上の延性破壊領域での衝撃吸収エネルギーを
低下させる傾向がある。したがって、酸素の上限は0.
015%とした。0.015%′を越えて酸素を含有せ
る場合には靭性のみではなく、母材の耐食性も劣化する
傾向がある。好ましくは酸素は0.010%以下である
Oxygen (0): Oxygen exists as oxide-based nonmetallic inclusions in steel and acts as a crack initiation point at the notch, so the presence of oxygen increases the brittle fracture transition temperature. Furthermore, it tends to reduce the impact absorption energy in the ductile fracture region above the brittle fracture transition temperature. Therefore, the upper limit of oxygen is 0.
015%. When oxygen is contained in an amount exceeding 0.015%', not only the toughness but also the corrosion resistance of the base material tends to deteriorate. Preferably the oxygen content is 0.010% or less.

なお、本発明にあっては、その他の不可避不純物として
0.7%以下のCu、 0.5%以下のVを含有する場
合がある。これらの不可避不純物は本発明の目的にとっ
て悪影響は及ぼさない。
In addition, in the present invention, 0.7% or less of Cu and 0.5% or less of V may be contained as other unavoidable impurities. These unavoidable impurities have no adverse effect on the purpose of the present invention.

次に、本発明を実施例に関連させてさらに具体的に説明
するが、それに先立って本発明鋼の溶製法について説明
する。
Next, the present invention will be explained in more detail with reference to Examples, but first a method for producing the steel of the present invention will be explained.

すでに述べたように、本発明は前述の各不純物を同時に
極低レベルにまで低減し、それによる各不純物の低減効
果の相乗的作用によって優れた特性を得るものである。
As already mentioned, the present invention reduces each of the impurities mentioned above to an extremely low level at the same time, and obtains excellent properties through the synergistic effect of the reduction effects of each impurity.

そしてかかる不純物の同時的低減を線法によればそのよ
うな不純物の同時的低減が容易に達成できる。
Simultaneous reduction of such impurities can be easily achieved by using the line method.

すなわち、酸素上吹き能力、ガス底吹き能力ならびに粉
体上吹き能力を有する高周波誘導加熱コイルを有する2
、5トン真空精錬炉を使用し、脱硫には脱硫のための造
滓剤を、また、脱炭、脱窒には酸素供給源としての酸化
物粉体をそれぞれArガスキャリヤーとともに音速で特
殊多孔ランスを用いて上吹きによって溶湯面上に供給す
る。この精錬炉は既に実生産にも使用されており、また
これは減圧下(真空下)で鋳込みが可能となるように構
成されている。このように、真空下で音速レベルで上記
のような粉体を上吹きすることにより、溶鋼の攪拌能力
が恭躍的に向上する。したがって、このような精錬法の
採用によって、本発明の好適態様にあっては、26%C
r&liにおいてCが例えば、0.0010%未満(1
0ppm未満)、Nが例えば、0.0040%未満(4
0ppm未満)、そして、Sが0.0002%(2pp
m)という従来では予想だにできなかった超極低化が可
能になる。したがって、本発明においては、真空下にお
いて溶鋼の十分な攪拌が行われる結果、Cの脱酸元素と
しての効果を有効に活用できるために、従来脱酸元素と
して必要とされてきたSi、Mn等の元素の添加を積極
的に低減することが可能になり、かかる元素の低減によ
る優れた効果も併せて利用できるのである。同時に旧も
脱酸材としてではなく、合金元素として積極的に有効に
活用することが可能になったのであり、そして合金元素
としてのAIの添加による優れた作用効果が利用可能と
なったのである。
That is, 2 having a high-frequency induction heating coil having oxygen top-blowing ability, gas bottom-blowing ability, and powder top-blowing ability.
, a 5-ton vacuum smelting furnace is used, and a slag-forming agent for desulfurization is used for desulfurization, and oxide powder as an oxygen supply source is used for decarburization and denitrification using a special porous slag with an Ar gas carrier at the speed of sound. It is supplied onto the molten metal surface by top blowing using a lance. This smelting furnace is already in use in actual production, and is configured to allow casting under reduced pressure (vacuum). In this way, by top-blowing the powder as described above at the sonic speed level under vacuum, the ability to stir molten steel is dramatically improved. Therefore, by employing such a refining method, in a preferred embodiment of the present invention, 26% C
For example, C in r&li is less than 0.0010% (1
N is less than 0.0040% (4
less than 0 ppm), and S is 0.0002% (2 ppm
m), which was previously unimaginable, becomes possible. Therefore, in the present invention, as a result of sufficient stirring of molten steel under vacuum, the effect of C as a deoxidizing element can be effectively utilized, so that Si, Mn, etc., which have conventionally been required as deoxidizing elements, etc. It becomes possible to actively reduce the addition of elements, and the excellent effects of reducing such elements can also be utilized. At the same time, it became possible to actively and effectively utilize AI as an alloying element rather than as a deoxidizer, and the excellent effects of adding AI as an alloying element became possible. .

