JPH02294452A - Ferritic heat resisting steel excellent in toughness in welded bond zone - Google Patents

Ferritic heat resisting steel excellent in toughness in welded bond zone

Info

Publication number
JPH02294452A
JPH02294452A JP11340389A JP11340389A JPH02294452A JP H02294452 A JPH02294452 A JP H02294452A JP 11340389 A JP11340389 A JP 11340389A JP 11340389 A JP11340389 A JP 11340389A JP H02294452 A JPH02294452 A JP H02294452A
Authority
JP
Japan
Prior art keywords
steel
toughness
less
strength
creep
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11340389A
Other languages
Japanese (ja)
Other versions
JPH068487B2 (en
Inventor
Hiroshi Hasegawa
泰士 長谷川
Hirotsugu Haga
芳賀 博世
Nobuo Mizuhashi
伸雄 水橋
Masahiro Ogami
正浩 大神
Hisashi Naoi
久 直井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11340389A priority Critical patent/JPH068487B2/en
Publication of JPH02294452A publication Critical patent/JPH02294452A/en
Publication of JPH068487B2 publication Critical patent/JPH068487B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To remove the remaining of delta-ferrite and to improve toughness in a welded bond zone by specifying the components of a steel and particularly limiting the relationship among the additive quantities of Mn, Ni, and Cu. CONSTITUTION:A ferritic heat resisting steel has a composition which consists of, by weight, 0.01-0.30% C, 0.02-0.80% Si, 0.20-3.00% Mn, 8.00-13.00% Cr, 0.05-1.00% Ni, 0.005-1.00% Mo, 0.50-3.00% W, 0.05-0.50% V, 0.02-0.12% Nb, 0.0003-0.008% B, 0.10-5.00% Cu, 0.0005-0.10% Zr, 0.01-0.10% N, <=0.050% P, <=0.010% S, <=0.020% O, and the balance Fe with inevitable impurities and in which the condition of Mn%+Ni%+2Cu%<=12 is further satisfied, or further, Ta and/or Hf and Co and/or Ti are incorporated to the above composition and the condition of Mn%+Ni%+Co%+2Cu%<=12 is satisfied. This steel is applicable to a steel for boiler steel tube, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、フェライト系耐熱綱に関するものであり、さ
らに詳しくは高温・高圧環境下で使用するフェライト系
Cr含有ボイラ鋼管用鋼に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a ferritic heat-resistant steel, and more specifically to a ferritic Cr-containing boiler steel pipe steel used in high temperature and high pressure environments. .

(従来の技術) 近年、火力発電ボイラの操業条件は高温、高圧化が著し
く、一部では566゜C.310気圧での操業が計画さ
れている。将来的には650゜C.350気圧迄の条件
が想定されており、使用する材料には極めて苛酷な条件
となっている。
(Prior Art) In recent years, the operating conditions of thermal power generation boilers have become significantly higher in temperature and pressure, and in some cases, temperatures have reached 566°C. It is planned to operate at 310 atmospheres. In the future, 650°C. Conditions of up to 350 atmospheres are assumed, which is an extremely harsh condition for the materials used.

操業温度が550゜Cを超える場合において、使用材料
の選択にあたり、耐酸化性,高温強度の点から例えば、
フェライト系の2 ′/4Cr  I Mo鋼から18
−8ステンレス鋼のごとく、オーステナイト系の高級鋼
へと、材料特性においてもまたコストの面からも過度に
高い材料を使用しているのが現状である。
When the operating temperature exceeds 550°C, when selecting the material to be used, from the viewpoint of oxidation resistance and high temperature strength, for example,
18 from ferritic 2'/4Cr I Mo steel
At present, materials such as high-grade austenitic steel such as -8 stainless steel are used which are excessively high in terms of material properties and cost.

2 %Cr  I Mo鋼とオーステナイト系ステンレ
ス鋼の中間を埋めるための鋼材は、過去数十年間模索さ
れている。Cr量が中間の9Cr,12Cr等のボイラ
鋼管は以上の背景をもとに開発された耐熱鋼であるが、
クリープ強度を高めると、その溶接部特性が悪化する。
Steel materials that fill the gap between 2% Cr I Mo steel and austenitic stainless steel have been sought for the past several decades. Boiler steel pipes with intermediate Cr content, such as 9Cr and 12Cr, are heat-resistant steels developed based on the above background.
Increasing the creep strength deteriorates the weld properties.

従って、ボイ.ラ建造時および改修時の施工において作
業能率が著しく低下するため、実用化されにくいといっ
た問題点を有している. このような観点からクリープ強度が高く、同時に溶接部
特性の優れた9Crおよび12Crtg4の出現が待ち
望まれていた. また、ボイラを製造するための溶接工程としては溶接一
溶接後熱処理(Post Weld Heat Tre
at+went :以下PWHT)もしくは熱間加工後
溶接一PWHTを行なう方法が採られている。従ってこ
のようなボイラ用鋼に要求される性能としては溶接施工
性に優れていることは言うまでもなく、これらの熱履歴
を受けた後においても溶接部.母材共に十分な強度と靭
性を維持していることが重要である。
Therefore, Boi. This method has the problem of being difficult to put into practical use because it significantly reduces work efficiency during construction and renovation. From this point of view, the emergence of 9Cr and 12Crtg4, which have high creep strength and excellent weld properties, has been eagerly awaited. In addition, the welding process for manufacturing boilers includes welding and post-weld heat treatment.
At+went (hereinafter referred to as PWHT) or a method of performing welding-PWHT after hot working is adopted. Therefore, it goes without saying that the performance required of such boiler steel is excellent weldability, and even after being subjected to this thermal history, the welded part remains intact. It is important that both the base metal maintain sufficient strength and toughness.

このような観点から、従来には既に、溶接施工性を向上
させてなおかつクリープ破断強度も従来材を大幅に上回
る新しい鋼が特開昭63−89644号公報,特開昭6
1−231139号公報,特開昭62−297435号
公報に開示されている. これらの綱は従来の耐熱鋼にWを固溶させることによっ
てクリープ強度を飛躍的に高めた材料であるが、反面、
Wの添加によってCr当量値が上昇し、従来材に比較し
て高い値となるために、母材はマルテンサイトあるいは
焼き戻しマルテンサイト単相の組織であるものの、溶接
ボンド部においては、冷却速度が早いために、融点直下
のフェライト相(以降便宜上δフェライトと称する)が
未変態のままボンド部に沿ってバンド状に残留し、溶接
ボンド部の靭性が著しく低下することがその後の本発明
者らの詳細な研究によって明らかとなった。
From this point of view, new steels with improved weldability and significantly higher creep rupture strength than conventional materials have already been published in JP-A-63-89644 and JP-A-6.
This method is disclosed in Japanese Patent Publication No. 1-231139 and Japanese Patent Application Laid-Open No. 62-297435. These steels are made of conventional heat-resistant steel that has dramatically increased creep strength by incorporating W as a solid solution, but on the other hand,
The addition of W increases the Cr equivalent value, which is higher than that of conventional materials. Therefore, although the base metal has a martensite or tempered martensite single phase structure, the cooling rate at the weld bond increases. The present inventors subsequently discovered that because the ferrite phase just below the melting point (hereinafter referred to as δ ferrite for convenience) remains untransformed in a band shape along the bond, the toughness of the weld bond significantly decreases. This was revealed through detailed research by et al.

