JPH0536492B2 - - Google Patents

Info

Publication number
JPH0536492B2
JPH0536492B2 JP58032879A JP3287983A JPH0536492B2 JP H0536492 B2 JPH0536492 B2 JP H0536492B2 JP 58032879 A JP58032879 A JP 58032879A JP 3287983 A JP3287983 A JP 3287983A JP H0536492 B2 JPH0536492 B2 JP H0536492B2
Authority
JP
Japan
Prior art keywords
steel
less
corrosion resistance
toughness
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58032879A
Other languages
Japanese (ja)
Other versions
JPS59159975A (en
Inventor
Yoshio Taruya
Takeo Kudo
Kaoru Masame
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3287983A priority Critical patent/JPS59159975A/en
Publication of JPS59159975A publication Critical patent/JPS59159975A/en
Publication of JPH0536492B2 publication Critical patent/JPH0536492B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、溶接部の靭性と耐粒間腐食性ならび
に母材の耐食性、特に耐孔食性および耐酸性に優
れたフエライト系クロムステンレス鋼に関する。 フエライト系クロムステンレス鋼は余り多量の
Niを含有せずCrとMoとにより耐食性の改善がな
されているため製造時の原料コストが安価である
が、オーステナイト系鋼に比べて靭性、延性が低
くまた耐食性が劣るとされてきた。しかし、近年
の製鋼技術の進歩に伴つてそのような特性劣化の
原因としての鋼中不純物であるとC、Nを著しく
低減する技術が確立され、また、合金元素あるい
は安定化元素の添加技術が確立したため、その原
料コストの安価さに着目した高純度フエライト系
クロムステンレス鋼の生産量増加が図られ、一
方、耐食性の一層の向上の方策への検討がなされ
てきた。 代表的な高純度フエライト系クロムステンレス
鋼としては、18%Cr−2%Mo、26%Cr−1%
Mo、29%Cr−4%Mo、29%Cr−4%Mo−2%
Ni、30%Cr−2%Mo等がある。これらの高純度
フエライト系クロムステンレス鋼の最大の特長
は、塩化物を含む溶液中で優れた耐応力腐食割れ
性(耐S.C.C.性−Stress Corrosion Crackingの
略−ともいう)を発揮する点であり、オーステナ
イト系ステンレス鋼を使用できないCl-イオン含
有の中性環境下での用途を主体にその用途拡大が
図られている。 ところで、今日実施されているフエライト系ク
ロムステンレス鋼の耐食性改善方法は、高Cr化、
Mo添加、Ni添加、極低(C+N)化、さらには
Ti、Nbなどの安定化元素添加等である。しかし
ながら、高Cr化およびMo添加はいずれもフエラ
イト系ステンレス鋼としての靭性、特に溶接部靭
性を劣化させる方向に作用するものであり、常温
以下での急激な靭性劣化が見られ、したがつて、
そのような靭性劣化が高純度フエライト系クロム
ステンレス鋼の広範なる用途拡大をはばんでき
た。また、(C+N)の低減化というも溶接部の
靭性劣化防止には十分ではなく、ましてTi、Nb
などの安定化元素を添加して(C+N)の影響を
軽減しようとする場合には、それらの元素の炭、
窒化物が多量に生成する結果、溶接部の靭性劣化
は免れない。 かくして、本発明の目的とするところは、従来
の高純度フエライト系クロムステンレス鋼の欠点
とされていた靭性、耐食性の劣化の問題をなく
し、むしろそれらの特性をいずれも飛躍的に向上
させた高純度フエライト系クロムステンレス鋼を
提供することにある。 ここに、本発明者らは、従来の靭性改善に方法
について種々検討したところ、極低C、N化とと
もに低Si、Mn化、さらに超極低S化およびAl添
加を図ることにより、それらの総合的作用効果と
して、予想外にも、溶接部も含めたフエライト系
クロムステンレス鋼の低温靭性を著しく改善する
ことを見い出して、本発明を完成したのである。 さらに、本発明者らは鋼中Sを従来とは一線を
画するレベルまで極低化することにより、予想外
にも、低Mn化に伴う熱間変形能の低下、耐食性
の劣化を防止し、むしろ鋼中Sの超極低化と低
Mn化との相乗的作用効果により母材の耐食性、
特に耐孔食性、耐銹性、耐酸性を著しく改善する
ことを見い出して本発明を完成したのである。 また、本発明者らは、真空精錬により極低C、
N化、およびAl添加、さらに所望により、安定
化元素としてのTi、Nbの添加により、溶接部の
靭性改善と溶接部の耐粒間腐食性改善とが著しい
ことを見い出して、本発明を完成したのである。 ここに、本発明は、重量%で、 Cr:15.00−50.00%、Mo:5.00%以下、 Ni:0.01−6.00%、Al:0.015〜1.00%、 さらに、所望により、Ti:1.00%以下〔ただ
し、Ti≧5x(C+N)%〕およびNb:1.00%以下
〔ただし、Nb≧8x(C+N)%]の1種または2
種を含み、 残部Feおよび不純物 からなり、精錬により不純物としてのC、N、
S、Si、Mn、Oをそれぞれ下記の範囲にまで低
減したことを特徴とする、耐食性および靭性に優
れたAl含有フエライト系クロムステンレス鋼: C:0.0060%以下、N:0.0150%以下、 S:0.0020%以下、Si:0.10%未満、 Mn:0.15%以下、O:0.015%以下 にある。 以上からも明らかなように、本発明鋼にあつて
は、C、N、S、Si、MnおよびOの各不純物を
極低化したことを特長とするものであつて、かか
る不純物の同時的低下は後述する新たに開発され
た特殊真空精錬法により初めて可能となつたもの
である。 なお、従来の高純度フエライト系クロムステン
レス鋼はAOD法、VOD法、VIM法、電子ビーム
溶解法等により溶製されてきたが、これらの従来
技術にあつては不純物としてのC、N、S、Si、
MnそしてOをそれぞれ同時に上述のような範囲
(以下、本発明鋼レベルという)にまで低減する
ことは不可能であつた。すなわち、例えばAOD
法においては鋼中Sを0.0020%以下にまで低減す
ることは可能であつたが、一方、鋼中C、Nを本
発明鋼レベルまで低減することはできず、さらに
また、Si、Mnを本発明鋼レベルにまで低減する
ことも脱酸上の制約よりできなかつた。また、
VOD法、VIM法、電子ビーム溶解法等の真空溶
解法では鋼中のC、N、Mn、Oを本発明鋼レベ
ルにまで低減することは可能であつたが、鋼中の
Sを本発明鋼レベルにまで低減することは不可能
であつた。 このように、従来技術にあつても前述の各不純
物C、N、S、Si、Mn、Oのうちの一部のみを
極低化させることは行われていたが、それらのす
べてを同時に低下させることはできなかつたので
あり、そして、そのときの効果についても知られ
なかつた。すなわち、従来の高純度フエライト系
クロムステンレス鋼の如くC、N、S、Si、Mn、
Oのうちのいずれか1種の元素でもが高い場合に
は、これらの元素を同時に本発明鋼レベルにまで
低減した際に発揮される筈の各元素低減の本来の
性質が本発明鋼レベルよりも高い一部の不純物元
素の存在により隠蔽されているといえる。そし
て、それらの各不純物の相互の関連が有らかにさ
れなかつたため、不純物としての低減効果は、例
えば、Sでは50ppm程度で、またC、Nについて
はそれぞれ100ppm、200ppm程度で飽和してしま
うと考えられていたのである。 次に、本発明鋼のフエライト系クロムステンレ
ス鋼において各成分の組成範囲を前述のように限
定した理由を説明する。以下、特にことわりがな
い限り、本明細書において「%」は「重量%」で
ある。クロム(Cr): Crは本発明鋼の基本的な耐食性を決定する
重要な元素である。その含有量を増すに従い耐
食性は向上するが、50.00%を越えて含有せる
場合には鍛造が不可能であり、一方、15.00%
未満ではフエライト系ステンレス鋼として十分
な耐食性が得られないため、その含有量を
15.00−50.00%と定めた。 モリブデン(Mo): Moは本発明鋼の耐食性を著しく高める作用
を有する添加元素である。耐銹性、耐酸性、耐
孔食性、耐隙間腐食性改善に対し大きな効果を
有する。5.00%を越えて含有せる場合にはσ
(シグマ)相、χ(カイ)相等の金属間化合物析
出に伴う機械的性質の劣化が顕著となるため、
上限を5.00%とした。 ニツケル(Ni): Niは耐酸性を向上し、本発明鋼の不動態化
能力を向上させる。6.00%を越えて含有せる場
合にはフエライト単相とすることが困難とな
り、更にはσ相の析出が顕著となるため、その
上限を6.00%とした。0.01%未満では前記作用
が認められない。 アルミニウム(Al): Alは溶接熱影響部の靭性改善に対し、鋼中
Nによる靭性劣化を軽減する効果を有する。更
に鋼中Oを低減する作用を有し、切欠き効果を
有する非金属介在物を減少させ、さらに固溶N
を安定化させることで母材靭性を改善する。一
方、1.00%を越えて添加せる場合には母材の脆
化が顕著となり、さらに熱間での割れを惹起す
るため、上限を1.00%とした。 本発明鋼ではAlは積極的に添加される元素
であり、残留Al量としては通常のAl脱酸にお
いて残存する不可避不純物レベルのAl量とは
区別されるものであり、0.015%を下限とする。
好ましくは0.015%−0.4%である。 チタン、ニオブ(Ti、Nb): TiおよびNbは、所望により、溶接の際の外
部要因によりC、N汚染に伴う溶接部での耐食
性劣化および靭性劣化を防止するために添加す
る。 Tiおよび/またはNbを添加する場合、Tiお
よびNbには母材の結晶粒ならびに溶接熱影響
部の結晶粒粗大化を抑制する作用があり、この
ような効果を十分に発揮させるためにはTi≧
5x(C+N)%、およびNb≧8x(C+N)%の
量だけ必要とする。しかし、Ti、Nbのいずれ
も多量に存在せる場合にはLaves相析出が顕著
となるほか、靭性の劣化が目立つようになるた
め、それぞれの上限を1.00%とした。 次に本発明鋼において重要な特徴としての不純