プ11舛 上述の方法によって溶製した第1表に示す鋼組成を有す
る超高純度フェライト系クロムステンレス鋼を50キロ
丸形インゴツトにそれぞれ鋳込み、鋳込み後、各インゴ
ットは外削後1200℃に1時間半加熱後、30mm 
X 130mm X 100mmに鍛造した。次いで、
1200℃に加熱後950°C以上の温度で熱間圧延を
行い、厚さ7mm 、、幅130mmの熱延板を得、こ
のようにして得られた熱延板を850°Cで焼鈍後空冷
、または1000°Cあるいは1100°Cで焼鈍後水
冷の熱処理を実施した後、試験片に加工した。
Ultra-high purity ferritic chromium stainless steel having the steel composition shown in Table 1 melted by the method described above was cast into 50kg round ingots.After casting, each ingot was heated to 1200℃ after external cutting. After heating for half an hour, 30mm
Forged to 130mm x 100mm. Then,
After heating to 1200°C, hot rolling was performed at a temperature of 950°C or higher to obtain a hot rolled sheet with a thickness of 7 mm and a width of 130 mm, and the thus obtained hot rolled sheet was annealed at 850°C and air cooled. Alternatively, after annealing at 1000°C or 1100°C and then water cooling, the specimens were processed into test pieces.

なお、鋼中のC,Sの分析は高周波燃焼赤外吸収方式を
利用した感度0.lppmの超高性能分析装置であるL
ECO社製C5−144装置を使って行った。
The analysis of C and S in steel uses a high frequency combustion infrared absorption method with a sensitivity of 0. L, an ultra-high performance analyzer with lppm
This was carried out using a C5-144 device manufactured by ECO.

このようにして得られた各試験片についてそれぞれ耐孔
食性、脆性、高温変形能、耐酸性そして耐粒間腐食性を
調べた。これらの試験の結果については同じ(第1表に
まとめて示す。
The pitting corrosion resistance, brittleness, high temperature deformability, acid resistance, and intergranular corrosion resistance of each test piece thus obtained were examined. The results of these tests are the same (collectively shown in Table 1).

(1)耐孔食性: 前記各供試鋼について0.01モルNaC1水溶液(6
0°C)中における孔食電位を測定した。測定は200
m1 /minのArガスで1時間脱気後、20mV/
minで前側へ掃引した際のv’ci=IQDAAで評
価した。測定データは第1表にまとめて示す。
(1) Pitting corrosion resistance: 0.01 mol NaCl aqueous solution (6
The pitting potential at 0°C was measured. The measurement is 200
After degassing with Ar gas at m1/min for 1 hour, 20mV/min
Evaluation was made using v'ci=IQDAA when swept forward at min. The measurement data are summarized in Table 1.

なお、供試鋼2.3.4.12.13.14についての
データにより鋼中Sに対する孔食電位の変化をグラフに
まとめ第1図に示す。これはMnを0.10%以下とし
て、■9%Cr−2%Mo&li1ニおイテ鋼中S量を
0.0002%−0,0048%(2ppm−48pp
m)まで変化させたばあいの鋼中Sの耐孔食性におよぼ
す影響を示すものである。
Incidentally, the changes in pitting corrosion potential with respect to S in steel are summarized in a graph based on the data for test steel 2.3.4.12.13.14 and are shown in FIG. This means that the Mn content is 0.10% or less, and the S amount in the steel is 0.0002%-0,0048% (2ppm-48ppm).
This figure shows the influence of S in steel on the pitting corrosion resistance when it is changed to m).

同図のグラフに示す結果からも明らかなように、孔食電
位は高い程耐食性に優れるが34度が0.002%付近
を境として孔食電位が顕著に劣化しはじめている。一方
、0.0010%以下では安定していることが分かる。
As is clear from the results shown in the graph of the same figure, the higher the pitting corrosion potential, the better the corrosion resistance, but the pitting corrosion potential begins to deteriorate significantly at 34 degrees, which is around 0.002%. On the other hand, it can be seen that it is stable at 0.0010% or less.