しかも、未変態の残留δフェライトはPWHTでは消失
せず、溶接後の冷却時に完全変態させることが最も効果
的であることが判明した。
Furthermore, it has been found that the untransformed residual δ ferrite does not disappear by PWHT, and it is most effective to completely transform it during cooling after welding.

本発明者らは更に研究を進め、Cuを従来の鋼に含有さ
せ、しかもMn, Ni, Cuの添加量がMn%+N
i%+2Cu%≦12 なる条件を満たす場合には、これらの鋼の優れた高温特
性を全く損なうことなく、溶接部特性.特に溶接ボンド
部靭性の優れた耐熱鋼を開発することに成功した。
The present inventors further conducted research and added Cu to conventional steel, and further increased the amount of Mn, Ni, and Cu added to Mn%+N.
i%+2Cu%≦12 When the condition is satisfied, the welded part properties are improved without any loss of the excellent high temperature properties of these steels. In particular, we succeeded in developing a heat-resistant steel with excellent weld bond toughness.

Wを固熔させてクリープ強度を高め、Cuを添加して溶
接部靭性を向上させた耐熱鋼は殆ど前例がない, Cu
を0.4〜1.5%添加した耐熱鋼が特公昭62−12
304号公報に開示されているが、この鋼はWが0.0
5〜0.5%と低く、本発明鋼のごとき高いクリープ強
度を同時に達成することは不可能である。Cuを1.0
%以下添加した耐熱鋼として特開昭60−155649
号公報の開示がある.この鋼はMo+Wが0.5〜2.
5%と高く、同時にある程度のクリープ強度も得られる
ものの、母材の靭性向上および強度向上に必要なN,お
よびNbに関する制限がなく、靭性.強度共に本発明鋼
と同等にはなり得ない。
There is almost no precedent for heat-resistant steel in which W is solidified to increase creep strength and Cu is added to improve weld toughness.Cu
Heat-resistant steel containing 0.4 to 1.5% of
Although disclosed in Publication No. 304, this steel has a W of 0.0.
As low as 5 to 0.5%, it is impossible to simultaneously achieve a high creep strength such as that of the steel of the present invention. Cu 1.0
JP-A-60-155649 as heat-resistant steel with addition of less than %
There is a disclosure of the issue. This steel has Mo+W of 0.5 to 2.
5%, and at the same time a certain degree of creep strength can be obtained, but there are no restrictions on N and Nb, which are necessary to improve the toughness and strength of the base metal, and the toughness. Both strength cannot be equal to that of the steel of the present invention.

(発明が解決しようとする課題) 本発明は上記のような従来の欠点、即ち高いクリープ強
度を有するCr含有フェライト系耐熱鋼において溶接に
よって溶接ボンド部にバンド状に残留するδフェライト
に起因する靭性低下を防止し、溶接部特性の優れた耐熱
鋼の製造を可能ならしめるものであって、Cuを0.1
0〜5.00%含有し、しかもMn, Ni, Co,
 Cuの添加量がMn%+Ni%+Co%+2Cu%≦
12なる条件を満たすように含有量を制限することでδ
フェライトの残留が全くない耐熱鋼を提供することを目
的としたものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned conventional drawbacks, namely, the toughness caused by δ ferrite remaining in a band shape at the weld bond part during welding in Cr-containing ferritic heat-resistant steel with high creep strength. This makes it possible to manufacture heat-resistant steel with excellent welding properties by preventing the deterioration of the welded part.
Contains 0 to 5.00%, and also contains Mn, Ni, Co,
Addition amount of Cu is Mn%+Ni%+Co%+2Cu%≦
By limiting the content to satisfy the condition 12, δ
The objective is to provide a heat-resistant steel with no residual ferrite.

(課題を解決するための手段) 本発明は以上の知見に基づいてなされたもので、その要
旨とするところは重量%でC : 0. 0 1〜0.
30%,  Si : 0.0 2〜0.8 0%,M
n:0.20〜3.00%,  Cr: 8.0 0〜
1 3.0 0%,  Ni:  0.05〜1. 0
0%,W:o.so〜3. O O%,Mo:0.00
5〜1.00%,V:0.05〜0.50%,Nb:0
.02〜0.12%,  B : 0.0003 〜0
. 0 0 8%,  Cu:  0.10〜5.00
%, Zr: 0.0 0 0 5〜0. 1 0%を
含有し、P: 0. 0 5 0%以下,S:0.01
0%以下,0:0. 0 2 0%以下に制限し、ある
いは更に(A)Ta:0.01〜1.00%,Hf:0
.01〜1.00%の1種または2種および/または(
B)Co:0.01〜1.00%,Ti;0.01〜0
.10%の1種または2種を含有し、加えてMn, N
i. Co, Cuの添加量がMn%+Ni%+Co%
±2Cu%≦12なる条件を満たし、残部がFeおよび
不可避の不純物よりなることを特徴とする溶接ボンド部
靭性の優れたフェライト系耐熱鋼である。
(Means for Solving the Problems) The present invention has been made based on the above findings, and its gist is that C: 0. 0 1~0.
30%, Si: 0.0 2~0.8 0%, M
n: 0.20~3.00%, Cr: 8.0 0~
13.00%, Ni: 0.05-1. 0
0%, W:o. so~3. O O%, Mo: 0.00
5-1.00%, V: 0.05-0.50%, Nb: 0
.. 02-0.12%, B: 0.0003-0
.. 0 0 8%, Cu: 0.10-5.00
%, Zr: 0.0 0 0 5~0. Contains 10%, P: 0. 0 5 0% or less, S: 0.01
0% or less, 0:0. 0 2 0% or less, or further (A) Ta: 0.01 to 1.00%, Hf: 0
.. 01 to 1.00% of one or two types and/or (
B) Co: 0.01-1.00%, Ti; 0.01-0
.. Contains 10% of one or two of Mn, N
i. The amount of Co and Cu added is Mn% + Ni% + Co%
It is a ferritic heat-resistant steel with excellent weld bond toughness, which satisfies the condition of ±2Cu%≦12, with the remainder consisting of Fe and unavoidable impurities.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

(作 用) 最初に本発明において各成分範囲を前記のごとく限定し
た理由を以下に述べる。
(Function) First, the reason for limiting the range of each component in the present invention as described above will be described below.

Cは強度の保持に必要であるが、0.01%未満では強
度確保に不十分であり、0.30%超の場合には溶接熱
影響部が著しく硬化し、溶接時低温割れの原因となるめ
、範囲を0.Ol〜0.30%とした。
C is necessary to maintain strength, but if it is less than 0.01%, it is insufficient to ensure strength, and if it is more than 0.30%, the weld heat affected zone will be significantly hardened, causing cold cracking during welding. Narume, set the range to 0. Ol~0.30%.

Siは耐酸化性確保に重要で、かつZrの補助脱酸剤と
して必要な元素であるが、0.02%未満では不十分で
あって、0.80%超ではクリープ強度を低下させるの
で0.02〜0.80%とした。
Si is an element that is important for ensuring oxidation resistance and is necessary as an auxiliary deoxidizer for Zr, but if it is less than 0.02%, it is insufficient, and if it exceeds 0.80%, the creep strength will decrease, so it is not necessary. The content was set at .02 to 0.80%.