物の抑制の理由およびそれにより得られる効果に
ついて更に説明する。 炭素、窒素(C、N): CおよびNは高純度フエライト系クロムステ
ンレス鋼の靭性ならびに溶接部の耐粒間腐食
性、耐銹性、耐酸性に大きな影響を有する成分
元素であり、本発明者らの知見によれば、それ
らの元素の低減効果は飽和することがなく、鋼
中のCおよびNの含有量は少ない程望ましい。
本発明鋼において許容されるC、N濃度はCr
濃度の上昇に伴い著しく低下する。Cを0.0060
%、Nを0.015%を越えて含有せる場合には溶
接部靭性の劣化が顕著であり、耐粒間腐食性を
劣化するため、その上限をCについては0.006
%、Nについては0.0150%とした。好ましくは
C:0.003%以下、N:0.0060%以下である。 硫黄(S): Sは耐食性と熱間加工性とを著しく劣化さ
せ、さらには常温における延性破壊領域におけ
る衝撃値を低下させる傾向がある。Sは0.0020
%以下、望ましくは0.0010%以下とする。後述
のように、本発明鋼では靭性改善の目的などで
Mn量を0.15%以下に制限するが、S量が高い
場合には鋼中の硫化物がMnSでなく、むしろ
(Fe、Mn)Sの形態となり母材の耐食性と熱
間における変形能が低下する。それ故Sは上記
範囲に限定する必要がある。 ケイ素(Si): Siは固溶強化により母材の伸びを低下させ、
脆性破面遷移温度を高温側に移行させる。従来
の溶製法ではSiは脱酸材として通常0.20%程度
必要であつたが、本発明鋼では高度の真空精錬
技術の採用により脱酸材としてのSiの添加は不
必要である。しかし、溶製時に不可避不純物と
して約0.15%程度極微量混入してくることがあ
るが、許容上限をSi:0.10%未満とする。 マンガン(Mn): Mnは脆性破面遷移温度を高温側へ移行させ
る性質が顕著であり、Mn量は低い程望まし
い。その許容上限は不可避不純物のレベルであ
る0.15%とした。好ましくは0.10%以下であ
る。 酸素(o): 酸素は鋼中で酸化物系非金属介在物として存
在し、切欠き部の割れ発生地点として作用する
ため、酸素の存在によつて脆性破面遷移温度が
上昇する。さらに、脆性破面遷移温度以上の延
性破壊領域での衝撃吸収エネルギーを低下させ
る傾向がある。したがつて、酸素の上限は
0.015%とした。0.015%を越えて酸素を含有せ
る場合には靭性のみではなく、母材の耐食性も
劣化する傾向がある。好ましくは酸素は0.010
%以下である。 なお、本発明にあつては、その他の不可避不純
物として0.7%以下のCu、0.5%以下のVを含有す
る場合がある。これらの不可避不純物は本発明の
目的にとつて悪影響は及ぼさない。 次に、本発明を実施例に関連させてさらに具体
的に説明するが、それに先立つて本発明鋼の溶製
法について説明する。 すでに述べたように、本発明は前述の各不純物
を同時に極低レベルにまで低減し、それによる各
不純物の低減効果の相乗的作用によつて優れた特
性を得るものである。そしてかかる不純物の同時
的低減を達成する方法は特定の方法に制限される
ものではないが、以下に述べる本発明者らが開発
実用化した新精錬法によればそのような不純物の
同時的低減が容易に達成できる。 すなわち、酸素上吹き能力、ガス底吹き能力な
らびに粉体上吹き能力を有する高周波誘導加熱コ
イルを有する2.5トン真空精錬炉を使用し、脱硫
には脱硫のための造滓剤を、また、脱炭、脱窒に
は酸素供給源としての酸素物粉体をそれぞれAr
ガスキヤリヤーとともに音速で特殊多孔ランスを
用いて上吹きによつて溶湯面上に供給する。この
精錬炉は既に実生産にも使用されており、またこ
れは減圧下(真空下)で鋳込みが可能となるよう
に構成されている。このように、真空下で音速レ
ベルで上記のような粉体を上吹きすることによ
り、溶鋼の撹拌能力が飛躍的に向上する、したが
つて、このような精錬法の採用によつて、本発明
の好適態様にあつては、26%Cr鋼においてCが
例えば、0.0010%未満(10ppm未満)、Nが例え
ば、0.0040%未満(40ppm未満)、そして、Sが
0.0002%(2ppm)という従来では予想だにでき
なかつた超極低化が可能になる。したがつて、本
発明においては、真空下において溶鋼の十分な撹
拌が行われる結果、Cの脱酸元素としての効果を
有効に活用できるために、従来脱酸元素として必
要とされてきたSi、Mn等の元素の添加を積極的
に低減することが可能になり、かかる元素の低減
による優れた効果も併せて利用できるのである。
同時にAlも脱酸材としてではなく、合金元素と
して積極的に有効に活用することが可能になつた
のであり、そして合金元素としてのAlの添加に
よる優れた作用効果が利用可能となつたのであ
る。 実施例 上述の方法によつて溶製した第1表に示す鋼組
成を有する超高純度フエライト系クロムステンレ
ス鋼を50キロ丸形インゴツトにそれぞれ鋳込み、
鋳込み後、各インゴツトは外削後1200℃に1時間
半加熱後、30mmX130mmX100mmに鍛造した。次い
で、1200℃に加熱後950℃以上の温度で熱間圧延
を行い、厚さ7mm、幅130mmの熱延板を得、この
ようにして得られた熱延板を850℃で焼鈍後空冷、
または1000℃あるいは1100℃で焼鈍後水冷の熱処
理を実施した後、試験片に加工した。 なお、鋼中のC、Sの分析は高周波燃焼赤外吸
収方式を利用した感度0.1ppmの超高性能分析装
置であるLECO社製CS−144装置を使つて行つ
た。 このようにして得られた各試験片についてそれ
ぞれ耐孔食性、脆性、高温変形能、耐酸性そして
耐粒間腐食性を調べた。これらの試験の結果につ
いては同じく第1表にまとめて示す。 (1) 耐孔食性 前記各供試鋼について0.01モルNaCl水溶液
(60℃)中における孔食電位を測定した。測定
は200ml/minのArガスで1時間脱気後、20m
V/minで貴側へ掃引した際のV′Ci=100μAで
評価した。測定データは第1表にまとめて示
す。 なお、供試鋼2、3、4、12、13、14につい
てのデータにより鋼中Sに対する孔食電位の変
化をグラフにまとめ第1図に示す。これはMn
を0.10%以下として、19%Cr−2%Mo鋼にお
いて鋼中S量を0.0002%−0.0048%(2ppm−
48ppm)まで変化させたばあいの鋼中Sの耐孔
食性におよぼす影響を示すものである。 同図のグラフに示す結果からも明らかなよう
に、孔食電位は高い程耐食性に優れるがS濃度
が0.002%付近を境として孔食電位が顕著に劣
化しはじめている。一方、0.0010%以下では安
定していることが分かる。図中、番号は第1表
の供試鋼番号を示す。 (2) 脆性: 本例の場合、前記の各供試鋼について得られ
た熱延板に1000℃、Arガス雰囲気下で20分間
の焼鈍処理を行い、次いで水冷した。このよう
にして得られた試験片についてシヤルピー衝撃
試験を行い、脆性破面遷移温度を測定した。な
お、試験片サイズはJIS4号フルサイズシヤルピ
ー衝撃試験片とした。結果は第1表にまとめて
示す。 なお、供試鋼5、16、17ついて得られたデー
タをグラフにまとめて第2図に示す。これらの
データはS量を0.0010%未満としてMn量を変
化させた際の26%Cr−1%Mo鋼の脆性破面遷
移温度(vTrs℃)の変化を示すものである。 図示のグラフからも明らかなように、Mn量
の増加とともにvTrsが上昇し、Mn量は低い程
望ましいことが分かる。本発明鋼レベルに比べ
Mn量が0.20%と従来鋼レベルにまで高い供試
鋼16はvTrsは35℃と室温以上であり常温での
使用においても問題であることがわかる。 供試鋼として第1表の供試鋼5、6、7、15
を使いTIGなめ付け溶接熱影響部の靭性を検討
した。素材は熱間圧延後1000℃、Arガス雰囲
気下で20分間の焼鈍処理を行い、次いで水冷
し、更に60%の冷間圧延を実施し、最終焼鈍と
して920℃、Arガス雰囲気下で2分間保持後水
冷したものを用いた。Arガス流量10/min、
電流65〜75A、溶接速度120mm/minでTIGな
め後、溶接熱影響部がシヤルピー衝撃試験片の
ノツチ部となるようにシヤルピー衝撃試験片を
圧延長手方向に加工した。このようにして得ら
れた試験片についてシヤルピー衝撃試験を行
い、脆性破面遷移温度を測定した。なお、試験
片サイズはJIS4号ハーフサイズシヤルピー衝撃
試験片とした。得られた結果を第3図にグラフ
でまとめて示す。図示のグラフからも明らかな
ように、Al添加により母材の低温靭性が改善
されるばかりでなく、溶接熱影響部における靭
性改善がはかられることが分かる。 (3) 高温変形能: 26%Cr以上の高Crフエライトステンレス鋼
について下記要領で落錘試験を実施することに
より高温での変形能を評価した。 ここに、上記落錘試験とは1200℃に加熱した
直径15mm、高さ20mmの円柱型試験片をハンマー
型プレスで瞬時に高さ7mmの偏平片とし、端面
の割れの状況如何により高温での変形能を評価
するものである。変形能が良好であれば、端面
に割れが発生しないが、変形能が不十分である
場合には割れが発生する。第1表にその結果を
まとめて示す。低Mnで鋼中S量が本発明鋼レ
ベルを越えて高い場合には割れが大となつてい
ることがわかる。 (4) 耐酸性: 26%Crの供試鋼5、6、7、15、16、17、
18および29%Crの供試鋼8、9、19、20につ
き15%NaCl含有のPH1、H2SO4溶液中で下記
要領で沸騰試験を実施した。浸漬時間は6時間
であり、評価は6時間当たりの平均腐食速度に
よる。 なお、試験片寸法は3mmX10mmX40mmであ
り、湿式エメリー#600番研磨とした。そして、
それぞれ2本の試験片の平均値でもつて耐酸性
を評価した。 結果を同じく第1表にまとめて示すが、Ni
含有の供試鋼9において耐酸性が著しく向上し
ているのがわかる。 (5) 耐粒間腐食性: 耐粒間腐食性を評価するために、第1表の各
供試鋼についてTIGなめ試験片の硫酸−硫酸第
二鉄試験(JIS G 0572)を行つた。TIGなめ
付はArガス流量10/min、電流65〜75A、溶
接速度120mm/minの条件下で行つた。これら
の試験結果は第1表にまとめて示す。 これらの結果からも明らかなように、Al添
加により溶接熱影響部の耐粒間腐食性が向上
し、一方、供試鋼11、12、13、14、15のAl無
添加材では表面より数グレインの結晶粒脱落が
認められた。表中記号G、Lは熱影響部での結
晶粒脱落を示す。 以上、本発明について詳述してきたが、本発明
にかかる高純度フエライト系クロムステンレス鋼
は鋼中の不純物としてのC、N、S、Si、Mn、
Oを同時に従来とは一線を画するレベルにまで低
減することにより、溶接部を含めたクロムステン