図中、番号は第1表の供試鋼番号を示す。In the figure, the numbers indicate the test steel numbers in Table 1.

(2)脆性: 本例の場合、前記の各供試鋼について得られた熱延板に
1000°C,Arガス雰囲気下で20分間の焼鈍処理
を行い、次いで水冷した。このようにして得られた試験
片についてシャルピー衝撃試験を行い、脆性破面遷移温
度を測定した。なお、試験片サイズはJIS4号フルサ
イズシャルピー衝撃試験片とした。結果は第1表にまと
めて示す。
(2) Brittleness: In the case of this example, the hot-rolled sheets obtained for each of the above-mentioned test steels were annealed at 1000°C in an Ar gas atmosphere for 20 minutes, and then water-cooled. A Charpy impact test was conducted on the test piece thus obtained, and the brittle fracture surface transition temperature was measured. The test piece size was a JIS No. 4 full size Charpy impact test piece. The results are summarized in Table 1.

なお、供試鋼5.16.17について得られたデータを
グラフにまとめて第2図に示す。これらのデータはS量
を0.0010%未満としてMn量を変化させた際の2
6%Cr−1%Mo鋼の脆性破面遷移温度(’vTrs
 ’C)の変化を示すものである。
In addition, the data obtained for sample steel 5.16.17 are summarized in a graph and shown in FIG. These data show 2 when the S content is less than 0.0010% and the Mn content is changed.
Brittle fracture transition temperature ('vTrs
'C) shows the change.

図示のグラフからも明らかなように、Mn量の増加とと
もにvTrs  が上昇し、Mn量は低い程望ましいこ
とが分かる。本発明鋼レベルに比べMn量が0.20%
と従来鋼レベルにまで高い供試鋼16ではvTrsは3
5℃と室温以上であり常温での使用においても問題であ
ることがわかる。
As is clear from the graph shown, vTrs increases as the amount of Mn increases, and it can be seen that the lower the amount of Mn, the more desirable it is. Mn content is 0.20% compared to the present invention steel level
For test steel 16, which is as high as the conventional steel level, vTrs is 3.
It can be seen that the temperature is 5°C, which is higher than room temperature, which is a problem even when used at room temperature.

供試鋼として第1表の供試as、e、7.+5を使いT
IGなめ付は溶接熱影響部の靭性を検討した。素材は熱
間圧延後1000℃、Arガス雰囲気下で20分間の焼
鈍処理を行い、次いで水冷し、更に60%の冷間圧延を
実施し、最終焼鈍として920℃、Arガス雰囲気下で
2分間保持後水冷したものを用いた。Arガス流量10
j2/min、電流65〜75A、溶接速度120 m
m/minでTIGなめ後、溶接熱影響部がシャルピー
衝撃試験片のノツチ部となるようにシャルピー衝撃試験
片を圧延長手方向に加工した。このようにして得られた
試験片についてシャルピー衝撃試験を行い、脆性破面遷
移温度を測定した。なお、試験片サイズはJIS d号
ハーフ号イズシャルビー衝撃試験片とした。得られた結
果を第3図にグラフでまとめて示す。 図示のグラフか
らも明らかなように、AI添加により母材の低温靭性が
改善されるばかりでなく、溶接熱影響部における靭性改
善かはがられることが分かる。
The test steels listed in Table 1 are as, e, and 7. Use +5 and T
IG tanning was used to examine the toughness of the weld heat affected zone. After hot rolling, the material was annealed at 1000°C for 20 minutes in an Ar gas atmosphere, then water cooled, further cold rolled by 60%, and finally annealed at 920°C for 2 minutes in an Ar gas atmosphere. The sample was cooled with water after being held. Ar gas flow rate 10
j2/min, current 65-75A, welding speed 120 m
After TIG licking at m/min, the Charpy impact test piece was machined in the rolling longitudinal direction so that the weld heat affected zone became the notch part of the Charpy impact test piece. A Charpy impact test was conducted on the test piece thus obtained, and the brittle fracture surface transition temperature was measured. The test piece size was a JIS d half-Is Charby impact test piece. The obtained results are summarized in a graph in FIG. As is clear from the graph shown, the addition of AI not only improves the low-temperature toughness of the base metal, but also improves the toughness in the weld heat affected zone.