Mnは脱酸のためのみでなく強度保持上も必要な成分で
ある。加えて、オーステナイト安定化元素であるので、
溶接ボンド部へのδフェライト残留を軽減する効果を有
する。両効果を十分に得るためには0.20%以上の添
加が必要であり、3.00%を超すと、強度の過度な上
昇によって母材が脆化する場合があるので、0.20〜
3.00%とした。
Mn is a necessary component not only for deoxidizing but also for maintaining strength. In addition, since it is an austenite stabilizing element,
It has the effect of reducing residual δ ferrite in the weld bond. In order to sufficiently obtain both effects, it is necessary to add 0.20% or more, and if it exceeds 3.00%, the base material may become brittle due to an excessive increase in strength.
It was set at 3.00%.

Crは耐酸化性に不可欠の元素であって、同時にCと結
合してM!!C&, M&C,l’hc(但しMは金属
元素を表わす)等の形態で母材マトリックス中に微細析
出する事でクリープ強度の上昇に寄与している。
Cr is an essential element for oxidation resistance, and at the same time combines with C to create M! ! Fine precipitation in the base material matrix in the form of C&, M&C, l'hc (where M represents a metal element), etc. contributes to an increase in creep strength.

耐酸化性の観点から、下限は8.00%とし、上限は、
溶接ボンド部靭性を確保すべく、Cr当量値を低く制限
する目的で1 3. 0 0%とした。
From the viewpoint of oxidation resistance, the lower limit is 8.00%, and the upper limit is:
1 3. For the purpose of limiting the Cr equivalent value to a low value in order to ensure the toughness of the weld bond part. It was set as 00%.

Wは固溶強化および炭化物として析出することによる析
出強化によりクリープ強度を顕著に高める元素であり、
特に550゜C以上の高温において長時間のクリープ強
度を著しく高める。3.00%を超えて添加すると炭化
物として大量に析出し母材靭性を著しく低下させるため
、上限を3.00%とした。また、0.50%未満では
析出強化の効果が不十分であるので下限を0.50%と
した。
W is an element that significantly increases creep strength through solid solution strengthening and precipitation strengthening by precipitation as carbides.
In particular, the long-term creep strength is significantly increased at high temperatures of 550°C or higher. If added in excess of 3.00%, a large amount of carbide will precipitate and significantly reduce the toughness of the base material, so the upper limit was set at 3.00%. Moreover, since the effect of precipitation strengthening is insufficient if it is less than 0.50%, the lower limit is set to 0.50%.

Moは固溶体強化により、高温強度を顕著に高める元素
であるが、0.005%未満では効果が不十分であり、
1.00%超ではMO!C型の炭化物の大量析出によっ
てWと同時に添加した場合に母材靭性を著しく低下させ
る場合があるので上限を1.00%とした。
Mo is an element that significantly increases high temperature strength through solid solution strengthening, but if it is less than 0.005%, the effect is insufficient.
More than 1.00% is MO! The upper limit was set at 1.00% because if added at the same time as W, the toughness of the base material may be significantly reduced due to large amounts of C-type carbide precipitated.

■はWと同様にマトリックスに固溶しても、析出物とし
て析出しても鋼の高温強度を著しく高める元素である。
Like W, (2) is an element that significantly increases the high-temperature strength of steel, whether dissolved in the matrix or precipitated as a precipitate.

特に析出の場合にはV4C3としてLzsCa,M6C
, M!Cの析出核となり、析出物の微細分散に顕著な
効果を示す。0.05%未満では効果がなく、0.50
%を超えると靭性低下をきたすために添加の範囲を0.
05〜0.50%とした。
Especially in the case of precipitation, LzsCa, M6C as V4C3
, M! It becomes a precipitation nucleus of C and has a remarkable effect on fine dispersion of precipitates. Less than 0.05% has no effect; 0.50
If the amount exceeds 0.0%, the toughness decreases, so the range of addition is limited to 0.0%.
05 to 0.50%.

NbはNb(CN)の析出によって高温強度を高め、ま
た■と同様にMzsCb,M&C, l’hc等の析出
核として微細析出を促す。添加の効果を発揮させるため
下限を0.02%とし、また0.12%を超すと析出物
の凝集粗大化を生じて強度を低下させるため上限を0.
12%とした。
Nb increases the high-temperature strength through the precipitation of Nb (CN), and, like (2), promotes fine precipitation as precipitation nuclei of MzsCb, M&C, l'hc, etc. In order to exhibit the effect of addition, the lower limit is set to 0.02%, and if it exceeds 0.12%, the precipitates will aggregate and coarsen, reducing the strength, so the upper limit is set to 0.02%.
It was set at 12%.

Bは本来焼入れ性を著しく高める元素としてよく知られ
ているが、耐熱鋼においては、粒界への硼化物の微細析
出による粒界強化によりクリープ強度が向上する。Bの
効果を発揮させるため下限をO. O O O 3%と
し、また靭性を損なわないように上限を0. 0 0 
8%とした。
B is well known as an element that significantly improves hardenability, but in heat-resistant steel, creep strength is improved by grain boundary strengthening due to fine precipitation of boride at grain boundaries. In order to exhibit the effect of B, the lower limit is set to O. O O O is set at 3%, and the upper limit is set at 0.0% so as not to impair toughness. 0 0
It was set at 8%.

Zrは鋼中の脱酸平衡を支配し、酸素活量を著しく下げ
ることで酸化物の生成を抑制する。加えてNとの親和力
が高く、Bの窒化によるBNの析出を抑制し、B添加の
効果が窒素大量添加時に損なわれることを防止する。o
.ooos%未満では脱酸平衡支配には不十分であり、
0. 1 0%を超えて添加すると粗大なZrN,Zr
Cが大量に析出し、母材の靭性を著しく低下させるので
0。0005〜0.10%の範囲に限定した。
Zr controls the deoxidation equilibrium in steel and suppresses the formation of oxides by significantly lowering oxygen activity. In addition, it has a high affinity for N, suppresses the precipitation of BN due to nitridation of B, and prevents the effect of B addition from being impaired when a large amount of nitrogen is added. o
.. Less than oos% is insufficient for controlling the deoxidation equilibrium;
0. If more than 10% is added, coarse ZrN, Zr
Since C precipitates in large quantities and significantly reduces the toughness of the base material, it is limited to a range of 0.0005 to 0.10%.

Nはマトリックスに固溶あるいは窒化物、炭窒化物とし
て析出し、クリープ強度を高める元素であるが、クリー
プ強度の確保の点から下限を0.01%とし、また鋳造
時ブローホールの発生を避け健全な鋼塊を得るために上
限を0.10%とした。
N is an element that increases creep strength by solid solution in the matrix or precipitates as nitrides and carbonitrides, but the lower limit is set at 0.01% to ensure creep strength, and to avoid blowholes during casting. In order to obtain a sound steel ingot, the upper limit was set to 0.10%.