レス鋼の靭性と耐粒間腐食性、ならびに母材の耐
食性、特に耐孔食性、耐酸性を著しく改善したも
のであり、その工業的価値は極めて高いものであ
る。
The present invention relates to a ferritic chromium stainless steel that is excellent in toughness and intergranular corrosion resistance of welded parts and corrosion resistance of a base metal, particularly pitting corrosion resistance and acid resistance. Ferritic chrome stainless steel has too much
Since it does not contain Ni and has improved corrosion resistance with Cr and Mo, the cost of raw materials during production is low, but it has been considered to have lower toughness and ductility and inferior corrosion resistance than austenitic steel. However, with recent advances in steelmaking technology, technology has been established to significantly reduce C and N, which are impurities in steel that cause property deterioration, and technology for adding alloying elements or stabilizing elements has also been developed. Since this has been established, efforts have been made to increase the production of high-purity ferritic chromium stainless steel, focusing on its low raw material cost, and on the other hand, studies have been conducted on measures to further improve corrosion resistance. Typical high-purity ferritic chromium stainless steels include 18%Cr-2%Mo, 26%Cr-1%
Mo, 29%Cr-4%Mo, 29%Cr-4%Mo-2%
Examples include Ni, 30% Cr-2% Mo, etc. The greatest feature of these high-purity ferritic chromium stainless steels is that they exhibit excellent stress corrosion cracking resistance (also known as SCC resistance) in solutions containing chlorides. Applications are being expanded, mainly in neutral environments containing Cl - ions, where austenitic stainless steel cannot be used. By the way, methods of improving the corrosion resistance of ferritic chromium stainless steel that are being implemented today include increasing the Cr content,
Mo addition, Ni addition, extremely low (C+N), and even
This includes adding stabilizing elements such as Ti and Nb. However, both the increase in Cr and the addition of Mo act in the direction of deteriorating the toughness of ferritic stainless steel, especially the toughness of welded parts, and rapid deterioration of toughness is observed below room temperature.
Such deterioration in toughness has hindered the wide range of applications for high-purity ferritic chromium stainless steel. In addition, reducing (C+N) is not sufficient to prevent deterioration of the toughness of welds, much less Ti, Nb
When trying to reduce the effect of (C+N) by adding stabilizing elements such as charcoal,
As a result of the generation of a large amount of nitrides, deterioration of the toughness of the weld is inevitable. Thus, the purpose of the present invention is to eliminate the problems of deterioration in toughness and corrosion resistance, which have been considered drawbacks of conventional high-purity ferritic chromium stainless steels, and to create a high-quality stainless steel that dramatically improves both of these properties. Our goal is to provide high purity ferritic chrome stainless steel. Here, the present inventors investigated various conventional methods for improving toughness, and found that they could be improved by ultra-low C and N, as well as low Si and Mn, as well as ultra-low S and Al addition. As a comprehensive effect, the present invention was completed by unexpectedly discovering that the low-temperature toughness of ferritic chromium stainless steel, including welded parts, is significantly improved. Furthermore, by extremely lowering the S content in the steel to a level that sets it apart from conventional methods, the present inventors unexpectedly prevented the decline in hot deformability and deterioration in corrosion resistance that accompany lower Mn. , rather, ultra-low and low S content in steel.
The corrosion resistance of the base material is improved due to the synergistic effect with Mn conversion.
In particular, the present invention was completed by discovering that pitting corrosion resistance, rust resistance, and acid resistance are significantly improved. In addition, the present inventors have also achieved ultra-low C,
The present invention was completed by discovering that the toughness of the weld and the intergranular corrosion resistance of the weld are significantly improved by adding N and Al, and if desired, adding Ti and Nb as stabilizing elements. That's what I did. Here, the present invention includes, in weight%, Cr: 15.00-50.00%, Mo: 5.00% or less, Ni: 0.01-6.00%, Al: 0.015-1.00%, and further, if desired, Ti: 1.00% or less [However, , Ti≧5x(C+N)%] and Nb: 1.00% or less [However, Nb≧8x(C+N)%] or two.
Contains seeds, the remainder consists of Fe and impurities, and by refining, impurities such as C, N,