(3)高温変形能: 26%Cr以上の高Crフェライトステンレス鋼につい
て下記要領で落錘試験を実施することにより高温での変
形能を評価した。
(3) High-temperature deformability: High-Cr ferritic stainless steel of 26% Cr or higher was evaluated for high-temperature deformability by conducting a falling weight test in the manner described below.

ここに、上記落錘試験とは1200’Cに加熱した直径
15mm、高さ20mmの円柱型試験片をハンマー型プ
レスで瞬時に高さ7mmの偏平片とし、端面の割れの状
況如何により高温での変形能を評価するものである。
Here, the above-mentioned falling weight test means that a cylindrical test piece with a diameter of 15 mm and a height of 20 mm heated to 1200'C is instantaneously made into a flat piece with a height of 7 mm using a hammer press. This is to evaluate the deformability of.

変形能が良好であれば、端面に割れが発生しないが、変
形能が不十分である場合には割れが発生する。第1表に
その結果をまとめて示す。低Mnで鋼中sMが本発明鋼
レベルを越えて高い場合には割れが大となっていること
がわかる。
If the deformability is good, cracks will not occur on the end face, but if the deformability is insufficient, cracks will occur. Table 1 summarizes the results. It can be seen that cracks become large when the Mn content is low and the sM in the steel is higher than the level of the steel of the present invention.

(4)耐酸性: 26%Crの供試鋼5,6,7,15,16,17.1
8および29%Crの供試鋼8,9,19.20につき
15%NaCl含有(7)pH1、H2SO4溶液中で
下記要領で沸騰試験を実施した。浸漬時間は6時間であ
り、評価は6時間当たりの平均腐食速度による。
(4) Acid resistance: 26% Cr test steel 5, 6, 7, 15, 16, 17.1
A boiling test was conducted on test steels 8, 9, and 19.20 of 8 and 29% Cr in a (7) pH 1, H2SO4 solution containing 15% NaCl as follows. The immersion time was 6 hours, and the evaluation was based on the average corrosion rate per 6 hours.

なお、試験片寸法は3mm X 10mm X 40m
m  であり、湿式エメリー付600番研磨とした。そ
して、それぞれ2本の試験片の平均値でもって耐酸性を
評価した。
The test piece dimensions are 3mm x 10mm x 40m
m and was polished No. 600 with wet emery. Then, acid resistance was evaluated using the average value of two test pieces.

結果を同じく第1表にまとめて示すが、Ni含有の供試
鋼9において耐酸性が著しく向上しているのがわかる。
The results are also summarized in Table 1, and it can be seen that the acid resistance of Ni-containing test steel 9 was significantly improved.

(5)耐粒間腐食性: 耐粒間腐食性を評価するために、第1表の各供試鋼につ
いてTIGなめ試験片の硫酸−硫酸第二鉄試験(JIS
 G’0572)を行った。TIGなめ付は静ガス流量
10j2/min、電流65〜75A、溶接速度120
 mm/minの条件下で行った。これらの試験結果は
第1表にまとめて示す。
(5) Intergranular corrosion resistance: In order to evaluate the intergranular corrosion resistance, the sulfuric acid-ferric sulfate test (JIS
G'0572) was carried out. For TIG tanning, static gas flow rate is 10j2/min, current is 65 to 75A, and welding speed is 120.
It was carried out under the condition of mm/min. The results of these tests are summarized in Table 1.

これらの結果からも明らかなように、AI添加により溶
接熱影響部の耐粒間腐食性が向上し、一方、供試鋼11
.12.13.14.15のAI無添加材では表面より
数ダレインの結晶粒脱落が認められた。表中記号G、 
 Lは熱影響部での結晶粒脱落を示す。
As is clear from these results, the intergranular corrosion resistance of the weld heat-affected zone was improved by the addition of AI;
.. In the AI-free materials of No. 12, 13, 14, and 15, several dales of crystal grains were observed to have fallen from the surface. Symbol G in the table,
L indicates crystal grain dropout in the heat affected zone.

以上、本発明について詳述してきたが、本発明にかかる
高純度フェライト系クロムステンレス鋼は鋼中の不純物
としてのC+N+S+Si、Mn、oを同時に従来とは
一線を画するレベルにまで低減することにより、溶接部
を含めたクロムステンレス鋼の靭性と耐粒間腐食性、な
らびに母材の耐食性、特に耐孔食性、耐酸性を著しく改
善したものであり、その工業的価値は極めて高いもので
ある。
The present invention has been described in detail above, but the high-purity ferritic chromium stainless steel according to the present invention simultaneously reduces C+N+S+Si, Mn, and o as impurities in the steel to a level that is in line with conventional methods. , which significantly improves the toughness and intergranular corrosion resistance of chromium stainless steel including welded parts, as well as the corrosion resistance of the base metal, especially pitting corrosion resistance and acid resistance, and has extremely high industrial value.