Niは代表的なオーステナイト安定化元素であって、−
母材中にδフェライトが生成するのを防止するために添
加する。従って溶接ボンド部にδフェライトが残留する
ことも防止できる。0.05%未満では効果が少なく、
1.00%超の添加でクリープ強度を低下させるので添
加範囲を0.05〜1.00%に限定した。
Ni is a typical austenite stabilizing element, and -
Added to prevent the formation of δ ferrite in the base material. Therefore, it is also possible to prevent δ ferrite from remaining in the weld bond. Less than 0.05% has little effect;
Addition of more than 1.00% lowers the creep strength, so the addition range was limited to 0.05 to 1.00%.

Cuは本発明の主眼をなす添加元素であって、クリープ
強度を低下させることな<Cr当量値を減少させて、溶
接熱サイクルの場合の急冷でもδフェライトの残留を防
止する効果を有している。0.10%未満ではCr当量
値の減少が不十分であり、5.00%超の添加において
は綱が高温に長時間曝された場合に粒界に純Cuとして
析出し、材料の脆化を招くので、0. 1 0〜5.0
0%の範囲とした。
Cu is an additive element that is the main focus of the present invention, and has the effect of reducing the Cr equivalent value without reducing the creep strength and preventing δ ferrite from remaining even during rapid cooling during welding heat cycles. There is. If the addition is less than 0.10%, the reduction in Cr equivalent value is insufficient, and if the addition exceeds 5.00%, pure Cu will precipitate at the grain boundaries when the steel is exposed to high temperatures for a long time, causing material embrittlement. 0. 1 0-5.0
The range was 0%.

P,S,Oは本発明鋼においては不純物として混入して
くるが、本発明の効果を発揮する上で、P,Sは靭性に
、0は酸化物として靭性を低下させるのでそれぞれ上限
値を0.050%,o.oto%,0.020%とした
P, S, and O are mixed as impurities in the steel of the present invention, but in order to exert the effects of the present invention, the upper limit values of P and S, and 0 as oxides lower the toughness, must be set at their respective upper limits. 0.050%, o. oto%, 0.020%.

以上が本発明の基本成分であるが、本発明においてはこ
の他にそれぞれの用途に応じて(A)Ta:0.01〜
1.00%,Hf:0.01〜1.00%の1種または
2種および/または(B)Co : 0. 0 1 〜
1.00%,Ti:0。01〜0.10%の1種または
2種を含有させることが出来る。
The above are the basic components of the present invention, but in the present invention, in addition to these, (A) Ta: 0.01 to 0.01 to
1.00%, Hf: 0.01 to 1.00%, and/or (B) Co: 0. 0 1 ~
1.00% and Ti: 0.01 to 0.10%.

Ta, Hfは低濃度の場合にはZrの補助脱酸剤とし
て作用し、高濃度の場合には炭化物として微細に析出し
、クリープ強度を高める元素である。何れも0.01%
未満では効果がなく、1.oO%を超えて添加すると炭
化物が粗大化して靭性低下をきたすので0.01〜1.
00%の範囲とした。
Ta and Hf are elements that act as auxiliary deoxidizers for Zr at low concentrations, and finely precipitate as carbides at high concentrations, increasing creep strength. All 0.01%
There is no effect if it is less than 1. If added in excess of 0.01 to 1.0%, carbides become coarse and toughness decreases.
00% range.

Co, Tiはそれぞれ炭化物として析出し、母材の高
温強度を向上させる元素である。それぞれ0.Ol%未
満では効果がなク、COでは1.00%を超える場合に
粗大な炭化物が析出し、Ti0.10%超では粗大な窒
化物が析出するために靭性が低下する場合があるので、
それぞれCo:0.01〜1.00%, Tt:O.O
l〜0.10%の範囲とした。
Co and Ti are elements that precipitate as carbides and improve the high-temperature strength of the base material. 0 each. If the Ti content is less than 0.1%, there is no effect; if the CO content exceeds 1.00%, coarse carbides will precipitate, and if the Ti content exceeds 0.10%, coarse nitrides will precipitate, leading to a decrease in toughness.
Co:0.01-1.00%, Tt:O. O
The range was 1 to 0.10%.

上述の各合金成分はそれぞれ単独に添加しても、あるい
は併用して添加しても良い。
Each of the above-mentioned alloy components may be added individually or in combination.

以上の合金成分の内、溶接ボンド部靭性を改善する効果
の高い元素で、しかもクリープ強度低下、あるいは高温
長時間において鋼の跪化をきたす可能性のある元素,即
ちMn, Nt, Co, Cuはそれぞれ単独の濃度
の上限値のみで制限されるのではなく、本発明者らの研
究に基づく次式 Mn%+Ni%+CO%+2CLI%≦12を満足する
必要がある。
Among the alloy components mentioned above, elements that are highly effective in improving the toughness of welded bonds, and which may also cause a decrease in creep strength or cause the steel to deteriorate at high temperatures for long periods of time, namely Mn, Nt, Co, and Cu. is not limited only by the upper limit of each individual concentration, but must satisfy the following formula Mn%+Ni%+CO%+2CLI%≦12 based on the research of the present inventors.

上記の不等式は次の実験によって決定した。The above inequality was determined by the following experiment.

本発明の(1)〜(4)の請求項に示した成分を有する
耐熱鋼を真空誘導加熱炉を用いて溶解し、2 tonの
インゴットに鋳造した。インゴットよりビレットを所定
の大きさに切り出し、1180’Cに加熱後、熱間押し
出しして直径50.8mm,肉厚9.5mのパイプとし
、1050゜CX1時間,760゜C×1時間の焼準・
焼き戻し処理を施して試験体とした。
Heat-resistant steel having the components shown in claims (1) to (4) of the present invention was melted using a vacuum induction heating furnace and cast into a 2 ton ingot. A billet was cut into a specified size from the ingot, heated to 1180'C, hot extruded to form a pipe with a diameter of 50.8 mm and a wall thickness of 9.5 m, and baked at 1050°C for 1 hour and 760°C for 1 hour. Semi-
A test specimen was prepared by subjecting it to tempering treatment.

試験片は長さ500+++mに切断したバイブの両端に
同一インゴットから別途切り出したネジ継手を溶接して
作製し、大型高温雰囲気制御引張試験機を用いて実管ク
リープ試験に供した。
A test piece was prepared by welding threaded joints cut separately from the same ingot to both ends of a vibrator cut to a length of 500+++ m, and subjected to a real pipe creep test using a large-scale high-temperature atmosphere controlled tensile testing machine.

試験条件は600゜Cで、最長10万時間迄の破断強度
を調査し、クリープ曲線を採取した後に10万時間にお
ける破断強度をもって評価した。
The test conditions were 600°C, and the breaking strength was investigated for up to 100,000 hours, and after the creep curve was taken, the breaking strength at 100,000 hours was evaluated.

第1図は横軸にMn%+Ni%+Co%+2Cu%をと
り、縦軸に10万時間破断強度をプロットした図である
FIG. 1 is a diagram in which Mn%+Ni%+Co%+2Cu% is plotted on the horizontal axis and 100,000 hour breaking strength is plotted on the vertical axis.