Al-containing ferritic chromium stainless steel with excellent corrosion resistance and toughness, characterized by reducing S, Si, Mn, and O to the following ranges: C: 0.0060% or less, N: 0.0150% or less, S: Si: less than 0.10%, Mn: less than 0.15%, O: less than 0.015%. As is clear from the above, the steel of the present invention is characterized by extremely low levels of C, N, S, Si, Mn, and O impurities; This reduction was made possible for the first time by a newly developed special vacuum refining method described below. Conventional high-purity ferritic chromium stainless steel has been produced by AOD method, VOD method, VIM method, electron beam melting method, etc., but these conventional techniques contain C, N, and S as impurities. ,Si,
It was impossible to simultaneously reduce Mn and O to the above-mentioned ranges (hereinafter referred to as the "invention steel level"). i.e. for example AOD
Although it was possible to reduce S in steel to 0.0020% or less using the method, it was not possible to reduce C and N in steel to the level of the steel of the present invention, and furthermore, it was not possible to reduce S in steel to the level of the steel of the present invention. It was also not possible to reduce the content to the level of the invention steel due to deoxidizing restrictions. Also,
Although it was possible to reduce C, N, Mn, and O in steel to the level of the steel of the present invention using vacuum melting methods such as the VOD method, VIM method, and electron beam melting method, the S content of the steel could be reduced to the level of the steel of the present invention. It was impossible to reduce it to the level of steel. In this way, even in the conventional technology, only some of the above-mentioned impurities C, N, S, Si, Mn, and O were reduced to an extremely low level, but all of them were reduced at the same time. It was impossible to do so, and the effect at that time was unknown. In other words, like conventional high-purity ferritic chromium stainless steel, C, N, S, Si, Mn,
If any one of the O elements is high, the original properties of the reduction of each element that should be exhibited when these elements are simultaneously reduced to the level of the steel of the present invention are lower than the level of the steel of the present invention. It can be said that this is hidden by the presence of some impurity elements that have a high Since the relationship between each of these impurities was not clarified, the reduction effect as an impurity saturates, for example, at about 50 ppm for S, and at about 100 ppm and 200 ppm for C and N, respectively. It was thought that. Next, the reason why the composition range of each component in the ferritic chromium stainless steel of the present invention steel is limited as described above will be explained. Hereinafter, unless otherwise specified, "%" in this specification means "% by weight." Chromium (Cr): Cr is an important element that determines the basic corrosion resistance of the steel of the present invention. Corrosion resistance improves as the content increases, but if the content exceeds 50.00%, forging is impossible;
If the content is less than
It was set as 15.00-50.00%. Molybdenum (Mo): Mo is an additive element that has the effect of significantly increasing the corrosion resistance of the steel of the present invention. It has great effects on improving rust resistance, acid resistance, pitting corrosion resistance, and crevice corrosion resistance. If the content exceeds 5.00%, σ
The deterioration of mechanical properties due to the precipitation of intermetallic compounds such as (sigma) phase and χ (chi) phase becomes significant.
The upper limit was set at 5.00%. Nickel (Ni): Ni improves acid resistance and improves the passivation ability of the steel of the invention. If the content exceeds 6.00%, it becomes difficult to obtain a single ferrite phase, and furthermore, the precipitation of the σ phase becomes significant, so the upper limit was set at 6.00%. The above effects are not observed at less than 0.01%. Aluminum (Al): Al has the effect of improving the toughness of the weld heat affected zone and reducing toughness deterioration due to N in steel. Furthermore, it has the effect of reducing O in steel, reduces nonmetallic inclusions that have a notch effect, and further reduces solid solute N.
Improves the toughness of the base material by stabilizing the On the other hand, if it is added in excess of 1.00%, the base material will become noticeably brittle and cracking will occur during hot heating, so the upper limit was set at 1.00%. In the steel of the present invention, Al is an element that is actively added, and the residual Al content is distinguished from the unavoidable impurity level Al content that remains in normal Al deoxidation, and the lower limit is 0.015%. .