@1表つづき)@1 table continued)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼中Sの耐食性におよぼす影響を示すグラフ
; 第2図は、鋼中Mnの靭性におよぼす影響を示すグラフ
;および 第3図は、同じくへ1添加の鋼靭性におよぼす影響を示
すグラフである。 特許出願人   住友金属工業株式会社代理人 弁理士
 広 瀬 章 − 8含有量(ppm) 第2図 Mn(’/、、プ
Figure 1 is a graph showing the effect of S in steel on corrosion resistance; Figure 2 is a graph showing the effect of Mn in steel on toughness; and Figure 3 is the effect of adding 1 to steel on steel toughness. This is a graph showing. Patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - 8 Content (ppm) Figure 2 Mn('/,,P

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 Cr : 15.00−50.00%、 Mo : 5
.00%以下、 −Ni : 0.01−6.00%、
  Al : 1.00%以下。 残部Feおよび不純物 からなり、精錬により不純物としてのC,N、 S、 
Si+ Mn+0をそれぞれ下記の範囲にまで低減した
ことを特徴をする、Al含有フェライト系クロムステン
レス鋼:C:o、ooeo%以下、  N  :0.0
150%以下。 S  :0.0020%以下、  Si : 0.15
%以下。 Mn : 0.15%以下、   O:0.015%以
下。
(1) Weight%: Cr: 15.00-50.00%, Mo: 5
.. 00% or less, -Ni: 0.01-6.00%,
Al: 1.00% or less. The remainder consists of Fe and impurities, and as a result of refining, impurities such as C, N, S,
Al-containing ferritic chromium stainless steel characterized by reducing Si+Mn+0 to the following ranges: C: o, ooeo% or less, N: 0.0
150% or less. S: 0.0020% or less, Si: 0.15
%below. Mn: 0.15% or less, O: 0.015% or less.
(2)重量%で、 Cr : 15,00−50.00%、 Mo : 5
.00%以下。 Ni : 0.01−6.00%、  Al : 1.
00%以下。 さらに、Ti : 1.00%以下〔ただし、Ti上5
x (C十N)%〕およびNb : 1.00%以下〔
ただし、Nb上8x (C+N )%〕の1種または2
種を含み、残部Feおよび不純物 からなり、精錬により不純物としてのC,N、s、Si
、Mn・0をそれぞれ下記の範囲にまで低減したことを
特徴をする、Al含有フェライト系クロムステンレス鋼
:c :0.0060%以下、  N  :0.015
0%以下。 S  :0.0020%以下、  Si : 0.15
%以下。 Mn : 0.15%以下、   0  :0.015
%以下。
(2) Weight%: Cr: 15.00-50.00%, Mo: 5
.. 00% or less. Ni: 0.01-6.00%, Al: 1.
00% or less. Furthermore, Ti: 1.00% or less [however, 5% on Ti
x (C1N)%] and Nb: 1.00% or less [
However, 1 or 2 types of 8x (C+N)% on Nb
Contains seeds, the balance consists of Fe and impurities, and by refining, C, N, s, Si as impurities
, Al-containing ferritic chromium stainless steel characterized by reducing Mn・0 to the following ranges: c: 0.0060% or less, N: 0.015
Less than 0%. S: 0.0020% or less, Si: 0.15
%below. Mn: 0.15% or less, 0:0.015
%below.
JP3287983A 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al Granted JPS59159975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287983A JPS59159975A (en) 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287983A JPS59159975A (en) 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al

Publications (2)

Publication Number Publication Date
JPS59159975A true JPS59159975A (en) 1984-09-10
JPH0536492B2 JPH0536492B2 (en) 1993-05-31

Family

ID=12371158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287983A Granted JPS59159975A (en) 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al

Country Status (1)