Mn%+Ni%+Co%+2Cu%の値が12以下の場
合にはクリープ破断強度は16kg/一以上を呈するが
、l2を超えると急激に低下することがわかる。第1図
の結果から、本発明鋼の600゜CIO万時間における
破断強度は16kg/一以上であることが同時に判る。
It can be seen that when the value of Mn%+Ni%+Co%+2Cu% is 12 or less, the creep rupture strength exhibits 16 kg/1 or more, but when it exceeds 12, it rapidly decreases. From the results shown in FIG. 1, it can also be seen that the breaking strength of the steel of the present invention at 6,000,000 hours of CIO is 16 kg/1 or more.

第1図の結果をもって不等式 h%+Ni%+Co%+2Cu%≦12を決定した。With the result in Figure 1, the inequality is h%+Ni%+Co%+2Cu%≦12 was determined.

尚、本発明は溶接ボンド部靭性の優れた高クリープ破断
強度を有する耐熱鋼を提供するものであるので、本発明
鋼は使用目的に応じて種々の製造方法,および熱処理を
施すことが可能であり、また本発明の効果を何等妨げる
ものではない。
Furthermore, since the present invention provides a heat-resistant steel having excellent weld bond toughness and high creep rupture strength, the steel of the present invention can be manufactured by various methods and subjected to heat treatment depending on the purpose of use. However, this does not impede the effects of the present invention in any way.

まず、溶製プロセスとしてはVIM(真空誘導加熱炉)
、EF(電気炉)、LD(転炉)を用いることが可能で
、また有用である。続いて炉外精錬設備によって溶鋼を
清浄化する方法としてll!SR(Electro S
lag Remelting). A O D (Ar
gon OxygenDecarbrizaLion)
,V  A D (Vacum  Argon  De
carbrization)+V O D (Vacu
m Oxygen Decarbrization)+
  およびL F (Ladle Furnace)そ
の他の真空脱ガスあるいは粉体吹き込み精錬装置(例え
ばR}l, DH, CAS等)を用いるプロセスを単
独でもしくは併用して使用することが可能で、かつ適し
ている。
First, as a melting process, VIM (vacuum induction heating furnace)
, EF (electric furnace), and LD (converter furnace) can be used and are useful. Next, we will introduce ll! as a method of cleaning molten steel using outside-furnace refining equipment. SR (Electro S
lag Remelting). A O D (Ar
gon OxygenDecarbrizaLion)
, V A D (Vacuum Argon De
carbrization)+V O D (Vacu
m Oxygen Decarbrization)+
and LF (Ladle Furnace) and other processes using vacuum degassing or powder blowing refining equipment (e.g. R}l, DH, CAS, etc.) can be used alone or in combination and are suitable. .

溶鋼は鋳型への鋳造と連続鋳造装置によるスラブ、ある
いはビレットへの鋳造によって鋼塊とした後、各種製造
工程へ適した形状に加工する事が出来る。
Molten steel is cast into a mold and then into a slab or billet using a continuous casting machine to form a steel ingot, which can then be processed into shapes suitable for various manufacturing processes.

製造工程としては、丸ビレットあるいは角ビレットへ加
工した後に、熱間押し出し、あるいは種々のシームレス
圧延法によってシームレスパイプおよびチューブに加工
する方法,薄板に熱間圧延,冷間圧延した後に電気抵抗
溶接によって電IJ!鋼管とする方法,およびTIG,
MIG,SAW,LASER,EB溶接によって(単独
で、あるいは併用して)溶接鋼管とする方法が適用でき
て、さらには以上の各方法の後に熱間あるいは温間でS
R(絞り圧延)ないしは定形圧延を追加実施することも
可能であり、本発明鋼の適用寸法範囲を拡大することが
可能である。
The manufacturing process includes processing into round billets or square billets and then processing them into seamless pipes and tubes by hot extrusion or various seamless rolling methods, and hot rolling into thin sheets, cold rolling, and then electric resistance welding. Den IJ! A method of making steel pipes, and TIG,
MIG, SAW, LASER, and EB welding (either singly or in combination) can be used to form welded steel pipes, and each of the above methods can be followed by hot or warm S-welding.
It is also possible to additionally perform R (reduction rolling) or shaping rolling, and it is possible to expand the applicable size range of the steel of the present invention.

本発明鋼は鋼管のみならず、厚板および薄板の形で捷供
することも可能であり、熱間圧延まま,もしくは必要と
される熱処理を施した板を用いて種々の耐熱材料の形状
で使用することが可能であって、本発明の効果に何等影
響を与えない。
The steel of the present invention can be produced not only in the form of steel pipes, but also in the form of thick plates and thin plates, and can be used in the form of various heat-resistant materials, either as hot-rolled or by using plates that have been subjected to the necessary heat treatment. It is possible to do so without affecting the effects of the present invention.

以上の鋼管、板、各種形状の耐熱部材にはそれぞれ目的
、用途に応じて各種熱処理を施すことが可能であって、
また本発明の効果を十分に発揮する上で重要である。
The above-mentioned steel pipes, plates, and heat-resistant members of various shapes can be subjected to various heat treatments depending on their purpose and use.
It is also important for fully exhibiting the effects of the present invention.

通常は焼準+焼き戻し工程を経て製品とする場合が多い
が、これに加えて焼き入れ、焼き戻し、焼準工程を単独
で、あるいは併用して施すことが可能であり、また有用
である。材料特性の十分な発現に必要な範囲で、以上の
工程は各々の工程を複数回繰り返して適用することもま
た可能であって、本発明の効果に何等影響を与えるもの
ではない。
Normally, products are made through a normalizing + tempering process, but in addition to this, it is possible and useful to perform quenching, tempering, and normalizing processes either alone or in combination. . It is also possible to repeat each of the above steps multiple times within the range necessary to fully develop the material properties, and this does not affect the effects of the present invention in any way.

以上の工程を適宜選択して、本発明鋼の製造プロセスに
適用すればよい。
The above steps may be appropriately selected and applied to the manufacturing process of the steel of the present invention.

[実施例] 第1表〜第4表に示す、請求項1〜4の何れかの組成を
有する鋼それぞれ1 tonを真空誘導加熱炉を用いて
溶解し、ESR処理で清浄化して不純物を低減した後に
鋳型に鋳造、丸ビレットに加工して熱間押しだしにて外
径60mm.肉厚10Mのチューブを、シームレス圧延
にて外径380mm,肉厚50髄のパイプをそれぞれ製
造した。チューブ.パイプは1050″C1時間の焼準
を2回、加えて760゜Cにて1時間焼き戻し処理を実
施した。
[Example] 1 ton of each steel having a composition according to any one of claims 1 to 4 shown in Tables 1 to 4 was melted using a vacuum induction heating furnace, and cleaned by ESR treatment to reduce impurities. After that, it was cast into a mold, processed into a round billet, and hot extruded to an outer diameter of 60mm. A tube with a wall thickness of 10M was seamlessly rolled to produce a pipe with an outer diameter of 380 mm and a wall thickness of 50 mm. tube. The pipe was normalized twice at 1050°C for 1 hour and then tempered at 760°C for 1 hour.