Preferably it is 0.015%-0.4%. Titanium, Niobium (Ti, Nb): Ti and Nb are added, if desired, in order to prevent deterioration of corrosion resistance and toughness in the welded part due to C and N contamination caused by external factors during welding. When adding Ti and/or Nb, Ti and Nb have the effect of suppressing the coarsening of crystal grains in the base metal and the weld heat affected zone, and in order to fully exhibit this effect, it is necessary to add Ti and Nb. ≧
Only an amount of 5x(C+N)% and Nb≧8x(C+N)% is required. However, when both Ti and Nb are present in large amounts, Laves phase precipitation becomes noticeable and the deterioration of toughness becomes noticeable, so the upper limit for each was set at 1.00%. Next, the reason for suppressing impurities as an important feature of the steel of the present invention and the effects obtained thereby will be further explained. Carbon, nitrogen (C, N): C and N are component elements that have a large effect on the toughness of high-purity ferritic chromium stainless steel, as well as the intergranular corrosion resistance, rust resistance, and acid resistance of welded parts. According to their knowledge, the effect of reducing these elements does not reach saturation, and the lower the content of C and N in steel, the more desirable it is.
The allowable C and N concentrations in the steel of the present invention are Cr
It decreases significantly as the concentration increases. C 0.0060
If N exceeds 0.015%, the weld toughness deteriorates significantly and intergranular corrosion resistance deteriorates, so the upper limit for C is set at 0.006%.
% and N were set at 0.0150%. Preferably C: 0.003% or less and N: 0.0060% or less. Sulfur (S): S significantly deteriorates corrosion resistance and hot workability, and also tends to lower the impact value in the ductile fracture region at room temperature. S is 0.0020
% or less, preferably 0.0010% or less. As will be described later, in the steel of the present invention, for the purpose of improving toughness, etc.
The amount of Mn is limited to 0.15% or less, but if the amount of S is high, the sulfide in the steel will not be MnS but will instead be in the form of (Fe, Mn)S, reducing the corrosion resistance and hot deformability of the base metal. do. Therefore, S needs to be limited to the above range. Silicon (Si): Si reduces the elongation of the base material through solid solution strengthening,
Shift the brittle fracture surface transition temperature to the high temperature side. In conventional melting methods, approximately 0.20% of Si is normally required as a deoxidizing agent, but in the steel of the present invention, the addition of Si as a deoxidizing agent is unnecessary due to the adoption of advanced vacuum refining technology. However, a very small amount of about 0.15% may be mixed in as an unavoidable impurity during melting, but the allowable upper limit is less than 0.10% Si. Manganese (Mn): Mn has a remarkable property of shifting the brittle fracture surface transition temperature to the high temperature side, and the lower the Mn content, the more desirable it is. The allowable upper limit was set at 0.15%, which is the level of unavoidable impurities. Preferably it is 0.10% or less. Oxygen (o): Oxygen exists as oxide-based nonmetallic inclusions in steel and acts as a crack initiation point at the notch, so the presence of oxygen increases the brittle fracture transition temperature. Furthermore, it tends to reduce the impact absorption energy in the ductile fracture region above the brittle fracture transition temperature. Therefore, the upper limit of oxygen is
It was set as 0.015%. When oxygen is contained in an amount exceeding 0.015%, not only the toughness but also the corrosion resistance of the base material tends to deteriorate. Preferably oxygen is 0.010