Country Link
JP (1) JPS59159975A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276955A (en) * 1985-05-31 1986-12-06 Nippon Steel Corp Ferrite single phase stainless steel which does not generate surface flaw
JP2009038366A (en) * 2007-07-09 2009-02-19 Jfe Seimitsu Kk Heat radiating component for semiconductor, case for semiconductor and carrier for semiconductor with the same attached, and package with the same as base
TWI499465B (en) * 2010-01-28 2015-09-11 Jfe Steel Corp High-toughness and high-corrosion resistance hot rolled ferritic stainless steel sheet
CN108866429A (en) * 2017-05-10 2018-11-23 现代自动车株式会社 There is the improved corten of corrosion resistance and preparation method thereof in a corrosive environment for vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122414A (en) * 1974-03-07 1975-09-26
JPS50144622A (en) * 1974-05-11 1975-11-20
JPS5135368A (en) * 1974-09-20 1976-03-25 Tamura Electric Works Ltd Rajioto no taimaaseigyokiko
JPS5536703A (en) * 1978-09-06 1980-03-14 Toshiba Corp Transducer for pressure gauge
JPS5620349A (en) * 1979-07-28 1981-02-25 Fujitsu Ltd Timer correction system of broadcast confirmation system
JPS5634626A (en) * 1979-08-31 1981-04-06 Kureha Chem Ind Co Ltd Anti-inflammatory
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance
JPS5985848A (en) * 1982-11-08 1984-05-17 Sumitomo Metal Ind Ltd Ferritic stainless steel plate with superior rust resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122414A (en) * 1974-03-07 1975-09-26
JPS50144622A (en) * 1974-05-11 1975-11-20
JPS5135368A (en) * 1974-09-20 1976-03-25 Tamura Electric Works Ltd Rajioto no taimaaseigyokiko
JPS5536703A (en) * 1978-09-06 1980-03-14 Toshiba Corp Transducer for pressure gauge
JPS5620349A (en) * 1979-07-28 1981-02-25 Fujitsu Ltd Timer correction system of broadcast confirmation system
JPS5634626A (en) * 1979-08-31 1981-04-06 Kureha Chem Ind Co Ltd Anti-inflammatory
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance
JPS5985848A (en) * 1982-11-08 1984-05-17 Sumitomo Metal Ind Ltd Ferritic stainless steel plate with superior rust resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276955A (en) * 1985-05-31 1986-12-06 Nippon Steel Corp Ferrite single phase stainless steel which does not generate surface flaw
JP2009038366A (en) * 2007-07-09 2009-02-19 Jfe Seimitsu Kk Heat radiating component for semiconductor, case for semiconductor and carrier for semiconductor with the same attached, and package with the same as base
TWI499465B (en) * 2010-01-28 2015-09-11 Jfe Steel Corp High-toughness and high-corrosion resistance hot rolled ferritic stainless steel sheet
CN108866429A (en) * 2017-05-10 2018-11-23 现代自动车株式会社 There is the improved corten of corrosion resistance and preparation method thereof in a corrosive environment for vehicle

Also Published As

Publication number Publication date
JPH0536492B2 (en) 1993-05-31

Similar Documents

Publication Publication Date Title
EP1918399B9 (en) Ferritic stainless-steel sheet with excellent corrosion resistance and process for producing the same
JP5685198B2 (en) Ferritic-austenitic stainless steel
EP2258885A1 (en) Low-alloy duplex stainless steel wherein weld heat-affected zones have good corrosion resistance and toughness
JPH09267190A (en) Welding wire for high crome ferrite wire
JP2021036077A (en) HIGH-Mn STEEL
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP3022746B2 (en) Welding material for high corrosion resistance and high toughness duplex stainless steel welding
WO2011105591A1 (en) Low-chromium-content stainless steel with excellent corrosion resistance of weld
JP6222806B2 (en) High corrosion resistance duplex stainless steel with excellent brittleness resistance
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
RU2522065C1 (en) Structural sheet stainless steel having excellent weld corrosion resistance, and its making method
JPS59159974A (en) Ferritic chromium stainless steel
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JPS59159975A (en) Ferritic chromium stainless steel containing al
JP2826819B2 (en) Method for producing high-strength stainless steel with excellent workability and no welding softening
JPS6254063A (en) Martensitic stainless steel for oil well tube
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP3567603B2 (en) High chromium ferritic steel with excellent toughness, weld joint creep characteristics and hot workability after PWHT
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JPS59211556A (en) Ferritic-austenitic two-phase stainless steel
JP4297631B2 (en) Chromium-containing steel with excellent intergranular corrosion resistance and low temperature toughness of welds
JPH02294452A (en) Ferritic heat resisting steel excellent in toughness in welded bond zone
JPS5852460A (en) High strength chromium steel with superior weathering resistance and weldability
JP2002146481A (en) Oxide dispersion strengthened ferritic steel for electric resistance welded boiler having excellent electric resistance weldability and steel tube thereof