クリープ特性は第2図に示すように、鋼管5の軸方向6
と平行に直径6mmφのクリープ試験片7を切り出し、
600℃にて10万時間までのクリープ破断強度をもっ
て評価した。クリープ破断強度16.0kg/一をクリ
ープ強度評価のしきい値とした。
The creep characteristics are determined in the axial direction 6 of the steel pipe 5, as shown in FIG.
A creep test piece 7 with a diameter of 6 mmφ was cut out parallel to the
The creep rupture strength was evaluated at 600°C for up to 100,000 hours. A creep rupture strength of 16.0 kg/1 was used as the threshold for creep strength evaluation.

溶接ボンド部靭性は、同一外径,肉厚の鋼管の端部にそ
れぞれU開先の加工を施して、1対の試験片を突き合わ
せて、適当な入熱で’rtc溶接し、溶接後に740゜
Cにて1時間焼き鈍し処理を加え、600℃にて10万
時間時効処理して、第3図に示すように、突合せ溶接し
た鋼管試験体5の熔接ボンド部2の1/2位置(ボンド
線3が板厚の中央線1を横切る位置)に板厚方向に2m
Vノッチを入れたシャルビー衝撃試験片4を採取し、θ
℃における吸収エネルギー値をもって評価した。
The toughness of the weld bond was determined by processing a U-groove at each end of a steel pipe with the same outer diameter and wall thickness, butting a pair of specimens together, and performing 'rtc welding with an appropriate heat input. After annealing for 1 hour at 600°C and aging for 100,000 hours at 600°C, as shown in Fig. 2m in the thickness direction at the position where line 3 crosses center line 1 of the thickness
A Charby impact test piece 4 with a V-notch was taken, and θ
Evaluation was made using the absorbed energy value at °C.

母材部靭性はクリープ試験片と同様に管体軸方向に平行
に採取し、2mn+のVノッチを入れて0゜Cでの吸収
エネルギーを測定した。
The base metal toughness was measured by taking samples parallel to the axis of the tube in the same way as the creep test specimens, making a 2mm+ V-notch, and measuring the absorbed energy at 0°C.

溶接ボンド部靭性値,母材部靭性値はいずれも0゜Cに
おいて5.0kgf−mを評価のしきい値として設定し
てある。
Both the weld bond part toughness value and the base metal part toughness value are set at 5.0 kgf-m at 0°C as the evaluation threshold.

10万時間におけるクリープ破断強度と溶接ポンド部靭
性は第1表〜第4表に同時に示した。尚、表中のボンド
部靭性調査結果はO″Cにおけるシャルピー試験5点の
平均値である。また、NI.E.とあるは、Mn%+N
i%+CO%+2Cu%の式の値(単位−t%)である
. 比較のために本発明の請求項1〜4のいずれにも該当し
ない成分を有する鋼を同様の方法で溶解,製造.評価し
た.化学成分と評価結果を第5表に示した。第4図はC
u添加の溶接ボンド部靭性に与える影響を示している。
The creep rupture strength and weld pound toughness after 100,000 hours are shown in Tables 1 to 4. In addition, the bond part toughness investigation results in the table are the average values of 5 Charpy test points at O''C.Also, NIE. means Mn%+N
It is the value of the formula i%+CO%+2Cu% (unit: -t%). For comparison, steel having components that do not fall under any of claims 1 to 4 of the present invention was melted and produced in the same manner. evaluated. The chemical components and evaluation results are shown in Table 5. Figure 4 is C
The effect of u addition on the weld bond toughness is shown.

Cuが0. 1%以上の場合に600″CIO万時間時
効後の0゜Cにおけるボンド部シャルビー衝撃値が著し
く高くなることがわかる. 第5図はCu添加によって溶接ボンド部のδフェライト
面積率(ボンド線から母材側50μm以内の総面積に占
める残留δフェライト面積の割合)が減少することを表
わした図である。0.1%以上のCu添加で、残留δフ
ェライト面積率は殆どO%となっている.第4図の結果
は第5図の効果によってもたらされたものである。
Cu is 0. It can be seen that the Charby impact value of the bond at 0°C after 600" CIO aging for 10,000 hours increases significantly when the content is 1% or more. Figure 5 shows that the δ ferrite area ratio (from the bond line to It is a diagram showing that the ratio of the area of residual δ ferrite to the total area within 50 μm on the base metal side decreases.With the addition of 0.1% or more of Cu, the area ratio of residual δ ferrite becomes almost 0%. The results shown in Figure 4 are brought about by the effects shown in Figure 5.

第6図はCu添加が10万時間時効後の母材靭性に及ぼ
す影響を示した図である。Cu含有量が5.0%以下の
場合には、0゜Cにおける母材のシャルピー衝撃値が高
いことがわかる。
FIG. 6 is a diagram showing the influence of Cu addition on the base material toughness after 100,000 hours of aging. It can be seen that when the Cu content is 5.0% or less, the Charpy impact value of the base material at 0°C is high.

第5表に示した比較鋼のうち161番!iil, 16
2番鋼はCu含有量が不十分か、もしくは無添加であっ
たために溶接ポンド部にδフェライトが大量に残留し、
溶接ボンド部靭性を確保できなかった例、163番鋼.
164番鋼はCu添加量が多すぎたために粒界に純Cu
が析出して脆化し、母材の600”C,10万時間時効
後における0゜Cでの靭性値が低かった例、165番鋼
.166番綱はCu含有量は適正であったものの、Mn
%+Ni%+Co%+2Cu%の値(表中NiE,)が
12を超えてしまい、600″CIO万時間におけるク
リープ破断強度が低下した例、167番鋼は加えてCu
含有量が高かったために、クリープ強度の低下に加えて
母材の時効後靭性も低下した例、168番鋼はW含有量
が不足して600゜CtO万時間のクリープ破断強度が
低下した例、169番鋼はW含有量が過多であったため
に、600゜CIO万時間のクリープ強度が高いものの
、溶接ボンド部および母材部の600゜CIO万時間時
効後におけるO″Cでのシャルピー衝撃値が低下した例
である。
No. 161 among the comparative steels shown in Table 5! iii, 16
Because No. 2 steel had insufficient Cu content or no additive, a large amount of δ ferrite remained in the welding pad.
An example of failure to ensure the toughness of the weld bond, No. 163 steel.
Steel No. 164 had too much Cu added, so pure Cu was present at the grain boundaries.
An example of steel No. 165 precipitated and became brittle, and the toughness value at 0°C after aging for 100,000 hours at 600"C of the base metal was low. Although the Cu content of No. 166 steel was appropriate, Mn
%+Ni%+Co%+2Cu% value (NiE in the table) exceeds 12, and the creep rupture strength at 600″ CIO decreases.
An example where the creep strength decreased due to a high W content, and the toughness after aging of the base metal also decreased. An example where No. 168 steel had a low W content and the creep rupture strength at 600°CtO 10,000 hours decreased. Because No. 169 steel had an excessive W content, its creep strength at 600° CIO was high, but the Charpy impact value at O″C of the weld bond and base metal after aging at 600° CIO was low. This is an example of a decrease in