% or less. In addition, in the present invention, 0.7% or less of Cu and 0.5% or less of V may be contained as other unavoidable impurities. These unavoidable impurities have no adverse effect on the purpose of the present invention. Next, the present invention will be described in more detail with reference to Examples, but prior to that, a method for producing the steel of the present invention will be described. As already mentioned, the present invention simultaneously reduces each of the above-mentioned impurities to an extremely low level, and obtains excellent properties through the synergistic effect of the reduction effects of each impurity. Although the method for achieving the simultaneous reduction of such impurities is not limited to a specific method, the new refining method developed and put into practical use by the present inventors described below allows simultaneous reduction of such impurities. can be easily achieved. In other words, a 2.5-ton vacuum smelting furnace equipped with a high-frequency induction heating coil that has oxygen top-blowing capacity, gas bottom-blowing capacity, and powder top-blowing capacity is used. For denitrification, oxygen powder is used as an oxygen supply source, respectively.
It is supplied onto the molten metal surface by upward blowing using a special porous lance at the speed of sound with a gas carrier. This smelting furnace is already in use in actual production, and is configured to allow casting under reduced pressure (vacuum). In this way, by top-blowing the above-mentioned powder at the sonic level under vacuum, the stirring ability of molten steel can be dramatically improved. In a preferred embodiment of the invention, in 26% Cr steel, C is, for example, less than 0.0010% (less than 10 ppm), N is, for example, less than 0.0040% (less than 40 ppm), and S is, for example, less than 0.0040% (less than 40 ppm).
This makes it possible to achieve extremely low levels of 0.0002% (2ppm), which was previously unimaginable. Therefore, in the present invention, as a result of sufficient stirring of molten steel under vacuum, the effect of C as a deoxidizing element can be effectively utilized, so that Si, which has conventionally been required as a deoxidizing element, It becomes possible to actively reduce the addition of elements such as Mn, and the excellent effects of reducing such elements can also be utilized.
At the same time, it became possible to actively and effectively utilize Al as an alloying element rather than as a deoxidizing agent, and it became possible to take advantage of the excellent effects of adding Al as an alloying element. . Example Ultra-high purity ferritic chromium stainless steel melted by the method described above and having the steel composition shown in Table 1 was cast into 50 kg round ingots.
After casting, each ingot was externally cut, heated to 1200°C for 1.5 hours, and then forged to 30mm x 130mm x 100mm. Next, after heating to 1200°C, hot rolling was performed at a temperature of 950°C or higher to obtain a hot rolled sheet with a thickness of 7 mm and a width of 130 mm. The hot rolled sheet thus obtained was annealed at 850°C and then air cooled.
Alternatively, after annealing at 1000°C or 1100°C, water-cooling heat treatment was performed, and then processed into test pieces. The analysis of C and S in steel was carried out using a CS-144 device manufactured by LECO, which is an ultra-high performance analyzer with a sensitivity of 0.1 ppm that utilizes a high-frequency combustion infrared absorption method. The pitting corrosion resistance, brittleness, high temperature deformability, acid resistance, and intergranular corrosion resistance of each test piece thus obtained were examined. The results of these tests are also summarized in Table 1. (1) Pitting Corrosion Resistance The pitting corrosion potential of each of the test steels was measured in a 0.01 mol NaCl aqueous solution (60°C). Measurement was performed at 20m after degassing with Ar gas at 200ml/min for 1 hour.
Evaluation was made with V'Ci = 100μA when swept to the side at V/min. The measurement data are summarized in Table 1. The changes in pitting corrosion potential with respect to S in steel are summarized in a graph based on the data for test steels 2, 3, 4, 12, 13, and 14, and are shown in FIG. This is Mn
0.10% or less, the amount of S in the 19%Cr-2%Mo steel is 0.0002%-0.0048% (2ppm-
This figure shows the effect on the pitting corrosion resistance of S in steel when the S content is changed up to 48 ppm). As is clear from the results shown in the graph of the same figure, the higher the pitting potential, the better the corrosion resistance, but the pitting potential begins to deteriorate significantly when the S concentration reaches around 0.002%. On the other hand, it can be seen that it is stable below 0.0010%. In the figure, the numbers indicate the test steel numbers in Table 1. (2) Brittleness: In the case of this example, the hot-rolled sheets obtained for each of the above-mentioned test steels were annealed at 1000°C in an Ar gas atmosphere for 20 minutes, and then water-cooled. A Charpy impact test was conducted on the test piece thus obtained, and the brittle fracture transition temperature was measured. Note that the test piece size was a JIS No. 4 full-size Shapey impact test piece. The results are summarized in Table 1. The data obtained for test steels 5, 16, and 17 are summarized in a graph and shown in Figure 2. These data show changes in the brittle fracture surface transition temperature (vTrs°C) of 26%Cr-1%Mo steel when the S content is less than 0.0010% and the Mn content is varied. As is clear from the graph shown, vTrs increases as the amount of Mn increases, and it can be seen that the lower the amount of Mn, the more desirable it is. Compared to the inventive steel level
Test steel 16, which has a high Mn content of 0.20%, which is on the same level as conventional steel, has vTrs of 35°C, which is higher than room temperature, indicating that it is a problem even when used at room temperature. Test steels 5, 6, 7, and 15 in Table 1 are used as test steels.
The toughness of the heat-affected zone of TIG tanned welds was investigated using the following method. After hot rolling, the material was annealed at 1000℃ for 20 minutes in an Ar gas atmosphere, then water cooled, further cold rolled by 60%, and finally annealed at 920℃ for 2 minutes in an Ar gas atmosphere. The sample was cooled with water after being held. Ar gas flow rate 10/min,
After TIG licking at a current of 65 to 75 A and a welding speed of 120 mm/min, the Shapey impact test piece was machined in the longitudinal direction so that the weld heat affected zone became the notch part of the Shapey impact test piece. The thus obtained test piece was subjected to a Charpy impact test, and the brittle fracture surface transition temperature was measured. The test piece size was a JIS No. 4 half-size Shapey impact test piece. The obtained results are summarized in a graph in FIG. As is clear from the graph shown, the addition of Al not only improves the low-temperature toughness of the base metal, but also improves the toughness in the weld heat affected zone. (3) High-temperature deformability: The deformability at high temperatures of high-Cr ferrite stainless steel with a content of 26% Cr or higher was evaluated by conducting a drop weight test in the manner described below. Here, the above-mentioned falling weight test means that a cylindrical test piece with a diameter of 15 mm and a height of 20 mm heated to 1200℃ is instantaneously made into a flat piece with a height of 7 mm using a hammer press. It evaluates deformability. If the deformability is good, cracks will not occur on the end face, but if the deformability is insufficient, cracks will occur. Table 1 summarizes the results. It can be seen that cracks become large when the Mn content is low and the S content in the steel is higher than the present invention steel level. (4) Acid resistance: 26% Cr test steels 5, 6, 7, 15, 16, 17,
A boiling test was conducted on test steels 8, 9, 19, and 20 containing 18 and 29% Cr in a PH1, H 2 SO 4 solution containing 15% NaCl in the following manner. The immersion time was 6 hours, and the evaluation was based on the average corrosion rate per 6 hours. The test piece had dimensions of 3 mm x 10 mm x 40 mm, and was polished using wet emery #600. and,
Acid resistance was also evaluated using the average value of two test pieces. The results are also summarized in Table 1, but Ni
It can be seen that the acid resistance of Sample Steel 9 containing A was significantly improved. (5) Intergranular Corrosion Resistance: In order to evaluate the intergranular corrosion resistance, a sulfuric acid-ferric sulfate test (JIS G 0572) was conducted on TIG test pieces for each of the test steels shown in Table 1. TIG tanning was performed under conditions of Ar gas flow rate of 10/min, current of 65 to 75 A, and welding speed of 120 mm/min. The results of these tests are summarized in Table 1. As is clear from these results, the intergranular corrosion resistance of the weld heat-affected zone is improved by the addition of Al, while the Al-free specimen steels 11, 12, 13, 14, and Falling off of grains was observed. Symbols G and L in the table indicate crystal grain dropout in the heat affected zone. The present invention has been described in detail above, but the high purity ferritic chromium stainless steel according to the present invention contains C, N, S, Si, Mn as impurities in the steel.
At the same time, by reducing O to a level that is in line with conventional methods, the toughness and intergranular corrosion resistance of chromium stainless steel, including welded parts, as well as the corrosion resistance of the base metal, especially pitting corrosion resistance and acid resistance, are significantly improved. This is an improvement, and its industrial value is extremely high.

【表】【table】

【表】【table】

【表】 実施例 2 本例では第2表に示す組成の各供試鋼に対して
実施例1と同様にして耐食性および靭性試験を行
つた。 結果は同じく第2表にまとめて示す。
[Table] Example 2 In this example, corrosion resistance and toughness tests were conducted in the same manner as in Example 1 for each sample steel having the composition shown in Table 2. The results are also summarized in Table 2.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、鋼中Sの耐食性におよぼす影響を示
すグラフ;第2図は、鋼中Mnの靭性におよぼす
影響を示すグラフ;および第3図は、同じくAl
添加の鋼靭性におよぼす影響を示すグラフであ
る。
Figure 1 is a graph showing the effect of S in steel on corrosion resistance; Figure 2 is a graph showing the effect of Mn in steel on toughness; and Figure 3 is a graph showing the effect of Mn in steel on toughness.
It is a graph showing the influence of addition on steel toughness.

Claims (1)

【特許請求の範囲】 1 重量%で、 Cr:15.00〜50.00%、Mo:5.00%以下、 Ni:0.01〜6.00%、Al:0.015〜1.00%、 残部Feおよび不純物 からなり、精錬により不純物としてのC、N、
S、Si、Mn、Oをそれぞれ下記の範囲にまで低
減したことを特徴とする、耐食性および靭性に優
れたAl含有フエライト系クロムステンレス鋼: C:0.0060%以下、N:0.0150%以下、 S:0.0020%以下、Si:0.1%未満、 Mn:0.15%以下、O:0.015%以下。 2 重量%で、 Cr:15.00〜50.00%、Mo:5.00%以下、 Ni:0.01〜6.00%、Al:0.015〜1.00%、 さらに、Ti:1.00%以下[ただし、Ti≧5×
(C+N)%]およびNb:1.00%以下[ただし、
Nb≧8×(C+N)%]の1種または2種を含
み、 残部Feおよび不純物 からなり、精錬により不純物としてのC、N、
S、Si、Mn、Oをそれぞれ下記の範囲にまで低
減したことを特徴とする、耐食性および靭性に優
れたAl含有フエライト系クロムステンレス鋼: C:0.0060%以下、N:0.0150%以下、 S:0.0020%以下、Si:0.1%未満、 Mn:0.15%以下、O:0.015%以下。
[Claims] 1% by weight, Cr: 15.00 to 50.00%, Mo: 5.00% or less, Ni: 0.01 to 6.00%, Al: 0.015 to 1.00%, the balance being Fe and impurities. C.N.
Al-containing ferritic chromium stainless steel with excellent corrosion resistance and toughness, characterized by reducing S, Si, Mn, and O to the following ranges: C: 0.0060% or less, N: 0.0150% or less, S: 0.0020% or less, Si: less than 0.1%, Mn: 0.15% or less, O: 0.015% or less. 2 Weight%: Cr: 15.00-50.00%, Mo: 5.00% or less, Ni: 0.01-6.00%, Al: 0.015-1.00%, and Ti: 1.00% or less [However, Ti≧5×
(C+N)%] and Nb: 1.00% or less [however,
Contains one or two types of Nb≧8×(C+N)%], with the balance consisting of Fe and impurities, and by refining, C, N, and
Al-containing ferritic chromium stainless steel with excellent corrosion resistance and toughness, characterized by reducing S, Si, Mn, and O to the following ranges: C: 0.0060% or less, N: 0.0150% or less, S: 0.0020% or less, Si: less than 0.1%, Mn: 0.15% or less, O: 0.015% or less.
JP3287983A 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al Granted JPS59159975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3287983A JPS59159975A (en) 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3287983A JPS59159975A (en) 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al

Publications (2)

Publication Number Publication Date
JPS59159975A JPS59159975A (en) 1984-09-10
JPH0536492B2 true JPH0536492B2 (en) 1993-05-31

Family

ID=12371158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3287983A Granted JPS59159975A (en) 1983-03-02 1983-03-02 Ferritic chromium stainless steel containing al

Country Status (1)

Country Link
JP (1) JPS59159975A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008457A1 (en) * 2007-07-09 2009-01-15 Jfe Precision Corporation Heat radiating component for electronic component, case for electronic component, carrier for electronic component, and package for electronic component

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61276955A (en) * 1985-05-31 1986-12-06 Nippon Steel Corp Ferrite single phase stainless steel which does not generate surface flaw
JP4831256B2 (en) * 2010-01-28 2011-12-07 Jfeスチール株式会社 High corrosion resistance ferritic stainless hot rolled steel sheet with excellent toughness
KR102373161B1 (en) * 2017-05-10 2022-03-10 현대자동차주식회사 Low-alloy and Corrosion-resistant Steel Having Improved Corrosion-resistant at Corrosive Environment and the Method Thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122414A (en) * 1974-03-07 1975-09-26
JPS50144622A (en) * 1974-05-11 1975-11-20
JPS5135368A (en) * 1974-09-20 1976-03-25 Tamura Electric Works Ltd Rajioto no taimaaseigyokiko
JPS5536703A (en) * 1978-09-06 1980-03-14 Toshiba Corp Transducer for pressure gauge
JPS5620349A (en) * 1979-07-28 1981-02-25 Fujitsu Ltd Timer correction system of broadcast confirmation system
JPS5634626A (en) * 1979-08-31 1981-04-06 Kureha Chem Ind Co Ltd Anti-inflammatory
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance
JPS5985848A (en) * 1982-11-08 1984-05-17 Sumitomo Metal Ind Ltd Ferritic stainless steel plate with superior rust resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50122414A (en) * 1974-03-07 1975-09-26
JPS50144622A (en) * 1974-05-11 1975-11-20
JPS5135368A (en) * 1974-09-20 1976-03-25 Tamura Electric Works Ltd Rajioto no taimaaseigyokiko
JPS5536703A (en) * 1978-09-06 1980-03-14 Toshiba Corp Transducer for pressure gauge
JPS5620349A (en) * 1979-07-28 1981-02-25 Fujitsu Ltd Timer correction system of broadcast confirmation system
JPS5634626A (en) * 1979-08-31 1981-04-06 Kureha Chem Ind Co Ltd Anti-inflammatory
JPS57134542A (en) * 1981-02-13 1982-08-19 Sumitomo Metal Ind Ltd Ferrite stainless steel with superior corrosion resistance
JPS5985848A (en) * 1982-11-08 1984-05-17 Sumitomo Metal Ind Ltd Ferritic stainless steel plate with superior rust resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009008457A1 (en) * 2007-07-09 2009-01-15 Jfe Precision Corporation Heat radiating component for electronic component, case for electronic component, carrier for electronic component, and package for electronic component

Also Published As

Publication number Publication date
JPS59159975A (en) 1984-09-10

Similar Documents

Publication Publication Date Title
US9212412B2 (en) Lean duplex stainless steel excellent in corrosion resistance and toughness of weld heat affected zone
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
EA012333B1 (en) An austenitic steel and a steel product
JP6856129B2 (en) Manufacturing method of high Mn steel
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JPH09267190A (en) Welding wire for high crome ferrite wire
JPWO2020166538A1 (en) High Mn steel and its manufacturing method
JP5329632B2 (en) Duplex stainless steel, duplex stainless steel cast, and duplex stainless steel
JP7272438B2 (en) Steel material, manufacturing method thereof, and tank
JPS6035981B2 (en) High-strength, high-toughness rolled steel for pressure vessels
US20230357879A1 (en) Highly corrosion-resistant austenite stainless steel and method for producing the same
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JPS59159974A (en) Ferritic chromium stainless steel
JPH0536492B2 (en)
JPH0643626B2 (en) Martensitic stainless steel for oil country tubular goods
JPH10102212A (en) Ferritic stainless steel sheet excellent in penetration at welding
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP2000226633A (en) Steel for electron beam welding excellent in toughness
JPH0465141B2 (en)
JP2002363709A (en) HIGH Cr FERRITIC HEAT RESISTANT STEEL
JPS5852460A (en) High strength chromium steel with superior weathering resistance and weldability
JP7530447B2 (en) Precipitation hardening martensitic stainless steel with excellent fatigue resistance
JP3132728B2 (en) Ferritic stainless steel with excellent formability