[発明の効果] 本発明は溶接ボンド部の靭性値が高く、加えてクリープ
強度の極めて優れたCr含有フェライト系耐熱鋼を提供
するもので、産業の発展に寄与するところ極めて大なる
ものがある。
[Effects of the Invention] The present invention provides a Cr-containing ferritic heat-resistant steel that has a high toughness value at the welded bond and also has extremely excellent creep strength, making an extremely significant contribution to the development of industry. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は式 Mn%+Ni%+Co%+2Cu% の値と600゜C,10万時間におけるクリープ破断強
度の関係を示す図、第2図は鋼管試験体からのクリープ
試験片採取要領を示す模式図、第3図は溶接ボンド部か
らのシャルピー衝撃試験片採取要領を示す模式図、第4
図はCu添加の溶接ボンド部靭性に与える影響を示す図
、第5図はCu含有量と溶接ポンド部の残留δフェライ
ト面積率の関係を示す図、第6図はCo含有量と600
゜CIO万時間時効後の母材のO℃におけるシャルビー
衝撃吸収値との関係を示す図である。 l・・・鋼管板厚中心線,2・・・溶接ボンド部,3・
・・溶接ボンド線,4・・・JISd号フルサイズ衝撃
試験片.5・・・鋼管試験体. プ試験片。 6・・・軸方向, 7・・・クリー Mn fat’ t (o f2cg 第3図 第4図 θ・/ ノ 2    B Cu舎考量 ! 04/13) ノ K (Wt%) Cu合方党
Figure 1 is a diagram showing the relationship between the value of the formula Mn% + Ni% + Co% + 2Cu% and creep rupture strength at 600°C for 100,000 hours, and Figure 2 is a schematic diagram showing the procedure for collecting creep test pieces from steel pipe specimens. Figure 3 is a schematic diagram showing the procedure for collecting Charpy impact test pieces from welded bond parts, Figure 4
The figure shows the effect of Cu addition on the toughness of the weld bond, Figure 5 shows the relationship between the Cu content and the area ratio of residual δ ferrite in the weld pound, and Figure 6 shows the relationship between the Co content and the 600
It is a diagram showing the relationship between the Charby impact absorption value and the base material at 0° C. after aging for 10,000 hours. l... Steel pipe plate thickness center line, 2... Weld bond part, 3...
...Welded bond wire, 4...JIS d full size impact test piece. 5... Steel pipe test specimen. specimen. 6...Axial direction, 7...Cree Mn fat't (of2cg Fig. 3 Fig. 4 θ・/ ノ2 B Cu house evaluation! 04/13) ノK (Wt%) Cu joint party

Claims (4)

【特許請求の範囲】[Claims] (1)重量%でC:0.01〜0.30%、Si:0.
02〜0.80%、Mn:0.20〜3.00%、Cr
:8.00〜13.00%、Ni:0.05〜1.00
%、Mo:0.005〜1.00%、W:0.50〜3
.00%、V:0.05〜0.50%、Nb:0.02
〜0.12%、B:0.0003〜0.008%、Cu
:0.10〜5.00%、Zr:0.0005〜0.1
0%、N:0.01〜0.10%を含有し、P:0.0
50%以下、S:0.010%以下、O:0.020%
以下に制限し、加えてMn、Ni、Cuの添加量が Mn%+Ni%+2Cu%≦12 なる条件を満たし、残部がFeおよび不可避の不純物よ
りなることを特徴とする溶接ボンド部靭性の優れたフェ
ライト系耐熱鋼。
(1) C: 0.01-0.30%, Si: 0.
02-0.80%, Mn: 0.20-3.00%, Cr
:8.00~13.00%, Ni:0.05~1.00
%, Mo: 0.005-1.00%, W: 0.50-3
.. 00%, V: 0.05-0.50%, Nb: 0.02
~0.12%, B:0.0003~0.008%, Cu
:0.10~5.00%, Zr:0.0005~0.1
0%, N: 0.01-0.10%, P: 0.0
50% or less, S: 0.010% or less, O: 0.020%
In addition, the amount of Mn, Ni, and Cu added satisfies the following conditions: Mn%+Ni%+2Cu%≦12, and the remainder is Fe and unavoidable impurities. Ferritic heat-resistant steel.
(2)重量%でC:0.01〜0.30%、Si:0.
02〜0.80%、Mn:0.20〜3.00%、Cr
:8.00〜13.00%、Ni:0.05〜1.00
%、Mo:0.005〜1.00%、W:0.50〜3
.00%、V:0.05〜0.50%、Nb:0.02
〜0.12%、B:0.0003〜0.008%、Cu
:0.10〜5.00%、Zr:0.0005〜0.1
0%、N:0.01〜0.10%を含有し、更にTa:
0.01〜1.00%、Hf:0.01〜1.00%の
1種または2種を含有し、P:0.050%以下、S:
0.010%以下、O:0.020%以下に制限し、加
えてMn、Ni、Cuの添加量が Mn%+Ni%+2Cu%≦12 なる条件を満たし、残部がFeおよび不可避の不純物よ
りなることを特徴とする溶接ボンド部靭性の優れたフェ
ライト系耐熱鋼。
(2) C: 0.01-0.30%, Si: 0.
02-0.80%, Mn: 0.20-3.00%, Cr
:8.00~13.00%, Ni:0.05~1.00
%, Mo: 0.005-1.00%, W: 0.50-3
.. 00%, V: 0.05-0.50%, Nb: 0.02
~0.12%, B:0.0003~0.008%, Cu
:0.10~5.00%, Zr:0.0005~0.1
0%, N: 0.01-0.10%, and Ta:
Contains one or two of 0.01-1.00%, Hf: 0.01-1.00%, P: 0.050% or less, S:
0.010% or less, O: 0.020% or less, and in addition, the amount of Mn, Ni, and Cu added satisfies the following conditions: Mn% + Ni% + 2Cu%≦12, and the remainder consists of Fe and unavoidable impurities. Ferritic heat-resistant steel with excellent weld bond toughness.
(3)重量%でC:0.01〜0.30%、Si:0.
02〜0.80%、Mn:0.20〜3.00%、Cr
:8.00〜13.00%、Ni:0.05〜1.00
%、Mo:0.005〜1.00%、W:0.50〜3
.00%、V:0.05〜0.50%、Nb:0.02
〜0.12%、B:0.0003〜0.008%、Cu
:0.10〜5.00%、Zr:0.0005〜0.1
0%、N:0.01〜0.10%を含有し、更にCo:
0.01〜1.00%、Ti:0.01〜0.10%の
1種または2種を含有し、P:0.050%以下、S:
0.010%以下、O:0.020%以下に制限し、加
えてMn、Ni、Cuの添加量が Mn%+Ni%+Co%+2Cu%≦12 なる条件を満たし、残部がFeおよび不可避の不純物よ
りなることを特徴とする溶接ボンド部靭性の優れたフェ
ライト系耐熱鋼。
(3) C: 0.01-0.30%, Si: 0.
02-0.80%, Mn: 0.20-3.00%, Cr
:8.00~13.00%, Ni:0.05~1.00
%, Mo: 0.005-1.00%, W: 0.50-3
.. 00%, V: 0.05-0.50%, Nb: 0.02
~0.12%, B:0.0003~0.008%, Cu
:0.10~5.00%, Zr:0.0005~0.1
0%, N: 0.01 to 0.10%, and further Co:
Contains one or two of 0.01 to 1.00%, Ti: 0.01 to 0.10%, P: 0.050% or less, S:
O: 0.010% or less, O: 0.020% or less, and the addition amount of Mn, Ni, and Cu satisfies the following conditions: Mn% + Ni% + Co% + 2Cu%≦12, and the remainder is Fe and unavoidable impurities. Ferritic heat-resistant steel with excellent weld bond toughness.
(4)重量%でC:0.01〜0.30%、Si:0.
02〜0.80%、Mn:0.20〜3.00%、Cr
:8.00〜13.00%、Ni:0.05〜1.00
%、Mo:0.005〜1.00%、W:0.50〜3
.00%、V:0.05〜0.50%、Nb:0.02
〜0.12%、B:0.0003〜0.008%、Cu
:0.10〜5.00%、Zr:0.0005〜0.1
0%、N:0.01〜0.10%を含有し、更にTa:
0.01〜1.00%、Hf:0.01〜1.00%の
1種または2種を含有し、あるいは更にCo:0.01
〜1.00%、Ti:0.01〜0.10%の1種また
は2種を含有し、P:0.050%以下、S:0.01
0%以下、O:0.020%以下に制限し、加えてMn
、Ni、Cuの添加量が Mn%+Ni%+Co%+2Cu%≦12 なる条件を満たし、残部がFeおよび不可避の不純物よ
りなることを特徴とする溶接ボンド部靭性の優れたフェ
ライト系耐熱鋼。
(4) C: 0.01-0.30%, Si: 0.
02-0.80%, Mn: 0.20-3.00%, Cr
:8.00~13.00%, Ni:0.05~1.00
%, Mo: 0.005-1.00%, W: 0.50-3
.. 00%, V: 0.05-0.50%, Nb: 0.02
~0.12%, B:0.0003~0.008%, Cu
:0.10~5.00%, Zr:0.0005~0.1
0%, N: 0.01-0.10%, and Ta:
0.01 to 1.00%, Hf: 0.01 to 1.00%, or further Co: 0.01
~1.00%, Ti: 0.01~0.10%, P: 0.050% or less, S: 0.01
0% or less, O: 0.020% or less, and Mn
A ferritic heat-resistant steel with excellent weld bond toughness, characterized in that the added amounts of Ni and Cu satisfy the following conditions: Mn%+Ni%+Co%+2Cu%≦12, with the remainder consisting of Fe and unavoidable impurities.
JP11340389A 1989-05-02 1989-05-02 Ferritic heat resistant steel with excellent toughness at weld bond Expired - Fee Related JPH068487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11340389A JPH068487B2 (en) 1989-05-02 1989-05-02 Ferritic heat resistant steel with excellent toughness at weld bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11340389A JPH068487B2 (en) 1989-05-02 1989-05-02 Ferritic heat resistant steel with excellent toughness at weld bond

Publications (2)

Publication Number Publication Date
JPH02294452A true JPH02294452A (en) 1990-12-05
JPH068487B2 JPH068487B2 (en) 1994-02-02

Family

ID=14611410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11340389A Expired - Fee Related JPH068487B2 (en) 1989-05-02 1989-05-02 Ferritic heat resistant steel with excellent toughness at weld bond

Country Status (1)

Country Link
JP (1) JPH068487B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311346A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel having high creep strength
JPH05311345A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel excellent in high temperature strength and toughness
EP0703301A1 (en) 1994-09-20 1996-03-27 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
EP0758025A1 (en) * 1995-02-14 1997-02-12 Nippon Steel Corporation High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition
WO2004087979A1 (en) 2003-03-31 2004-10-14 National Institute For Materials Science Welded joint of tempered martensite based heat-resistant steel
CN104593693A (en) * 2013-10-31 2015-05-06 精工爱普生株式会社 Metal powder for powder metallurgy, compound, granulated powder, and sintered body

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311346A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel having high creep strength
JPH05311345A (en) * 1992-05-14 1993-11-22 Nippon Steel Corp Ferritic heat resistant steel excellent in high temperature strength and toughness
EP0703301A1 (en) 1994-09-20 1996-03-27 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
US5591391A (en) * 1994-09-20 1997-01-07 Sumitomo Metal Industries, Ltd. High chromium ferritic heat-resistant steel
EP0758025A1 (en) * 1995-02-14 1997-02-12 Nippon Steel Corporation High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition
EP0758025A4 (en) * 1995-02-14 1998-05-20 Nippon Steel Corp High-strength ferritic heat-resistant steel excellent in resistance to embrittlement caused by intermetallic compound deposition
WO2004087979A1 (en) 2003-03-31 2004-10-14 National Institute For Materials Science Welded joint of tempered martensite based heat-resistant steel
EP1621643A1 (en) * 2003-03-31 2006-02-01 National Institute for Materials Science Welded joint of tempered martensite based heat-resistant steel
EP1621643A4 (en) * 2003-03-31 2009-04-01 Nat Inst For Materials Science Welded joint of tempered martensite based heat-resistant steel
CN104593693A (en) * 2013-10-31 2015-05-06 精工爱普生株式会社 Metal powder for powder metallurgy, compound, granulated powder, and sintered body

Also Published As

Publication number Publication date
JPH068487B2 (en) 1994-02-02

Similar Documents

Publication Publication Date Title
JP5177310B2 (en) High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
US4331474A (en) Ferritic stainless steel having toughness and weldability
JP3336573B2 (en) High-strength ferritic heat-resistant steel and manufacturing method thereof
JP3322097B2 (en) High strength, high corrosion resistant ferritic steel welding material with excellent weldability
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JPH0443977B2 (en)
JP2000234140A (en) Steel for boiler excellent in electric resistance weldability and electric resistance welded boiler steel tube using it
JP4377869B2 (en) Boiler steel excellent in ERW weldability and ERW boiler steel pipe using the same
JP2639849B2 (en) Manufacturing method of high nitrogen ferritic heat resistant steel
JPH02310340A (en) Ferritic heat-resistant steel having excellent toughness and creep strength
JPH02294452A (en) Ferritic heat resisting steel excellent in toughness in welded bond zone
JPH03291358A (en) Duplex stainless steel excellent in toughness and hot workability and its production
JP3386266B2 (en) Martensitic heat-resistant steel excellent in HAZ softening resistance and method for producing the same
JP4542361B2 (en) Ferritic ERW boiler tube with excellent reheat cracking resistance and its manufacturing method
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
JP2890073B2 (en) High Nb-containing high nitrogen ferritic heat-resistant steel and method for producing the same
JPH05245657A (en) Production of high ni alloy clad steel sheet excellent in brittleness propagation stoppage property of base metal
JP2001140040A (en) Low carbon ferrite-martensite duplex stainless welded steel pipe excellent in sulfide stress cracking resistance
JPH0598394A (en) High v-containing high nitrogen ferritic heat resistant steel and its manufacture
JP3567603B2 (en) High chromium ferritic steel with excellent toughness, weld joint creep characteristics and hot workability after PWHT
US5204056A (en) Method of production of high-nitrogen ferritic heat-resisting steel
JP3536001B2 (en) Cast steel for welded structures
JPH10237600A (en) Ferritic heat resistant steel excellent in high temperature weld cracking resistance and toughness in heat-affected zone
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JPH09184049A (en) High strength ferritic heat resistant steel excellent in toughness in weld zone

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080202

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090202

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees