JP6223351B2 - Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel - Google Patents

Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel Download PDF

Info

Publication number
JP6223351B2
JP6223351B2 JP2014544565A JP2014544565A JP6223351B2 JP 6223351 B2 JP6223351 B2 JP 6223351B2 JP 2014544565 A JP2014544565 A JP 2014544565A JP 2014544565 A JP2014544565 A JP 2014544565A JP 6223351 B2 JP6223351 B2 JP 6223351B2
Authority
JP
Japan
Prior art keywords
less
stainless steel
temperature
ferritic stainless
equation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014544565A
Other languages
Japanese (ja)
Other versions
JPWO2014069543A1 (en
Inventor
慎一 寺岡
慎一 寺岡
章宏 福田
章宏 福田
小林 雅明
雅明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Publication of JPWO2014069543A1 publication Critical patent/JPWO2014069543A1/en
Application granted granted Critical
Publication of JP6223351B2 publication Critical patent/JP6223351B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/16Selection of particular materials
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron

Description

本発明は、高温で使用される薄板構造物用材料に関し、特に自動車排気系材料のように、常温での耐食性と共に、高温で使用される事による脆化が生じにくいフェライト系ステンレス鋼に関するものである。   The present invention relates to a material for a thin plate structure used at a high temperature, and particularly to a ferritic stainless steel that is not easily embrittled by being used at a high temperature as well as corrosion resistance at a normal temperature, such as an automobile exhaust system material. is there.

フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼に比べて加工性、靭性及び高温強度では劣るものの、多量のNiを含有していないため廉価であり、また熱膨張が小さいため、近年では屋根等の建築材料や、高温になる自動車排気系部品材料などの熱ひずみが問題となるような用途に使用されている。特に自動車の排気系部品材料として使用される場合では、高温強度、常温での耐食性、高温使用に伴う高靭性が重要である。一般には、SUH409L、SUS429、SUS430LX、SUS436J1L、SUS432、SUS444等の鋼種がこれらの用途に適するフェライト系ステンレス鋼として用いられている。   Ferritic stainless steel is inferior in workability, toughness and high-temperature strength compared to austenitic stainless steel, but it is inexpensive because it does not contain a large amount of Ni, and its thermal expansion is small. It is used for applications where thermal distortion becomes a problem, such as materials and automotive exhaust system parts that become hot. Particularly when used as an exhaust system part material for automobiles, high temperature strength, corrosion resistance at normal temperature, and high toughness associated with high temperature use are important. In general, steel types such as SUH409L, SUS429, SUS430LX, SUS436J1L, SUS432, and SUS444 are used as ferritic stainless steel suitable for these applications.

これらの材料に於いて、特許文献1では、0.05〜2%のSnを用いて高温強度を高めた材料が開示されている。また特許文献2では0.005〜0.10%のSnを添加することでステンレス鋼板の表面品質を改善する技術が開示されている。また、近年では表面処理鋼板を含む屑鉄を原料として用いる事により、不可避的不純物として0.05%を超える多量のSnがステンレス鋼に含有されるようになってきた。   Among these materials, Patent Document 1 discloses a material in which high temperature strength is increased by using 0.05 to 2% of Sn. Patent Document 2 discloses a technique for improving the surface quality of a stainless steel plate by adding 0.005 to 0.10% Sn. In recent years, a large amount of Sn exceeding 0.05% has been contained in stainless steel as an unavoidable impurity by using scrap iron including a surface-treated steel sheet as a raw material.

特開2000−169943号公報JP 2000-169943 A 特開平11−92872号公報Japanese Patent Laid-Open No. 11-92872

背景技術に記載のSnを含有するステンレス鋼を高温で使用すると、従来知られていなかった粒界脆化現象が生じて、部品の強度を損ねる問題が発生することが分かってきた。本発明の目的は、自動車排気系材料のように高温下に長時間さらされる場合にも、常温における靭性が劣化しないフェライト系ステンレス鋼を提供することにある。   It has been found that when stainless steel containing Sn described in the background art is used at a high temperature, a grain boundary embrittlement phenomenon, which has not been known in the past, occurs and the strength of the component is impaired. An object of the present invention is to provide a ferritic stainless steel that does not deteriorate toughness at room temperature even when exposed to a high temperature for a long time, such as an automobile exhaust system material.

本発明者等は、Snを含有するフェライト系ステンレス鋼の高温長時間時効後の常温に於ける靭性低下について種々検討した。先ず、SUS430LXが0.3%のSnを含有した場合に、どの様な温度域で使用する事で靭性低下を生じるか調べたところ、500〜800℃である事が分かった。加えて、特に短時間で靭性低下が起こる温度は700℃であり、わずか1時間で大幅な靭性低下が生じる事が分かった。図1に示す様に、脆性破壊が生じた破面形態は一般的な劈開破面と異なり、粒界破面を示す特徴があった。AES(オージェ電子分光)装置内で試料を低温に冷却後に破壊し、粒界破面を分析したところ、顕著なSn偏析が約1nmの厚さで認められた。即ち、高温長時間使用による靭性の低下はSnの粒界偏析に起因して生じたものと考えられた。   The inventors of the present invention have made various studies on the reduction in toughness at normal temperature after high-temperature and long-term aging of ferritic stainless steel containing Sn. First, when SUS430LX contained 0.3% of Sn, it was found that the temperature range was 500 to 800 ° C. when it was examined in which temperature range the toughness was lowered. In addition, it was found that the temperature at which the toughness drop occurs particularly in a short time is 700 ° C., and the toughness drop significantly occurs in only 1 hour. As shown in FIG. 1, the fracture surface form in which brittle fracture occurred was different from a general cleavage fracture surface and had a characteristic of showing a grain boundary fracture surface. When the sample was destroyed after cooling to a low temperature in an AES (Auger Electron Spectroscopy) apparatus and the grain boundary fracture surface was analyzed, noticeable Sn segregation was observed at a thickness of about 1 nm. That is, it was considered that the decrease in toughness due to long-term use at high temperature was caused by segregation of Sn grain boundaries.

このような粒界脆化を防止するためには、Snの含有量を低減する事が最も有効である。しかし、表面処理鋼板のリサイクルは環境保護のためにも避けられないため、Snを含有するスクラップを使用せざるを得ないのが実状である。また、精錬でSnを取り除く事も現有技術では困難であり、Snを含んでも粒界脆化が生じにくい材料が切望された。   In order to prevent such grain boundary embrittlement, it is most effective to reduce the Sn content. However, since the recycling of the surface-treated steel sheet is unavoidable for environmental protection, the actual situation is that scrap containing Sn must be used. Further, it is difficult to remove Sn by refining with the existing technology, and a material that does not easily cause grain boundary embrittlement even if Sn is eagerly desired.

そこで、Snの粒界偏析に起因する脆化を防止すべく、各種合金元素の影響について詳細に調査し、耐食性確保のためにステンレス鋼中のC、Nを固定するべく添加される安定化元素Ti、Nbの影響が大きい事を見出した。即ち、図1および2に示すように、Tiで安定化した鋼がSnを含有すると、高温使用に伴う粒界脆化が顕著であり、Nbで安定化した鋼はSnを含有しても脆化が起こりにくい事を見出した。   Therefore, in order to prevent embrittlement due to grain boundary segregation of Sn, the effect of various alloy elements is investigated in detail, and a stabilizing element added to fix C and N in stainless steel to ensure corrosion resistance. It was found that the influence of Ti and Nb was great. That is, as shown in FIGS. 1 and 2, when steel stabilized with Ti contains Sn, grain boundary embrittlement due to high temperature use is remarkable, and steel stabilized with Nb is brittle even if it contains Sn. I found that it is hard to happen.

この知見を基に、安定化元素Ti,Nbを単独で添加した場合、また、複合添加した場合について靭性への影響を調べ、高温使用による靭性低下が生じにくい鋼を開発する事が可能になった。   Based on this knowledge, it is possible to investigate the effect on the toughness when the stabilizing elements Ti and Nb are added alone or in combination, and to develop a steel that does not easily deteriorate toughness due to high temperature use. It was.

本発明は、これらの知見に基づいて到ったものであり、本発明の課題を解決する手段、すなわち、本発明のフェライト系ステンレス鋼板は以下の通りである。
(1)質量%で、Cr:13.0〜21.0%、Sn:0.01〜0.50%、Nb:0.05〜0.60%を含有し、C:0.015%以下、Si:1.5%以下、Mn:1.5%以下、N:0.020%以下、P:0.035%以下、及びS:0.015%以下に制限され、式1および式2を満足し、残部がFe及び不可避的不純物であり、かつ、600〜750℃の温度で、式3で示すL値が1.91×10以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であり、冷延板焼鈍後の結晶粒度番号を5.0以上、9.0以下とすることを特徴とするフェライト系ステンレス鋼。
8≦CI=0.52Nb/(C+N)≦26・・・(式1)
GBSV=Sn−2Nb−0.2≦0・・・(式2)
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
The present invention has been made based on these findings, and means for solving the problems of the present invention, that is, the ferritic stainless steel sheet of the present invention is as follows.
(1) By mass%, Cr: 13.0 to 21.0%, Sn: 0.01 to 0.50%, Nb: 0.05 to 0.60%, C: 0.015% or less , Si: 1.5% or less, Mn: 1.5% or less, N: 0.020% or less, P: 0.035% or less, and S: 0.015% or less, Formula 1 and Formula 2 Grain boundary Sn concentration when the balance is Fe and inevitable impurities, and heat treatment is performed at a temperature of 600 to 750 ° C. and the L value represented by Formula 3 is 1.91 × 10 4 or more Is a ferritic stainless steel characterized by having a grain size number of 5.0 or more and 9.0 or less after cold-rolled sheet annealing.
8 ≦ CI = 0.52 Nb / (C + N) ≦ 26 (Formula 1)
GBSV = Sn−2Nb−0.2 ≦ 0 (Expression 2)
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)

(2)質量%で、Cr:13.0〜21.0%、Sn:0.01〜0.30%、Nb:0.20〜0.60%、Ti:0.05超0.32%以下、を含有し、更に、質量%で、Ni:0.5%以下、Cu:1.5%以下、Mo:2.0%以下、V:0.3%以下、Al:0.3%以下、B:0.0020%以下の1種または2種以上を含有し、C:0.015%以下、Si:1.5%以下、Mn:1.5%以下、N:0.020%以下、P:0.035%以下、及びS:0.015%以下、に制限され、残部がFe及び不可避的不純物であり、式1’および式2’を満足し、かつ、600〜750℃の温度で、式3で示すL値が1.91×10 以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であり、冷延板焼鈍後の結晶粒度番号を5.0以上、9.0以下とすることを特徴とするェライト系ステンレス鋼。
8≦CI=(Ti+0.52Nb)/(C+N)≦26・・・式1’
GBSV=Sn+Ti−2Nb−0.3Mo−0.2≦0・・・式2’
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
(2) By mass%, Cr: 13.0 to 21.0%, Sn: 0.01 to 0.30%, Nb: 0.20 to 0.60%, Ti: more than 0.05, 0.32% In addition, in addition, by mass%, Ni: 0.5% or less, Cu: 1.5% or less, Mo: 2.0% or less, V: 0.3% or less, Al: 0.3% Hereinafter, B: contains one or more of 0.0020% or less, C: 0.015% or less, Si: 1.5% or less, Mn: 1.5% or less, N: 0.020% Hereinafter, it is limited to P: 0.035% or less and S: 0.015% or less, the balance is Fe and inevitable impurities, satisfies the formulas 1 ′ and 2 ′, and 600 to 750 ° C. at temperatures, grain boundaries Sn concentration when subjected to a heat treatment L value shown in equation 3 is 1.91 × 10 4 or more and 2 atomic% or less, the grain size number after cold-rolled sheet annealing 5.0 or more, ferrites stainless steel, wherein to Rukoto and 9.0 or less.
8 ≦ CI = (Ti + 0.52Nb) / (C + N) ≦ 26 Formula 1 ′
GBSV = Sn + Ti-2Nb-0.3Mo-0.2≤0 Formula 2 '
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)

(3)前記熱処理が700℃で1時間であることを特徴とする(1)又は(2)に記載のフェライト系ステンレス鋼 (3) the heat treatment is characterized by 1 hour der Rukoto at 700 ° C. (1) or ferritic stainless steel according to (2).

(4)更に、質量%で、W:0.20%以下、Zr:0.20%以下、Sb:0.5%以下、Co:0.5%以下、Ca:0.01%以下、Mg:0.01%以下、REM:0.1%以下、の1種または2種以上を含有することを特徴とする(1)〜(3)のいずれかに記載のフェライト系ステンレス鋼。 (4) Further, in mass%, W: 0.20% or less, Zr: 0.20% or less, Sb: 0.5% or less, Co: 0.5% or less, Ca: 0.01% or less, Mg The ferritic stainless steel according to any one of (1) to (3), characterized by containing one or more of: 0.01% or less and REM: 0.1% or less.

(5)冷延板焼鈍後の結晶粒度番号を6.0以上、8.5以下とすることを特徴とする(1)〜(4)のいずれかに記載のフェライト系ステンレス鋼。 (5) The ferritic stainless steel according to any one of (1) to (4), wherein the grain size number after cold-rolled sheet annealing is 6.0 or more and 8.5 or less.

(6)(1)、()または(4)に記載の組成のステンレス鋼を、冷延板焼鈍温度を850℃〜1100℃とし、その後冷延板焼鈍温度からの冷却に際し、800〜500℃の温度範囲において冷却速度を5℃/s以上とすることを特徴とする(1)〜(5)のいずれかに記載のフェライト系ステンレス鋼の製造方法。
(7)(1)〜(5)のうちいずれかのフェライト系ステンレス鋼を用いたことを特徴とする排気系部材。
(8)質量%で、Cr:13.0〜21.0%、Sn:0.01〜0.50%、Nb:0.05〜0.60%、を含有し、W:0.01%〜0.20%及びSb:0.001%〜0.5%の少なくとも1種を含有し、C:0.015%以下、Si:1.5%以下、Mn:1.5%以下、N:0.020%以下、P:0.035%以下、及びS:0.015%以下、 に制限され、残部がFe及び不可避的不純物であり、式1および式2を満足し、かつ、600〜750℃の温度で、式3で示すL値が1.91×10以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であることを特徴とするフェライト系ステンレス鋼。
8≦CI=0.52Nb/(C+N)≦26・・・(式1)
GBSV=Sn−2Nb−0.2≦0・・・(式2)
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
(9)質量%で、Cr:13.0〜21.0%、Sn:0.01〜0.30%、Nb:0.20〜0.60%、Ti:0.05超0.32%以下、を含有し、W:0.01%〜0.20%及びSb:0.001%〜0.5%の少なくとも1種を含有し、更に、質量%で、Ni:0.5%以下、Cu:1.5%以下、Mo:2.0%以下、V:0.3%以下、 Al:0.3%以下、B:0.0020%以下の1種または2種以上を含有し、C:0.015%以下、Si:1.5%以下、Mn:1.5%以下、N:0.020%以下、P:0.035%以下、及びS:0.015%以下、に制限され、残部がFe及び不可避的不純物であり、式1’および式2’を満足し、かつ、600〜750℃の温度で、式3で示すL値が1.91×10 以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であることを特徴とするェライト系ステンレス鋼。
8≦CI=(Ti+0.52Nb)/(C+N)≦26・・・(式1’)
GBSV=Sn+Ti−2Nb−0.3Mo−0.2≦0・・・(式2’)
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
(10)前記熱処理が700℃で1時間であることを特徴とする(8)又は(9)に記載のフェライト系ステンレス鋼。
(11)更に、質量%で、Zr:0.20%以下、Co:0.5%以下、Ca:0.01%以下、Mg:0.01%以下、REM:0.1%以下、の1種または2種以上を含有することを特徴とする(8)〜(10)のいずれかに記載のフェライト系ステンレス鋼。
(12)冷延板焼鈍後の結晶粒度番号を5.0以上、9.0以下とすることを特徴とする(8)〜(11)のいずれかに記載のフェライト系ステンレス鋼。
(13)(8)、(9)または(11)に記載の組成のステンレス鋼を、冷延板焼鈍温度を850℃〜1100℃とし、その後冷延板焼鈍温度からの冷却に際し、800〜500℃の温度範囲において冷却速度を5℃/s以上とすることを特徴とする(8)〜(12)のいずれかに記載のフェライト系ステンレス鋼の製造方法。
(14)(8)〜(12)のうちいずれか1項のフェライト系ステンレス鋼を用いたことを特徴とする排気系部材。
(6) When the stainless steel having the composition described in (1), ( 2 ) or (4) is set to a cold-rolled sheet annealing temperature of 850 ° C to 1100 ° C and then cooled from the cold-rolled plate annealing temperature, 800 to 500 The method for producing a ferritic stainless steel according to any one of (1) to (5), wherein the cooling rate is 5 ° C./s or more in a temperature range of ° C.
(7) An exhaust system member using the ferritic stainless steel of any one of (1) to (5).
(8) By mass%, Cr: 13.0 to 21.0%, Sn: 0.01 to 0.50%, Nb: 0.05 to 0.60%, W: 0.01% -0.20% and Sb: 0.001% -0.5% at least one type, C: 0.015% or less, Si: 1.5% or less, Mn: 1.5% or less, N : 0.020% or less, P: 0.035% or less, and S: 0.015% or less, with the balance being Fe and inevitable impurities, satisfying Formula 1 and Formula 2, and 600 A ferritic stainless steel having a grain boundary Sn concentration of 2 atomic% or less when a heat treatment is performed at a temperature of ˜750 ° C. and an L value represented by Formula 3 is 1.91 × 10 4 or more.
8 ≦ CI = 0.52 Nb / (C + N) ≦ 26 (Formula 1)
GBSV = Sn−2Nb−0.2 ≦ 0 (Expression 2)
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)
(9) By mass%, Cr: 13.0 to 21.0%, Sn: 0.01 to 0.30%, Nb: 0.20 to 0.60%, Ti: more than 0.05, 0.32% Or less, containing at least one of W: 0.01% to 0.20% and Sb: 0.001% to 0.5%, and further, by mass%, Ni: 0.5 % or less , Cu: 1.5% or less, Mo: 2.0% or less, V: 0.3% or less, Al: 0.3% or less, B: 0.0020% or less of one or comprise two or more C: 0.015% or less, Si: 1.5% or less, Mn: 1.5% or less, N: 0.020% or less, P: 0.035% or less, and S: 0.015% or less, is limited to, balance being Fe and unavoidable impurities, and satisfying the formula 1 ') and (2', and, at a temperature of 600 to 750 ° C., L value shown in equation 3 is 1.91 × 10 4 or more Ferrites stainless steel to intergranular Sn concentration characterized der Rukoto 2 atomic% or less when subjected to become heat treatment.
8 ≦ CI = (Ti + 0.52Nb) / (C + N) ≦ 26 (Formula 1 ′)
GBSV = Sn + Ti-2Nb-0.3Mo-0.2≤0 (Formula 2 ')
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)
(10) The ferritic stainless steel according to (8) or (9), wherein the heat treatment is performed at 700 ° C. for 1 hour.
(11) Further, by mass%, Zr: 0.20% or less, Co: 0.5% or less, Ca: 0.01% or less, Mg: 0.01% or less, REM: 0.1% or less 1 type or 2 types or more are contained, Ferritic stainless steel in any one of (8)-(10) characterized by the above-mentioned.
(12) The ferritic stainless steel according to any one of (8) to (11), wherein the grain size number after cold-rolled sheet annealing is 5.0 or more and 9.0 or less.
(13) When the stainless steel having the composition described in (8), ( 9) or (11) is set to a cold-rolled sheet annealing temperature of 850 ° C to 1100 ° C and then cooled from the cold-rolled plate annealing temperature, 800 to 500 The method for producing a ferritic stainless steel according to any one of (8) to (12), wherein the cooling rate is 5 ° C./s or more in a temperature range of ° C.
(14) An exhaust system member using the ferritic stainless steel according to any one of (8) to (12).

本発明のSnを含有するフェライト系ステンレス鋼によれば、安定化元素Nb,Tiの最適化を行っているため、高温で使用しても、靭性の劣化が小さく、しかも、耐食性にも優れるステンレス鋼板を得られる。   According to the ferritic stainless steel containing Sn of the present invention, since the stabilizing elements Nb and Ti are optimized, the stainless steel is excellent in corrosion resistance with little deterioration in toughness even when used at high temperatures. A steel plate can be obtained.

本実施形態におけるフェライト系ステンレス鋼と比較鋼を、板厚4.0mmの熱延焼鈍板ままと、熱延焼鈍板に700℃で1時間熱処理した後で、シャルピー衝撃試験で脆性破壊を示した試験片の破面写真である。The ferritic stainless steel and comparative steel in this embodiment were subjected to a Charpy impact test after being heat-treated at 700 ° C. for 1 hour with a hot rolled annealed sheet having a thickness of 4.0 mm. It is a fracture surface photograph of a test piece. 本実施形態におけるフェライト系ステンレス鋼と比較鋼を、板厚4.0mmの熱延焼鈍板ままと、熱延焼鈍板に700℃で1時間保持する熱処理をした後で、Vノッチシャルピー衝撃試験を板厚4.0mmのサブサイズ試験片で行い、測定した延性−脆性遷移温度を示したグラフである。After subjecting the ferritic stainless steel and the comparative steel in this embodiment to a hot-rolled annealed sheet having a thickness of 4.0 mm and a hot-rolled annealed sheet held at 700 ° C. for 1 hour, a V-notch Charpy impact test is performed. It is the graph which showed the ductile-brittle transition temperature measured with the subsize test piece of plate | board thickness 4.0mm, and was measured. 本実施形態におけるフェライト系ステンレス鋼と比較鋼を板厚4mmの熱延焼鈍板とし、更に700℃で1時間熱処理した時に、Vノッチシャルピー衝撃試験片を板厚4.0mmのサブサイズ試験片で行い測定した、延性―脆性遷移温度(DBTT)とSnの粒界偏析傾向を表す指標(GBSV)の関係を示すグラフである。When the ferritic stainless steel and the comparative steel in this embodiment are hot-rolled annealed plates having a thickness of 4 mm, and further heat-treated at 700 ° C. for 1 hour, the V-notch Charpy impact test piece is a sub-size test piece having a thickness of 4.0 mm. It is a graph which shows the relationship between the ductility-brittle transition temperature (DBTT) and the parameter | index (GBSV) showing the grain-boundary segregation tendency of Sn measured by doing. 本実施形態におけるフェライト系ステンレス鋼と比較鋼を板厚4mmの熱延焼鈍板とし、更に700℃で1時間熱処理した時に、AESで粒界破面のSn濃度を測定すると共に、シャルピー衝撃試験で延性―脆性遷移温度(DBTT)を測定し、粒界のSn濃度とDBTTの関係を示すグラフである。When the ferritic stainless steel and comparative steel in this embodiment are hot-rolled annealed plates with a thickness of 4 mm and further heat-treated at 700 ° C. for 1 hour, the Sn concentration at the grain boundary fracture surface is measured by AES, and the Charpy impact test is performed. It is a graph which measures the ductility-brittle transition temperature (DBTT), and shows the relationship between Sn density | concentration of a grain boundary, and DBTT.

以下、本発明の実施の形態について説明する。まず、本実施形態のステンレス鋼板の鋼組成を限定した理由について説明する。なお、組成についての%の表記は、特に断りのない場合は、質量%を意味する。   Embodiments of the present invention will be described below. First, the reason which limited the steel composition of the stainless steel plate of this embodiment is demonstrated. In addition, the description of% about a composition means the mass% unless there is particular notice.

C:0.015%以下
Cは、成形性と耐食性、熱延板靭性を劣化させるため、その含有量は少ないほど好ましいので、上限を0.015%とする。但し、過度の低減は精錬コストの増加をもたらすので下限は0.001%であっても良い。また、耐食性の観点から考えると、下限を0.002%とし、上限を0.009%とすることが望ましい。
C: 0.015% or less Since C deteriorates formability, corrosion resistance, and hot-rolled sheet toughness, the lower the content thereof, the better. Therefore, the upper limit is made 0.015%. However, excessive reduction leads to an increase in refining costs, so the lower limit may be 0.001%. From the viewpoint of corrosion resistance, it is desirable that the lower limit is 0.002% and the upper limit is 0.009%.

N:0.020%以下
Nは、Cと同様、成形性と耐食性、熱延板靭性を劣化させるので、その含有量は少ないほど好ましいため、0.02%以下とする。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とするとよい。耐食性低下、靭性劣化の回避をより確実にするため、上限を0.018%とすることが好ましく、より好ましくは上限を0.015%とするとよい。
N: 0.020% or less N, like C, deteriorates formability, corrosion resistance, and hot-rolled sheet toughness, so the smaller the content, the better. However, excessive reduction leads to an increase in refining costs, so the lower limit should be 0.001%. In order to more surely avoid the deterioration of corrosion resistance and the deterioration of toughness, the upper limit is preferably set to 0.018%, and more preferably set to 0.015%.

Si:1.5%以下
Siの過度の添加は常温延性を低下させるため、上限を1.5%とする。但し、Siは、脱酸剤としても有用な元素であるとともに、高温強度や耐酸化性を改善させる元素である。脱酸効果は、Si量の増加とともに向上し、その効果は0.01%以上で発現し、0.05%以上で安定するため、下限を0.01%としても良い。なお、耐酸化性を考慮してSiを添加する場合、下限を0.1%とし、上限を0.7%とすることが更に望ましい。
Si: 1.5% or less Excessive addition of Si lowers the room temperature ductility, so the upper limit is made 1.5%. However, Si is an element that is also useful as a deoxidizer and is an element that improves high-temperature strength and oxidation resistance. The deoxidation effect is improved with an increase in the amount of Si. The effect is manifested at 0.01% or more, and is stable at 0.05% or more. Therefore, the lower limit may be 0.01%. In addition, when adding Si in consideration of oxidation resistance, it is more desirable to set the lower limit to 0.1% and the upper limit to 0.7%.

Mn:1.5%以下
Mnの過度な添加は、γ相(オーステナイト相)の析出による熱延板靭性の低下を生じる他、MnSを形成して耐食性を低下させるため、上限を1.5%とする。一方、Mnは、脱酸剤として添加される元素であるとともに、中温域での高温強度上昇に寄与する元素である。また、長時間使用中にMn系酸化物が表層に形成し、スケール(酸化物)の密着性や異常酸化の抑制効果に寄与する元素でもある。このような効果を発現させるために、本発明のステンレス鋼のMnの含有量が0.01%以上になるようにMnを添加しても良い。なお、高温延性やスケールの密着性、異常酸化の抑制を考慮すると、下限を0.1とし、上限を1.0%とすることが更に望ましい。
Mn: 1.5% or less Excessive addition of Mn causes a decrease in hot-rolled sheet toughness due to precipitation of the γ phase (austenite phase), and also forms MnS to lower the corrosion resistance. And On the other hand, Mn is an element added as a deoxidizer and an element contributing to an increase in high-temperature strength in the middle temperature range. In addition, Mn-based oxides form on the surface layer during long-time use, and are also elements that contribute to the adhesion of scale (oxide) and the effect of suppressing abnormal oxidation. In order to exhibit such an effect, Mn may be added so that the Mn content of the stainless steel of the present invention is 0.01% or more. In consideration of high temperature ductility, scale adhesion, and suppression of abnormal oxidation, it is more desirable to set the lower limit to 0.1 and the upper limit to 1.0%.

P:0.035%以下
Pは、固溶強化能の大きな元素であるが、フェライト安定化元素であり、しかも耐食性や靭性に対しても有害な元素であるため、可能な限り少ないほうが好ましい。
Pは、ステンレス鋼の原料であるフェロクロムに不純物として含まれる。ステンレス鋼の溶鋼から脱Pすることは非常に困難であるため、0.010%以上であってもよい。また、Pの含有量は、使用するフェロクロム原料の純度と量でほぼ決定される。フェロクロム原料のPの含有量は低いほうが好ましいが、低Pのフェロクロムは高価であるため、材質や耐食性を大きく劣化させない範囲である0.035%以下とする。なお、好ましくは0.030%以下である。
P: 0.035% or less P is an element having a large solid solution strengthening ability, but it is a ferrite stabilizing element and is also an element harmful to corrosion resistance and toughness.
P is contained as an impurity in ferrochrome which is a raw material of stainless steel. Since it is very difficult to remove P from the molten steel, it may be 0.010% or more. The P content is almost determined by the purity and amount of the ferrochrome raw material to be used. The content of P in the ferrochrome raw material is preferably low. However, since low P ferrochrome is expensive, it is set to 0.035% or less, which is a range in which the material and corrosion resistance are not greatly deteriorated. In addition, Preferably it is 0.030% or less.

S:0.015%以下
Sは、硫化物系介在物を形成し、鋼材の一般的な耐食性(全面腐食や孔食)を劣化させる。そのため、Sの含有量は可能な限り少ないほうが好ましく、耐食性に影響を与えない範囲を考慮して、上限を0.015%とする。また、Sの含有量は少ないほど耐食性は良好となるが、低S化には脱硫負荷が増大し、製造コストが増大するので、その下限は0.001%であってもよい。なお、好ましくは下限を0.001%とし、上限を0.008%とすることである。
S: 0.015% or less S forms sulfide inclusions and degrades the general corrosion resistance (entire corrosion and pitting corrosion) of steel materials. Therefore, the S content is preferably as small as possible, and the upper limit is made 0.015% in consideration of the range that does not affect the corrosion resistance. Further, the smaller the S content, the better the corrosion resistance. However, the lowering of the S content increases the desulfurization load and the manufacturing cost, so the lower limit may be 0.001%. Preferably, the lower limit is 0.001% and the upper limit is 0.008%.

Cr:13.0〜21.0%
Crは、本発明において、耐酸化性や耐食性確保のために必須な元素である。13.0%未満では、これらの効果は発現せず、一方で、21.0%超では加工性の低下や靭性の劣化をもたらすため、下限を13.0とし、上限を21.0%とする。更に製造性や高温延性を考慮すると、上限を18.0%とすることが望ましい。
Cr: 13.0-21.0%
In the present invention, Cr is an essential element for ensuring oxidation resistance and corrosion resistance. If it is less than 13.0%, these effects do not appear. On the other hand, if it exceeds 21.0%, workability and toughness are deteriorated, so the lower limit is 13.0 and the upper limit is 21.0%. To do. Furthermore, when manufacturability and high temperature ductility are taken into consideration, the upper limit is desirably set to 18.0%.

Sn:0.01〜0.50%
Snは、耐食性や高温強度の向上に有効な元素である。また、常温の機械的特性を大きく劣化させない効果もある。耐食性への効果は0.01%以上で発現するため、下限は0.01%とする。高温強度への寄与は、0.05%以上の添加で安定して発現するため好ましい下限を0.05%とする。一方、過度に添加すると製造性や溶接性が著しく劣化するため、上限を0.50%とする。なお、耐酸化性等を考慮すると、下限を0.1%とすることが望ましい。また、溶接性等を考慮すると、上限を0.3%とすることが望ましい。高温使用における脆化現象の発現はSnを0.05%以上含有することで顕著になるが、以下に述べるNbを複合添加することにより、Sn含有に起因する脆化現象を抑制することができる。また、DBTT(延性−脆性遷移温度)を50℃未満にするにはSnの含有量の上限を0.21%とすることが更に好ましい.
Sn: 0.01 to 0.50%
Sn is an element effective for improving corrosion resistance and high temperature strength. In addition, there is an effect that the mechanical properties at room temperature are not greatly deteriorated. Since the effect on corrosion resistance is manifested at 0.01% or more, the lower limit is made 0.01%. The contribution to the high-temperature strength is stably expressed by addition of 0.05% or more, so the preferable lower limit is made 0.05%. On the other hand, if added excessively, manufacturability and weldability deteriorate significantly, so the upper limit is made 0.50%. In view of oxidation resistance and the like, the lower limit is preferably 0.1%. In consideration of weldability and the like, the upper limit is preferably set to 0.3%. The development of the embrittlement phenomenon at high temperature use becomes remarkable when 0.05% or more of Sn is contained, but the embrittlement phenomenon caused by the inclusion of Sn can be suppressed by adding Nb described below in combination. . Moreover, in order to make DBTT (ductility-brittle transition temperature) less than 50 degreeC, it is still more preferable to make the upper limit of Sn content 0.21%.

Nb:0.05〜0.60%
Nbは、炭窒化物を形成する事でステンレス鋼におけるクロム炭窒化物の析出による鋭敏化や耐食性の低下を抑制する効果のある元素である。この効果は、0.05%以上で発現する。更に、Sn含有鋼における粒界脆化を抑制する効果も有することを本発明者らは知見した。耐食性向上と粒界脆化の抑制の両効果は0.05%以上で発現するため、下限を0.05%とする。より確実に効果を得るために、好ましくは0.09%以上とし、0.2%以上であればほぼ確実に効果を得ることができる。一方、過度の添加は、Laves相の生成に起因する製造性の低下が問題になる。これらを考慮し、Nbの上限を0.60%とする。更に、薄板での溶接性や加工性の観点から、下限を0.3%とし、上限を0.5%とすることがある。また、Sn含有鋼における粒界脆化抑制効果は、TiとNbとを複合添加する場合でも得ることができる。この場合もNb添加量は0.05%以上で効果が得られる。しかし、Nb単独添加においてもTiとNbの複合添加においても、後述するCI値が所定の範囲になるよう調整する必要がある。
Nb: 0.05-0.60%
Nb is an element having an effect of suppressing sensitization due to precipitation of chromium carbonitride in stainless steel and deterioration of corrosion resistance by forming carbonitride. This effect is manifested at 0.05% or more. Furthermore, the present inventors have found that it has an effect of suppressing grain boundary embrittlement in Sn-containing steel. Since both effects of improving corrosion resistance and suppressing grain boundary embrittlement are manifested at 0.05% or more, the lower limit is made 0.05%. In order to obtain the effect more reliably, it is preferably set to 0.09% or more, and if it is 0.2% or more, the effect can be obtained almost certainly. On the other hand, excessive addition causes a problem of decrease in manufacturability due to the generation of the Laves phase. Considering these, the upper limit of Nb is set to 0.60%. Furthermore, from the viewpoint of weldability and workability with a thin plate, the lower limit may be 0.3% and the upper limit may be 0.5%. Moreover, the grain boundary embrittlement suppressing effect in the Sn-containing steel can be obtained even when Ti and Nb are added in combination. Also in this case, the effect is obtained when the amount of Nb added is 0.05% or more. However, it is necessary to adjust the CI value, which will be described later, to be within a predetermined range both when adding Nb alone and when adding Ti and Nb together.

CI=(Ti+0.52Nb)/(C+N)を8以上、26以下とする。Tiを含有しない場合には、CI=0.52Nb/(C+N)を8以上、26以下とする。Ti,Nbは炭窒化物を形成し、クロム炭窒化物の形成と鋭敏化による耐食性の低下を抑制する。すなわち、鋼中のC,N量に対応した添加量が必要である。CI値は鋼中のC、NをTi,Nbの炭窒化物として析出させ、鋭敏化を抑制するための指標であり、CI値が大きいほど鋭敏化が抑制される。溶接熱サイクルなどでも安定してクロム炭窒化物の析出を抑制するためには、CIが8以上必要である。但し、Ti,Nbを過度に添加すると、大型の介在物を形成して加工性を低下させる事になるために、CIで26以下にする。安定して耐食性、加工性を確保するためには、CIを10以上、20以下とすることが好ましい。   CI = (Ti + 0.52Nb) / (C + N) is 8 or more and 26 or less. When Ti is not contained, CI = 0.52Nb / (C + N) is 8 or more and 26 or less. Ti and Nb form carbonitrides and suppress deterioration of corrosion resistance due to formation and sensitization of chromium carbonitrides. That is, the addition amount corresponding to the amount of C and N in steel is necessary. The CI value is an index for precipitating C and N in steel as Ti and Nb carbonitrides to suppress sensitization, and as the CI value increases, sensitization is suppressed. In order to stably suppress precipitation of chromium carbonitride even in a welding heat cycle, CI is required to be 8 or more. However, if Ti and Nb are added excessively, large inclusions are formed and the workability is lowered, so the CI is made 26 or less. In order to ensure stable corrosion resistance and workability, the CI is preferably 10 or more and 20 or less.

更に、本発明では、GBSV=Sn+Ti−2Nb−0.3Mo−0.2を0以下とする。Ti、Moを含有しない場合には、GBSV=Sn−2Nb−0.2を0以下とする。GBSVはSnの粒界偏析傾向を表す指標であり、数値が大きいほど粒界偏析が顕著になる。GBSVを構成する元素の係数は、粒界偏析に及ぼす影響を評価したものである。Snは高温強度や耐食性には有効な元素であるが、粒界偏析により400℃以下における材料の靭性を低下させる。一方、NbやMoには、Snの粒界偏析を抑制する作用の他、粒界強度を高める効果もあり、Snの粒界偏析に起因する脆化を抑制する作用を有する。図3に示す様に、GBSVの低下と共に、延性−脆性遷移温度が低くなる事、GBSVが0以下になれば、板厚4.0mmの熱延焼鈍板に於いて延性−脆性遷移温度が150℃以下となり、靭性が大きく改善される事が分かる。このため、GBSVを0以下とした。   Furthermore, in the present invention, GBSV = Sn + Ti-2Nb-0.3Mo-0.2 is set to 0 or less. When Ti and Mo are not contained, GBSV = Sn-2Nb-0.2 is set to 0 or less. GBSV is an index indicating the grain boundary segregation tendency of Sn, and the grain boundary segregation becomes more prominent as the value is larger. The coefficient of the elements constituting GBSV is an evaluation of the effect on grain boundary segregation. Sn is an element effective for high-temperature strength and corrosion resistance, but lowers the toughness of the material at 400 ° C. or lower due to grain boundary segregation. On the other hand, Nb and Mo have the effect of increasing the grain boundary strength in addition to the action of suppressing the grain boundary segregation of Sn, and the action of suppressing embrittlement due to the grain boundary segregation of Sn. As shown in FIG. 3, the ductile-brittle transition temperature decreases as GBSV decreases. If GBSV becomes 0 or less, the ductile-brittle transition temperature is 150 in a hot-rolled annealed sheet having a thickness of 4.0 mm. It can be seen that the toughness is greatly improved at a temperature below ℃. For this reason, GBSV was made 0 or less.

次に、Snの粒界偏析の指標として粒界破面のSn濃度(原子%)を用い、延性脆性遷移温度との関係を調べた。図4に示す様に、粒界のSn濃度が2.0原子%を超えると、延性−脆性遷移温度が急激に増加しており、粒界脆化が起きやすくなることがわかった。高温使用環境においても、粒界のSn濃度が2.0原子%以下にすることが、Snによる粒界脆化を抑制する上で重要である。   Next, the Sn concentration (atomic%) at the grain boundary fracture surface was used as an index of grain boundary segregation of Sn, and the relationship with the ductile brittle transition temperature was examined. As shown in FIG. 4, it was found that when the Sn concentration at the grain boundary exceeds 2.0 atomic%, the ductile-brittle transition temperature increases rapidly, and grain boundary embrittlement is likely to occur. Even in a high temperature use environment, it is important for the Sn concentration at the grain boundary to be 2.0 atomic% or less in order to suppress grain boundary embrittlement due to Sn.

ここで、高温長時間使用の場合における温度と時間を統一的に扱う指標として、通常、熱処理の評価指標として使用する式3で示すL値を導入した。600〜750℃の温度で、式3で示すL値が1.91×104以上となる熱処理を施すと、Ti添加の場合に粒界へのSnの偏析が顕著に認められ、粒界へのSn偏析が特性(遷移温度)に悪影響を及ぼすようになることを本発明者らは知見した。また、本発明における成分組成であれば、L値が1.91×104以上となる熱処理を施した時の粒界Sn濃度は、2原子%以下になることも、本発明者らは確認した。
なお、L値による熱処理条件の規定をより簡略化した条件として、700℃で1時間熱処理を施した後の、粒界Sn濃度が2.0原子%以下とする事が好ましい。
Here, as an index for uniformly treating the temperature and time in the case of high temperature and long time use, an L value represented by Formula 3 that is usually used as an evaluation index for heat treatment was introduced. When heat treatment is performed at a temperature of 600 to 750 ° C. so that the L value shown in Formula 3 is 1.91 × 10 4 or more, Sn segregation to the grain boundary is noticeably observed when Ti is added, and the grain boundary is reached. The present inventors have found that the Sn segregation of N will adversely affect the characteristics (transition temperature). In addition, the present inventors also confirmed that the grain boundary Sn concentration is 2 atomic% or less when heat treatment is performed with an L value of 1.91 × 10 4 or more in the case of the component composition in the present invention. did.
As a condition that further simplifies the definition of the heat treatment condition by the L value, the grain boundary Sn concentration after heat treatment at 700 ° C. for 1 hour is preferably 2.0 atomic% or less.

粒界のSn濃度は、AES装置内で超高真空下にて破断し、測定する。オージェ電子は表面だけでなく、表面から数nm内部の原子からも放出されるため、この値は粒界のSn濃度だけを現すものでは無い。また、装置毎に分析精度は異なっている。しかし、原理的には、劈開破面のSn濃度は母材の平均Sn濃度と同じである。そこで、劈開破面で測定したSn濃度が母材の平均Sn濃度になるように劈開破面のSn濃度の測定値を校正することによって、粒界のSn濃度を決定した。
粒界脆化を安定して低減するためには、粒界のSn濃度を1.7原子%以下にする事が好ましい。また、母材のSn濃度以下にする事は困難であるため、0.02原子%を下限とする事が好ましい。
The Sn concentration of the grain boundary is measured by breaking in an AES apparatus under ultra high vacuum. Since Auger electrons are emitted not only from the surface but also from atoms within several nm from the surface, this value does not represent only the Sn concentration at the grain boundary. Moreover, the analysis accuracy differs for each apparatus. However, in principle, the Sn concentration at the cleavage fracture surface is the same as the average Sn concentration of the base material. Therefore, the Sn concentration at the grain boundary was determined by calibrating the measured value of the Sn concentration on the cleavage fracture surface so that the Sn concentration measured on the cleavage fracture surface becomes the average Sn concentration of the base material.
In order to stably reduce grain boundary embrittlement, it is preferable to set the Sn concentration at the grain boundary to 1.7 atomic% or less. Moreover, since it is difficult to make it below the Sn concentration of the base material, it is preferable to set 0.02 atomic% as the lower limit.

また、本発明では、上記元素に加えて、Ti:0.32%以下、Ni:1.5%以下、Cu:1.5%以下、Mo:2.0%以下、V:0.3%以下、Al:0.3%以下、B:0.0020%以下の1種以上を添加することが好ましい。   In the present invention, in addition to the above elements, Ti: 0.32% or less, Ni: 1.5% or less, Cu: 1.5% or less, Mo: 2.0% or less, V: 0.3% Hereinafter, it is preferable to add one or more of Al: 0.3% or less and B: 0.0020% or less.

Ti:0.32%以下
Tiは、Nbと同様に炭窒化物を形成する事で、ステンレス鋼におけるクロム炭窒化物の析出による鋭敏化や耐食性の低下を抑制する元素である。しかしながら、Nbに較べてSn含有鋼における粒界脆化を助長する効果が大きいため、Sn含有鋼に於いては、低減すべき元素である。Snの粒界偏析に対する影響は、Tiの含有量が0.05%超から現れるようになる。ただし、Nbを含有する場合には、Tiによる悪影響を低減できる。Nbと複合添加する場合には上限を0.32%とすれば、上記熱処理においてもSnの粒界濃度が2.0原子%以下となることを確認した。Nbを含有する場合の好ましい上限は0.15%である。なお、原料から不可避的不純物として混入することから過度に低減することは困難であるため、Tiの含有量を0.001%以上とすることが好ましい。介在物低減による加工性向上の観点からは、下限を0.001とし、上限を0.03%とすることが更に好ましい。
Ti: 0.32% or less Ti is an element that suppresses deterioration of sensitization and corrosion resistance due to precipitation of chromium carbonitride in stainless steel by forming carbonitride similarly to Nb. However, since it has a greater effect of promoting grain boundary embrittlement in Sn-containing steel than Nb, it is an element to be reduced in Sn-containing steel. The influence of Sn on grain boundary segregation appears when the Ti content exceeds 0.05%. However, when Nb is contained, adverse effects due to Ti can be reduced. In the case of adding Nb in combination, it was confirmed that the Sn grain boundary concentration was 2.0 atomic% or less in the heat treatment if the upper limit was 0.32%. A preferable upper limit in the case of containing Nb is 0.15%. In addition, since it is difficult to reduce excessively since it mixes as an inevitable impurity from a raw material, it is preferable to make content of Ti 0.001% or more. From the viewpoint of improving workability by reducing inclusions, it is more preferable to set the lower limit to 0.001 and the upper limit to 0.03%.

Ni:1.5%以下
Niは、フェライト系ステンレス鋼の合金原料中に不可避的不純物として混入し、一般的に0.03〜0.10%の範囲で含有される。また、孔食の進展抑制に有効な元素であり、その効果は0.05%以上の添加で安定して発揮されるため下限を0.05%とすることが好ましい。更に好ましくは、下限0.1%である。
一方、多量の添加は、固溶強化による材質硬化を招くおそれがあるため、その上限を1.5%とする。なお、合金コストを考慮すると上限は1.0%が望ましい。更に望ましくは、上限は0.5%である。以上より、Niは0.1〜0.5%が好適である。
本発明においてNiは、Snとの相乗効果により耐食性を向上させる元素である。Snと複合添加することは有用である。更に、Niは、Snの添加に伴う加工性(伸び,r値)の低下を改善する作用も持つ。Snと複合添加する場合、Niの下限を0.2とし、上限を0.4%とすることが好ましい。
Ni: 1.5% or less Ni is mixed as an inevitable impurity in the ferritic stainless steel alloy raw material and is generally contained in the range of 0.03 to 0.10%. Moreover, it is an element effective in suppressing the progress of pitting corrosion, and the effect is stably exhibited by addition of 0.05% or more. Therefore, the lower limit is preferably 0.05%. More preferably, the lower limit is 0.1%.
On the other hand, since a large amount of addition may cause material hardening due to solid solution strengthening, the upper limit is made 1.5%. In consideration of the alloy cost, the upper limit is preferably 1.0%. More preferably, the upper limit is 0.5%. From the above, Ni is preferably 0.1 to 0.5%.
In the present invention, Ni is an element that improves the corrosion resistance by a synergistic effect with Sn. It is useful to add together with Sn. Further, Ni also has an effect of improving the decrease in workability (elongation, r value) accompanying the addition of Sn. When combined with Sn, it is preferable that the lower limit of Ni is 0.2 and the upper limit is 0.4%.

Cu:1.5%以下
Cuは耐食性を向上する上で有効である。特に、すきま腐食発生後の進展速度を低減させるうえで有効である。耐食性向上のために0.1%以上含有させることが望ましい。しかしながら、過剰の添加は、加工性を劣化させる。したがって、下限を0.1とし、上限を1.5%として、Cuを含有させるのが望ましい。
Cuは、Snとの相乗効果により耐食性を向上させる元素である。Snと複合添加することは有用である。更に、Cuは、Snの添加に伴う加工性(伸び,r値)の低下を改善する作用も持つ。Snと複合添加する場合には、下限を0.1とし、上限を0.5%として、Cuを含有することが好ましい。
以上より、本発明においては、SnとNiおよび/またはCuを複合添加することは耐食性を向上するうえで有用である。
また、Cuは、自動車の高温排気系などに代表される高温環境用部材として使用するために必要とされる高温強度を高めるために必要な元素でもある。Cuは、500〜750℃では主に析出強化能を発揮し、それ以上の温度に於いては固溶強化によって材料の塑性変形を抑制し、熱疲労特性を高める働きを示す。このようなCuの析出硬化作用や固溶強化は0.2%以上の添加により発現する。一方、過度な添加は、熱延加熱時に異常酸化を生じ表面疵の原因ともなるため、上限を1.5%とする。Cuの高温強化能を活かし、安定して表面疵を抑制するためには、下限を0.5とし、上限を1.0%とすることが望ましい。
Cu: 1.5% or less Cu is effective in improving the corrosion resistance. This is particularly effective in reducing the rate of progress after crevice corrosion. It is desirable to contain 0.1% or more in order to improve corrosion resistance. However, excessive addition deteriorates workability. Therefore, it is desirable to contain Cu with a lower limit of 0.1 and an upper limit of 1.5%.
Cu is an element that improves the corrosion resistance by a synergistic effect with Sn. It is useful to add together with Sn. Further, Cu also has an effect of improving a decrease in workability (elongation, r value) accompanying the addition of Sn. When combined with Sn, it is preferable to contain Cu with a lower limit of 0.1 and an upper limit of 0.5%.
From the above, in the present invention, it is useful to add Sn and Ni and / or Cu in combination to improve the corrosion resistance.
Cu is also an element necessary for increasing the high-temperature strength required for use as a high-temperature environment member typified by a high-temperature exhaust system of an automobile. Cu mainly exhibits precipitation strengthening ability at 500 to 750 ° C., and at higher temperatures, suppresses plastic deformation of the material by solid solution strengthening and exhibits a function of improving thermal fatigue characteristics. Such precipitation hardening effect and solid solution strengthening of Cu are manifested by addition of 0.2% or more. On the other hand, excessive addition causes abnormal oxidation during hot rolling and causes surface defects, so the upper limit is made 1.5%. In order to utilize the high temperature strengthening ability of Cu and stably suppress surface defects, it is desirable that the lower limit is 0.5 and the upper limit is 1.0%.

Mo:2.0%以下
Moは、高温強度や熱疲労特性を向上させるために必要に応じて添加すれば良く、これらの効果を発揮させるため、下限を0.01%とすることが好ましい。
一方、過度の添加は、Laves相の生成を生じさせて、熱延板靭性の低下を生じるおそれがある。これらを考慮し、Moの上限を2.0%とする。更に、生産性や製造性の観点から、下限を0.05%とし、上限を1.5%とすることが望ましい。
Mo: 2.0% or less Mo may be added as necessary in order to improve the high temperature strength and thermal fatigue characteristics. In order to exert these effects, the lower limit is preferably made 0.01%.
On the other hand, excessive addition may cause the generation of a Laves phase, which may cause a reduction in hot-rolled sheet toughness. Considering these, the upper limit of Mo is set to 2.0%. Further, from the viewpoint of productivity and manufacturability, it is desirable that the lower limit is 0.05% and the upper limit is 1.5%.

V:0.3%以下
Vは、フェライト系ステンレス鋼の合金原料に不可避的不純物として混入し、精錬工程における除去が困難であるため、一般的に0.01〜0.1%の範囲で含有される。また、微細な炭窒化物を形成し、析出強化作用が生じて高温強度向上に寄与する効果を有するため、必要に応じて、意図的な添加も行われる元素である。その効果は0.03%以上の添加で安定して発現するため、下限を0.03%とすることが好ましい。
一方、過剰に添加すると、析出物の粗大化を招くおそれがあり、その結果、高温強度が低下し、熱疲労寿命が低下してしまうため、上限を0.3%とする。なお、製造コストや製造性を考慮すると、下限を0.03%とし、上限を0.1%とすることが望ましい。
V: 0.3% or less V is mixed as an inevitable impurity in ferritic stainless steel alloy raw materials, and is difficult to remove in the refining process, so generally contained in the range of 0.01 to 0.1% Is done. Moreover, since it has the effect which forms a fine carbonitride and a precipitation strengthening effect | action produces and contributes to a high temperature strength improvement, it is an element also added intentionally as needed. Since the effect is stably manifested by addition of 0.03% or more, the lower limit is preferably 0.03%.
On the other hand, if added excessively, the precipitates may be coarsened. As a result, the high-temperature strength decreases and the thermal fatigue life decreases, so the upper limit is made 0.3%. In view of manufacturing cost and manufacturability, it is desirable that the lower limit is 0.03% and the upper limit is 0.1%.

Al:0.3%以下
Alは、脱酸元素として添加される他、耐酸化性を向上させる元素である。また、固溶強化元素として600〜700℃における強度向上に有用である。その作用は0.01%から安定して発現するため、下限を0.01%とすることが好ましい。
一方、過度の添加は、硬質化して均一伸びを著しく低下させる他、靭性を著しく低下させるため、上限を0.3%とする。更に、表面疵の発生や溶接性、製造性を考慮すると、下限を0.01%とし、上限を0.07%が望ましい。
Al: 0.3% or less In addition to being added as a deoxidizing element, Al is an element that improves oxidation resistance. Moreover, it is useful for the strength improvement in 600-700 degreeC as a solid solution strengthening element. Since the action is stably expressed from 0.01%, the lower limit is preferably set to 0.01%.
On the other hand, excessive addition hardens and significantly reduces the uniform elongation, and also significantly reduces the toughness, so the upper limit is made 0.3%. Furthermore, considering the occurrence of surface flaws, weldability and manufacturability, the lower limit is preferably 0.01% and the upper limit is preferably 0.07%.

B:0.0020%以下
Bは、加工性に有害なNの固定や、二次加工性改善に有効であり、必要に応じて0.0003%以上で添加する。また、0.0020%を超えて添加してもその効果は飽和し、Bによる加工性劣化や耐食性が低下するため、0.0003〜0.002%で添加する。加工性や製造コストを考慮すると、下限を0.0005%とし、上限を0.0015%とすることが望ましい。
B: 0.0020% or less B is effective for fixing N which is harmful to workability and improving secondary workability, and is added at 0.0003% or more as necessary. Moreover, since the effect will be saturated even if it adds exceeding 0.0020% and the workability deterioration by B and corrosion resistance fall, it adds at 0.0003-0.002%. In consideration of workability and manufacturing cost, it is desirable that the lower limit is 0.0005% and the upper limit is 0.0015%.

W:0.20%以下
Wは、高温強度の向上に有効であり、必要に応じて0.01%以上で添加する。また、0.20%を超えて添加すると固溶強化が大きすぎて機械的性質が低下するため、0.01〜0.20%で添加する。製造コストや熱延板靭性を考慮すると、下限を0.02%とし、上限を0.15%とすることが望ましい。
W: 0.20% or less W is effective in improving the high-temperature strength, and is added at 0.01% or more as necessary. Further, if added over 0.20%, the solid solution strengthening is too large and the mechanical properties are lowered, so 0.01 to 0.20% is added. Considering the manufacturing cost and hot-rolled sheet toughness, it is desirable that the lower limit is 0.02% and the upper limit is 0.15%.

Zr:0.20%以下
Zrは、NbやTiなどと同様に炭窒化物を形成してCr炭窒化物の形成を抑制し耐食性を向上させるため、必要に応じて0.01%以上で添加する。また、0.20%を超えて添加してもその効果は飽和し、大型酸化物の形成により表面疵の原因にもなるため、0.01〜0.20%で添加する。Ti,Nbに較べると高価な元素でありため製造コストを考慮すると、下限を0.02%とし、上限を0.05%とすることが望ましい。
Zr: 0.20% or less Zr is added in an amount of 0.01% or more as necessary in order to form a carbonitride and suppress the formation of Cr carbonitride and improve the corrosion resistance like Nb and Ti. To do. Moreover, even if added over 0.20%, the effect is saturated, and it causes surface flaws due to the formation of large oxides, so it is added at 0.01 to 0.20%. Since it is an expensive element compared with Ti and Nb, considering the manufacturing cost, it is desirable that the lower limit is 0.02% and the upper limit is 0.05%.

Sb:0.5%以下
Sbは、耐硫酸性の向上に有効であり、必要に応じて0.001%以上で添加する。また、0.5%を超えて添加してもその効果は飽和し、Sbの粒界偏析による脆化を生じるため、0.001〜0.20%で添加する。加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.05%とすることが望ましい。
Sb: 0.5% or less Sb is effective in improving sulfuric acid resistance, and is added at 0.001% or more as necessary. Further, even if added over 0.5%, the effect is saturated and embrittlement due to segregation of Sb grain boundaries occurs, so 0.001 to 0.20% is added. In consideration of workability and manufacturing cost, it is desirable to set the lower limit to 0.002% and the upper limit to 0.05%.

Co:0.5%以下
Coは、耐摩耗性の向上や高温強度の向上に有効であり、必要に応じて0.01%以上で添加する。また、0.5%を超えて添加してもその効果は飽和し、固溶強化による機械的性質の劣化を生じるため、0.01〜0.5%で添加する。製造コストや高温強度の安定性の点から、下限を0.05%とし、上限を0.20%とすることが望ましい。
Co: 0.5% or less Co is effective for improving wear resistance and high-temperature strength, and is added at 0.01% or more as necessary. Moreover, even if added over 0.5%, the effect is saturated, and mechanical properties are deteriorated due to solid solution strengthening, so 0.01 to 0.5% is added. From the viewpoint of production cost and high temperature strength stability, it is desirable that the lower limit is 0.05% and the upper limit is 0.20%.

Ca:0.01%以下
Caは、製鋼工程における重要な脱硫元素であり、脱酸素効果も有するため、必要に応じて0.0003%以上で添加する。また、0.01%を超えて添加してもその効果は飽和し、Caの粒化物に起因する耐食性の低下や、酸化物に起因する加工性劣化を生じるため、0.0003〜0.01%で添加する。スラグ処理等の製造性を考慮すると、下限を0.0005%とし、上限を0.0015%とすることが望ましい。
Ca: 0.01% or less Ca is an important desulfurization element in the steelmaking process, and also has a deoxygenating effect, so is added at 0.0003% or more as necessary. Moreover, even if added over 0.01%, the effect is saturated, resulting in a decrease in corrosion resistance due to Ca granulated materials and a deterioration in workability due to oxides. Add in%. Considering manufacturability such as slag treatment, it is desirable that the lower limit is 0.0005% and the upper limit is 0.0015%.

Mg:0.01%以下
Mgは、製鋼工程における凝固組織の微細化に有効な元素であり、必要に応じて0.0003%以上で添加する。また、0.01%を超えて添加してもその効果は飽和し、Mgの硫化物や酸化物に起因する耐食性の低下を生じ易くなるため、0.0003〜0.01%で添加する。製鋼工程におけるMg添加はMgの酸化燃焼が激しく歩留まりが低くなりコストの増加が大きいことを考慮すると、下限を0.0005%とし、上限を0.0015%とすることが望ましい。
Mg: 0.01% or less Mg is an element effective for refining the solidified structure in the steel making process, and is added in an amount of 0.0003% or more as necessary. Moreover, even if added over 0.01%, the effect is saturated, and the corrosion resistance due to Mg sulfide or oxide is liable to be lowered, so 0.0003 to 0.01% is added. In consideration of the fact that the Mg addition in the steelmaking process causes oxidative combustion of Mg and the yield decreases and the cost increases greatly, the lower limit is preferably 0.0005% and the upper limit is preferably 0.0015%.

REM:0.1%以下
REMは、耐酸化性の向上に有効であり、必要に応じて0.001%以上で添加する。また、0.1%を超えて添加してもその効果は飽和し、REMの粒化物による耐食性低下を生じるため、0.001〜0.1%で添加する。製品の加工性や製造コストを考慮すると、下限を0.002%とし、上限を0.05%とすることが望ましい。
REM: 0.1% or less REM is effective in improving oxidation resistance, and is added at 0.001% or more as necessary. Moreover, since the effect will be saturated even if it adds exceeding 0.1% and the corrosion resistance fall by the granulated material of REM arises, it adds at 0.001-0.1%. Considering the workability and manufacturing cost of the product, it is desirable that the lower limit is 0.002% and the upper limit is 0.05%.

冷延焼鈍後の結晶粒度番号を5.0以上、9.0以下とする。
Sn添加鋼を高温環境にさらした場合、GBSV値による成分制御を行っても、靭性の低下は皆無にはならないことが考えられる。その場合、Snが偏析する粒界の面積を増やす事で粒界脆化の緩和が可能である。そのためには結晶粒径番号を5以上にすることが必要である。但し、結晶粒度番号を大きくしすぎると細粒化により機械的性質が低延性で高強度になるため、5.0以上、9.0以下にする。深絞り性向上を支配するランクフォード値の最適化や加工時の肌荒れ低減等を考慮すると、6.0以上8.5以下にすることが望ましい。
The grain size number after cold rolling annealing is set to 5.0 or more and 9.0 or less.
When the Sn-added steel is exposed to a high temperature environment, it is considered that even if the component control is performed by the GBSV value, the toughness is not completely reduced. In that case, grain boundary embrittlement can be alleviated by increasing the area of grain boundaries where Se segregates. For this purpose, the crystal grain size number needs to be 5 or more. However, if the crystal grain size number is too large, the mechanical properties become low ductility and high strength due to fine graining, so 5.0 or more and 9.0 or less. Considering the optimization of the Rankford value that governs the improvement of deep drawability and the reduction of rough skin during processing, it is desirable that the value be 6.0 or more and 8.5 or less.

また、Sn添加鋼を高温環境で使用しなくても製造工程でSnが粒界偏析すれば薄板製品の靭性低下原因となるため、冷延板焼鈍後は冷却速度を速めて粒界偏析を抑制する事が必要である。冷延板焼鈍温度はSnの粒界偏析が起きにくい850℃以上とし、結晶粒径の粗大化が起こりにくい1100℃以下とし、冷却時はSnの粒界偏析が短時間で進む800〜600℃の温度範囲において5℃/s以上の冷却速度とすることが望ましい。   Even if Sn-added steel is not used in a high-temperature environment, if Sn segregates at the grain boundaries in the manufacturing process, it causes a reduction in the toughness of the thin plate product. It is necessary to do. The cold-rolled sheet annealing temperature is set to 850 ° C. or more at which Sn grain boundary segregation hardly occurs, and is set to 1100 ° C. or less at which crystal grain size coarsening hardly occurs. It is desirable that the cooling rate is 5 ° C./s or higher in the temperature range.

(実施例1)
以下、実施例により本発明の効果を説明するが、本発明は、以下の実施例で用いた条件に限定されるものではない。
Example 1
Hereinafter, the effects of the present invention will be described with reference to examples, but the present invention is not limited to the conditions used in the following examples.

本実施例では、まず、表1−1及び表1−2に示す成分組成の鋼を溶製してスラブに鋳造した。このスラブを1190℃に加熱後、仕上げ温度を800〜950℃の範囲内として、板厚4mmまで熱間圧延し、熱延鋼板とした。なお、表1−1及び表1−2において、本発明範囲から外れる数値にはアンダーラインを付している。熱延鋼板は気水冷却により、500℃まで冷却した後、コイル状に巻き取った。   In this example, first, steels having the component compositions shown in Table 1-1 and Table 1-2 were melted and cast into slabs. After heating this slab to 1190 degreeC, finishing temperature was made into the range of 800-950 degreeC, and it hot-rolled to plate | board thickness 4mm, and was set as the hot-rolled steel plate. In Table 1-1 and Table 1-2, numerical values that are outside the scope of the present invention are underlined. The hot-rolled steel sheet was cooled to 500 ° C. by air-water cooling and then wound into a coil.

表1−1及び表1−2において、Ti、Moを含有しない本発明例及び比較例は、Ti、Moの含有量が「−」の符号で示されている。また、表1−1及び表1−2において、Ti、Moを含有しない本発明例及び比較例のCI及びGBSVのそれぞれの値は、前述の式1及び式2に基づいてそれぞれ算出した。また、Ti、Moを含有する本発明例及び比較例のCI及びGBSVのそれぞれの値は前述の式1’及び式2’に基づいてそれぞれ算出した。   In Table 1-1 and Table 1-2, examples of the present invention and comparative examples that do not contain Ti and Mo have Ti and Mo contents indicated by “−”. Moreover, in Table 1-1 and Table 1-2, each value of CI and GBSV of the present invention example and the comparative example which do not contain Ti and Mo was calculated based on the above-described formula 1 and formula 2, respectively. Further, the CI and GBSV values of the inventive examples and comparative examples containing Ti and Mo were calculated based on the above-described formulas 1 'and 2', respectively.

引き続き、熱延コイルを900〜1100℃で焼鈍し、常温まで冷却した。この時、800〜550℃の範囲の平均冷却速度を20℃/s以上とした。続いて、熱延焼鈍板を酸洗し、冷間圧延して板厚1.5mmの薄板とした後、冷延板の焼鈍と酸洗を行って、薄板製品とした。表1−1のNo.1〜5、7、9〜14、16、18〜21、28〜31、34は本発明例、表1−1のNo.2−2、6、8、15、17、22〜27、32〜33−2は参考例、表1−2のNo.35〜56は比較例である。 Subsequently, the hot rolled coil was annealed at 900 to 1100 ° C. and cooled to room temperature. At this time, the average cooling rate in the range of 800 to 550 ° C. was set to 20 ° C./s or more. Subsequently, the hot-rolled annealed plate was pickled and cold-rolled to obtain a thin plate having a thickness of 1.5 mm, and then the cold-rolled plate was annealed and pickled to obtain a thin plate product. No. in Table 1-1. 1 to 5, 7, 9 to 14, 16, 18 to 21, 28 to 31, and 34 are examples of the present invention, No. 1 in Table 1-1. 2-2, 6, 8, 15, 17, 22, 27, and 32 to 33-2 are reference examples, No. 1 in Table 1-2. 35 to 56 are comparative examples.

このようにして得られた熱延焼鈍板に対して、700℃で1時間の熱処理(L値:19460)を行った後、シャルピー衝撃試験をJIS Z 2242に準拠して行い、延性−脆性遷移温度(DBTT)を測定した。その測定結果を表2−1及び表2−2に示す。尚、本実施例における試験片は、熱延焼鈍板の板厚ままのサブサイズ試験片であるため、吸収エネルギーを断面積(単位cm2)で割ることにより、各実施例における熱延焼鈍板の靭性を比較し評価した。なお、靭性の評価基準は、延性―脆性遷移温度(DBTT)が150℃以下を良好とした。The hot-rolled annealed sheet thus obtained was subjected to a heat treatment (L value: 19460) at 700 ° C. for 1 hour, and then a Charpy impact test was performed according to JIS Z 2242 to obtain a ductile-brittle transition. The temperature (DBTT) was measured. The measurement results are shown in Table 2-1 and Table 2-2. In addition, since the test piece in a present Example is a subsize test piece with the plate | board thickness of a hot-rolled annealing board, the hot-rolled annealing board in each Example is obtained by dividing absorbed energy by a cross-sectional area (unit cm 2 ). The toughness was compared and evaluated. In addition, the evaluation criteria of toughness made ductility-brittle transition temperature (DBTT) 150 degrees C or less favorable.

また、熱延焼鈍板より、オージェ電子分光分析法(AES)用に14×4×4mmの試験片を作成した。試験片の長手方向中央部に、深さが1mm、幅が0.2mmのノッチを入れた。AES装置内で超高真空化に於いて、液体窒素で冷却し、衝撃を加えて破断させ、粒界破面のSn濃度を測定した。その測定結果を「粒界Sn濃度(at%)」として表2−1及び2−2に示す。AES装置は、SAM−670(PHI社製、FE型)を使用した。ビームサイズは0.05μmとした。濃度の校正は、劈開破面における分析値が、母材の濃度と同じになる様にして行った。オージェ電子は、粒界破面の最表面だけでなく数nm深さからまで放出されるため、この方法では、正確な粒界のSn濃度では無いが、一般的な測定値として、この手法を用い、2原子%(at%)以下を良好とした。   Moreover, the test piece of 14x4x4mm was created for the Auger electron spectroscopy analysis (AES) from the hot-rolled annealing board. A notch having a depth of 1 mm and a width of 0.2 mm was placed in the center of the test piece in the longitudinal direction. In ultra-high vacuum in the AES apparatus, it was cooled with liquid nitrogen, ruptured by impact, and the Sn concentration at the grain boundary fracture surface was measured. The measurement results are shown in Tables 2-1 and 2-2 as “grain boundary Sn concentration (at%)”. As the AES apparatus, SAM-670 (PHI, FE type) was used. The beam size was 0.05 μm. The concentration was calibrated so that the analytical value on the cleavage plane was the same as the concentration of the base material. Auger electrons are emitted not only from the outermost surface of the grain boundary fracture surface, but also from a depth of several nanometers. In this method, the Sn concentration of the grain boundary is not accurate, but this method is used as a general measurement value. 2 atomic% (at%) or less was considered good.

更に、熱延焼鈍板を1.5mmまで冷間圧延し、840〜980℃で100秒の焼鈍後酸洗し、冷延焼鈍板にMigビードオンプレート溶接を行い、JIS G 0575に規定されるステンレス鋼の硫酸・硫酸銅腐食試験を行って、溶接HAZ部の鋭敏化有無を調査した。但し、硫酸濃度は0.5%とし、試験時間は24時間とした。粒界腐食が認められたものは、耐食性不合格とした。その評価結果を「改良ストラウス試験」として表2−1及び2−2に示す。   Further, the hot-rolled annealed sheet is cold-rolled to 1.5 mm, pickled after annealing at 840 to 980 ° C. for 100 seconds, Mig bead-on-plate welding is performed on the cold-rolled annealed sheet, and is specified in JIS G 0575. The stainless steel was subjected to a sulfuric acid / copper sulfate corrosion test to investigate the presence or absence of sensitization in the welded HAZ part. However, the sulfuric acid concentration was 0.5%, and the test time was 24 hours. Those in which intergranular corrosion was observed were considered to have failed corrosion resistance. The evaluation results are shown in Tables 2-1 and 2-2 as “improved Strauss test”.

また、冷延焼鈍酸洗板の表面を#600研磨仕上げとした後、JIS Z 2371に規定される塩水噴霧試験方法を24時間行い、錆びの有無を確認して、さびが認められたものを不合格とした。評価結果を「塩水噴霧試験」として表2−1及び表2−2に示した。   In addition, after the surface of the cold-rolled annealed pickled plate is polished to # 600, the salt spray test method specified in JIS Z 2371 is performed for 24 hours, and the presence or absence of rust is confirmed. It was rejected. The evaluation results are shown in Table 2-1 and Table 2-2 as “salt spray test”.

また、熱延焼鈍板の熱処理条件を変えて、表2−1及び表2−2に記載された項目と同様の試験を行った結果を表3に示した。表3に示す一部の鋼に対しては、乾湿繰り返し試験により評価した。試験溶液は硝酸イオンNO3 -:100ppm、硫酸イオンSO4 2-:10ppm、塩化物イオンCl-:10ppm、pH=2.5とした。外径15mm、高さ100mm、厚さ0.8mmの試験管に試験溶液を10ml満たし、ここに1t×15×100mmに切断し、全面を#600エメリー紙にて湿式研磨処理した各種ステンレス鋼を半浸漬させた。この試験管を80℃の温浴に入れ、24時間経過後に完全に乾燥したサンプルを軽く蒸留水で洗浄後、新たに洗浄した試験管に試験溶液を再度満たしてサンプルを再び半浸漬し、80℃で24時間保持することを14サイクル行った。Table 3 shows the results of tests similar to the items described in Table 2-1 and Table 2-2, with different heat treatment conditions for the hot-rolled annealed plate. Some steels shown in Table 3 were evaluated by a wet and dry repeated test. The test solution was nitrate ion NO 3 : 100 ppm, sulfate ion SO 4 2− : 10 ppm, chloride ion Cl : 10 ppm, pH = 2.5. Filled with 10 ml of the test solution in a test tube with an outer diameter of 15 mm, height of 100 mm, and thickness of 0.8 mm, various stainless steels cut into 1t x 15 x 100 mm and wet-polished with # 600 emery paper on the entire surface. Semi-immersed. The test tube was put in a warm bath at 80 ° C., and a sample completely dried after 24 hours was lightly washed with distilled water. Then, the test solution was again filled in the newly washed test tube, and the sample was half-immersed again. And holding for 24 hours was performed 14 cycles.

また、冷延焼鈍板の焼鈍条件を変えて1.5mmの薄板製品とし、600℃で1週間の時効処理を行った後、板厚ままのVノッチシャルピー衝撃試験を行った結果を表4に示した。この時、延性−脆性遷移温度が−20℃以下になる条件を合格とした。   Table 4 shows the results of a V-notch Charpy impact test with the plate thickness changed after changing the annealing conditions of the cold-rolled annealed plate to a 1.5 mm thin plate product and aging treatment at 600 ° C. for 1 week. Indicated. At this time, the condition that the ductile-brittle transition temperature was −20 ° C. or lower was regarded as acceptable.

表1−1、表1−2,表2−1,表2−2、表3から明らかなように、本発明を適用した成分組成、粒界Sn濃度の鋼では、熱延焼鈍板で評価した延性―脆性遷移温度(DBTT)が低く、冷延焼鈍板で評価した耐食性は良好であり、引張試験で評価した全伸びも30%以上であり良好であった。また、表面疵も認められなかった。一方、本発明から外れる比較例では、シャルピー衝撃値(吸収エネルギー)、耐食性、材質、表面疵の何れかが、1つ以上不合格であった。これにより、比較例におけるフェライト系ステンレス鋼の耐熱性、耐食性が劣る事が分かる。   As is clear from Table 1-1, Table 1-2, Table 2-1, Table 2-2, and Table 3, the steel of the component composition and grain boundary Sn concentration to which the present invention is applied is evaluated by a hot-rolled annealing plate. The ductility-brittle transition temperature (DBTT) was low, the corrosion resistance evaluated with the cold-rolled annealed sheet was good, and the total elongation evaluated with a tensile test was also good at 30% or more. Moreover, no surface flaws were observed. On the other hand, in the comparative example which deviates from the present invention, one or more of Charpy impact values (absorbed energy), corrosion resistance, material, and surface flaws were rejected. Thereby, it turns out that the heat resistance of the ferritic stainless steel in a comparative example and corrosion resistance are inferior.

具体的には、No.35、39〜41、43、44、46、49、50は、GBSVが0より大きく、700℃で1時間熱処理後の粒界Sn偏析量が、AES測定で2at%より大きくなっており、延性−脆性遷移温度が150℃超となっている様に、低靭性であった。No.43〜45、47〜49はCI値が8未満であるため、改良ストラウス試験で評価した耐粒界腐食性、塩水噴霧試験で評価した耐銹性が不良であった。No.36、37、38、52,53,51は、それぞれSi、Mn、P、Ni、Cu、Moが高く、固溶強化によって伸びが低下するため、機械的性質が不良であった。No.39はSが高いため、No.40はCrが低く、No.42はSnが低く、No.55はBが高いため、塩水噴霧試験で評価した耐食性が不良であった。また、No.42はSnが低いため、GBSVが0より大きくても靭性が良好であった。No.45はNbが高く、No.47,45,50はTi、No.54はVが高いため大型介在物起因の疵が発生し、品質不良と判断された。No.41はCr、No.56はAlが高く、熱延疵が発生したため、品質不良と判断された。   Specifically, no. 35, 39 to 41, 43, 44, 46, 49, 50 have GBSV larger than 0, and the grain boundary Sn segregation amount after heat treatment at 700 ° C. for 1 hour is larger than 2 at% by AES measurement. -It was low toughness so that the brittle transition temperature was over 150 ° C. No. Since CI values of 43 to 45 and 47 to 49 were less than 8, the intergranular corrosion resistance evaluated by the improved Strauss test and the weather resistance evaluated by the salt spray test were poor. No. 36, 37, 38, 52, 53, and 51 had high Si, Mn, P, Ni, Cu, and Mo, respectively, and their mechanical properties were poor because elongation decreased due to solid solution strengthening. No. No. 39 has a high S. No. 40 has low Cr. No. 42 has a low Sn. Since 55 had a high B, the corrosion resistance evaluated in the salt spray test was poor. No. Since No. 42 has low Sn, toughness was good even when GBSV was larger than 0. No. No. 45 has a high Nb. 47, 45, 50 are Ti, No. No. 54 had a high V, so wrinkles due to large inclusions occurred, and it was judged that the quality was poor. No. 41 is Cr, No. No. 56 was judged to be of poor quality because Al was high and hot rolling occurred.

表3の記号a1〜a3はL値が1.91×104以上となる熱処理を施した後の、粒界Sn濃度が、いずれも2原子%以上のために、DBTTが150℃を超えており、靭性が不良であった。また、a4の様に、L値が1.91×104未満の場合は、粒界にSnが偏析しないため、DBTTが80℃と低いが、L値が大きくなると、Snが粒界偏析し、DBTTが高くなる事から、L値を1.91×104以上で、粒界のSn偏析を評価しなければならない事が確認された。
また、本発明範囲の鋼は、いずれも最大腐食深さは50μm以下となった。なお,本発明範囲のNiやCuを含有する鋼の場合には、最大腐食深さが20μm以下と、耐食性にきわめて優れる結果を示した。
Symbols a1 to a3 in Table 3 indicate that the DBTT exceeds 150 ° C. because the grain boundary Sn concentration after the heat treatment with an L value of 1.91 × 10 4 or more is 2 atomic% or more. And toughness was poor. Further, as in a4, when the L value is less than 1.91 × 10 4 , Sn does not segregate at the grain boundary, so DBTT is as low as 80 ° C. However, when the L value increases, Sn segregates at the grain boundary. From the fact that DBTT becomes high, it was confirmed that Sn segregation at the grain boundary must be evaluated at an L value of 1.91 × 10 4 or more.
Moreover, the maximum corrosion depth of all the steels in the range of the present invention was 50 μm or less. In the case of steel containing Ni or Cu in the range of the present invention, the maximum corrosion depth was 20 μm or less, indicating a result of extremely excellent corrosion resistance.

また、表4から明らかなように、本発明を適用した成分組成、冷延焼鈍後の結晶粒度番号、冷延板焼鈍温度、冷却速度を適用した薄板は、延性−脆性遷移温度が低く良好な靭性を示した。   Further, as apparent from Table 4, the thin plate to which the component composition to which the present invention is applied, the crystal grain size number after cold rolling annealing, the cold rolling plate annealing temperature, and the cooling rate are applied has a low ductile-brittle transition temperature and is good. Showed toughness.

一方、記号b1は、冷延板焼鈍温度が1100℃以上であり、JISG0551に規定される鋼-結晶粒度の顕微鏡試験方法で規定される結晶粒度番号が5.0未満になったため、800〜500℃における冷却速度が20℃/sであったが、延性−脆性遷移温度が高かった。記号b2は冷延板焼鈍温度が850℃未満であり、結晶粒度番号が9.0超であったため、機械的性質が不良であった。また、b3、b6は800〜500における冷却速度が5℃/s未満であったため、焼鈍温度は適正で結晶粒度番号も8.0と適正であったが、延性−脆性遷移温度が高かった。更に、b4、b5は比較例成分であったため、冷延板焼鈍温度、冷却速度、結晶粒度番号は適正範囲であったが、延性−脆性遷移温度が高かった。   On the other hand, the symbol b1 has a cold-rolled sheet annealing temperature of 1100 ° C. or higher, and the crystal grain size number defined by the steel-crystal grain size microscopic test method defined in JIS G0551 is less than 5.0. The cooling rate at 20 ° C. was 20 ° C./s, but the ductile-brittle transition temperature was high. The symbol b2 had a cold rolled sheet annealing temperature of less than 850 ° C. and a crystal grain size number exceeding 9.0, so the mechanical properties were poor. Moreover, since b3 and b6 had a cooling rate of less than 5 ° C./s at 800 to 500, the annealing temperature was appropriate and the grain size number was 8.0, but the ductile-brittle transition temperature was high. Furthermore, since b4 and b5 were comparative example components, the cold-rolled sheet annealing temperature, cooling rate, and crystal grain size number were within the proper ranges, but the ductile-brittle transition temperature was high.

これらの結果から、上述した知見を確認することができ、また、上述した各鋼組成及び校正を限定する根拠を裏付ける事ができた。   From these results, the above-mentioned findings could be confirmed, and the grounds for limiting the above-described steel compositions and calibration could be supported.

以上の説明から明らかなように、本発明のSnを含有するフェライト系ステンレス鋼によれば、安定化元素Nb,Tiの最適化を行っているため、高温で使用しても、靭性の劣化が小さく、しかも、薄板の耐食性にも優れるステンレス鋼板を製造可能になる。また、本発明を適用した材料を、特に自動車、二輪車の排気系部材に適用する事により、部品の寿命を長くする事が出来るようになり、社会的寄与度を高める事が出来る。つまりは、本発明は、産業上の利用可能性を十分に有する。   As is clear from the above description, according to the ferritic stainless steel containing Sn of the present invention, since the stabilizing elements Nb and Ti are optimized, the toughness is deteriorated even when used at a high temperature. It is possible to manufacture a stainless steel plate that is small and excellent in corrosion resistance of a thin plate. Further, by applying the material to which the present invention is applied to exhaust system members of automobiles and two-wheeled vehicles in particular, it becomes possible to extend the life of parts and increase the social contribution. In other words, the present invention has sufficient industrial applicability.

Claims (14)

質量%で、
Cr:13.0〜21.0%、
Sn:0.01〜0.50%、
Nb:0.05〜0.60%、
を含有し、
C:0.015%以下、
Si:1.5%以下、
Mn:1.5%以下、
N:0.020%以下、
P:0.035%以下、及び
S:0.015%以下、
に制限され、
残部がFe及び不可避的不純物であり、
式1および式2を満足し、
かつ、600〜750℃の温度で、式3で示すL値が1.91×10以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であり、冷延板焼鈍後の結晶粒度番号を5.0以上、9.0以下とすることを特徴とするフェライト系ステンレス鋼。
8≦CI=0.52Nb/(C+N)≦26・・・(式1)
GBSV=Sn−2Nb−0.2≦0・・・(式2)
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
% By mass
Cr: 13.0-21.0%,
Sn: 0.01 to 0.50%,
Nb: 0.05 to 0.60%
Containing
C: 0.015% or less,
Si: 1.5% or less,
Mn: 1.5% or less,
N: 0.020% or less,
P: 0.035% or less, and S: 0.015% or less,
Limited to
The balance is Fe and inevitable impurities,
Satisfying Equation 1 and Equation 2,
And the grain boundary Sn density | concentration is 2 atomic% or less when the heat processing which the L value shown by Formula 3 becomes 1.91 * 10 < 4 > or more is performed at the temperature of 600-750 degreeC, and after cold-rolled sheet annealing A ferritic stainless steel having a grain size number of 5.0 or more and 9.0 or less.
8 ≦ CI = 0.52 Nb / (C + N) ≦ 26 (Formula 1)
GBSV = Sn−2Nb−0.2 ≦ 0 (Expression 2)
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)
質量%で、
Cr:13.0〜21.0%、
Sn:0.01〜0.30%、
Nb:0.20〜0.60%、
Ti:0.05超0.32%以下、
を含有し、
更に、質量%で、
Ni:0.5%以下、
Cu:1.5%以下、
Mo:2.0%以下、
V:0.3%以下、
Al:0.3%以下、
B:0.0020%以下
の1種または2種以上を含有し、
C:0.015%以下、
Si:1.5%以下、
Mn:1.5%以下、
N:0.020%以下、
P:0.035%以下、及び
S:0.015%以下、
に制限され、
残部がFe及び不可避的不純物であり、
式1’および式2’を満足し、
かつ、600〜750℃の温度で、式3で示すL値が1.91×10 以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であり、冷延板焼鈍後の結晶粒度番号を5.0以上、9.0以下とすることを特徴とするェライト系ステンレス鋼。
8≦CI=(Ti+0.52Nb)/(C+N)≦26・・・式1’
GBSV=Sn+Ti−2Nb−0.3Mo−0.2≦0・・・式2’
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
% By mass
Cr: 13.0-21.0%,
Sn: 0.01-0.30%,
Nb: 0.20 to 0.60%,
Ti: more than 0.05 and 0.32% or less,
Containing
Furthermore, in mass%,
Ni: 0.5 % or less,
Cu: 1.5% or less,
Mo: 2.0% or less,
V: 0.3% or less,
Al: 0.3% or less,
B: 0.0020% or less of 1 type or 2 types or more ,
C: 0.015% or less,
Si: 1.5% or less,
Mn: 1.5% or less,
N: 0.020% or less,
P: 0.035% or less, and
S: 0.015% or less,
Limited to
The balance is Fe and inevitable impurities,
Satisfying Equation 1 ′ and Equation 2 ′,
And the grain boundary Sn density | concentration is 2 atomic% or less when the heat processing which the L value shown by Formula 3 becomes 1.91 * 10 < 4 > or more is performed at the temperature of 600-750 degreeC , and after cold-rolled sheet annealing grain size number of 5.0 or more, ferrites stainless steel, characterized by 9.0 or less.
8 ≦ CI = (Ti + 0.52Nb) / (C + N) ≦ 26 Formula 1 ′
GBSV = Sn + Ti-2Nb-0.3Mo-0.2≤0 Formula 2 '
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)
前記熱処理が700℃で1時間であることを特徴とする請求項1又は2に記載のフェライト系ステンレス鋼。The ferritic stainless steel according to claim 1 or 2, wherein the heat treatment is performed at 700 ° C for 1 hour. 更に、質量%で、
W:0.20%以下、
Zr:0.20%以下、
Sb:0.5%以下、
Co:0.5%以下、
Ca:0.01%以下、
Mg:0.01%以下、
REM:0.1%以下、
の1種または2種以上を含有することを特徴とする請求項1〜3のいずれか一項に記載のフェライト系ステンレス鋼。
Furthermore, in mass%,
W: 0.20% or less,
Zr: 0.20% or less,
Sb: 0.5% or less,
Co: 0.5% or less,
Ca: 0.01% or less,
Mg: 0.01% or less,
REM: 0.1% or less,
The ferritic stainless steel according to any one of claims 1 to 3, wherein the ferritic stainless steel contains one or more of the following.
冷延板焼鈍後の結晶粒度番号を6.0以上、8.5以下とすることを特徴とする請求項1〜4のいずれか一項に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to any one of claims 1 to 4, wherein the grain size number after cold-rolled sheet annealing is 6.0 or more and 8.5 or less. 請求項1、または4に記載の組成のステンレス鋼を、冷延板焼鈍温度を850℃〜1100℃とし、その後冷延板焼鈍温度からの冷却に際し、800〜500℃の温度範囲において冷却速度を5℃/s以上とすることを特徴とする請求項1〜5のいずれか一項に記載のフェライト系ステンレス鋼の製造方法。 The stainless steel having the composition according to claim 1, 2 or 4 has a cold-rolled sheet annealing temperature of 850 ° C to 1100 ° C, and then cooled from the cold-rolled plate annealing temperature in a temperature range of 800 to 500 ° C. The manufacturing method of the ferritic stainless steel as described in any one of Claims 1-5 characterized by setting it as 5 degrees C / s or more. 請求項1〜5のうちいずれか1項のフェライト系ステンレス鋼を用いたことを特徴とする排気系部材。   An exhaust system member using the ferritic stainless steel according to any one of claims 1 to 5. 質量%で、
Cr:13.0〜21.0%、
Sn:0.01〜0.50%、
Nb:0.05〜0.60%、
を含有し、
W:0.01%〜0.20%及びSb:0.001%〜0.5%の少なくとも1種を含有し、
C:0.015%以下、
Si:1.5%以下、
Mn:1.5%以下、
N:0.020%以下、
P:0.035%以下、及び
S:0.015%以下、
に制限され、
残部がFe及び不可避的不純物であり、
式1および式2を満足し、
かつ、600〜750℃の温度で、式3で示すL値が1.91×10以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であることを特徴とするフェライト系ステンレス鋼。
8≦CI=0.52Nb/(C+N)≦26・・・(式1)
GBSV=Sn−2Nb−0.2≦0・・・(式2)
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
% By mass
Cr: 13.0-21.0%,
Sn: 0.01 to 0.50%,
Nb: 0.05 to 0.60%
Containing
Containing at least one of W: 0.01% to 0.20% and Sb: 0.001% to 0.5%,
C: 0.015% or less,
Si: 1.5% or less,
Mn: 1.5% or less,
N: 0.020% or less,
P: 0.035% or less, and S: 0.015% or less,
Limited to
The balance is Fe and inevitable impurities,
Satisfying Equation 1 and Equation 2,
And the ferrite type | system | group characterized by the grain boundary Sn density | concentration being 2 atomic% or less when performing the heat processing which L value shown by Formula 3 becomes 1.91 * 10 < 4 > or more at the temperature of 600-750 degreeC. Stainless steel.
8 ≦ CI = 0.52 Nb / (C + N) ≦ 26 (Formula 1)
GBSV = Sn−2Nb−0.2 ≦ 0 (Expression 2)
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)
質量%で、
Cr:13.0〜21.0%、
Sn:0.01〜0.30%、
Nb:0.20〜0.60%、
Ti:0.05超0.32%以下、
を含有し、
W:0.01%〜0.20%及びSb:0.001%〜0.5%の少なくとも1種を含有し、
更に、質量%で、
Ni:0.5%以下、
Cu:1.5%以下、
Mo:2.0%以下、
V:0.3%以下、
Al:0.3%以下、
B:0.0020%以下
の1種または2種以上を含有し、
C:0.015%以下、
Si:1.5%以下、
Mn:1.5%以下、
N:0.020%以下、
P:0.035%以下、及び
S:0.015%以下、
に制限され、
残部がFe及び不可避的不純物であり、
式1’および式2’を満足し、
かつ、600〜750℃の温度で、式3で示すL値が1.91×10 以上となる熱処理を施した時の粒界Sn濃度が2原子%以下であることを特徴とするェライト系ステンレス鋼。
8≦CI=(Ti+0.52Nb)/(C+N)≦26・・・(式1’)
GBSV=Sn+Ti−2Nb−0.3Mo−0.2≦0・・・(式2’)
L=(273+T)(log(t)+20)・・・(式3)
ここで、T:温度(℃)、t:時間(h)
% By mass
Cr: 13.0-21.0%,
Sn: 0.01-0.30%,
Nb: 0.20 to 0.60%,
Ti: more than 0.05 and 0.32% or less,
Containing
Containing at least one of W: 0.01% to 0.20% and Sb: 0.001% to 0.5%,
Furthermore, in mass%,
Ni: 0.5 % or less,
Cu: 1.5% or less,
Mo: 2.0% or less,
V: 0.3% or less,
Al: 0.3% or less,
B: 0.0020% or less of 1 type or 2 types or more ,
C: 0.015% or less,
Si: 1.5% or less,
Mn: 1.5% or less,
N: 0.020% or less,
P: 0.035% or less, and
S: 0.015% or less,
Limited to
The balance is Fe and inevitable impurities,
Satisfying Equation 1 ′ and Equation 2 ′,
And, at a temperature of 600 to 750 ° C., off to intergranular Sn concentration characterized der Rukoto 2 atomic% or less when subjected to a heat treatment L value shown in Equation 3 is 1.91 × 10 4 or more Ellite stainless steel.
8 ≦ CI = (Ti + 0.52Nb) / (C + N) ≦ 26 (Formula 1 ′)
GBSV = Sn + Ti-2Nb-0.3Mo-0.2≤0 (Formula 2 ')
L = (273 + T) (log (t) +20) (Equation 3)
Where T: temperature (° C.), t: time (h)
前記熱処理が700℃で1時間であることを特徴とする請求項8又は9に記載のフェライト系ステンレス鋼。The ferritic stainless steel according to claim 8 or 9, wherein the heat treatment is performed at 700 ° C for 1 hour. 更に、質量%で、
Zr:0.20%以下、
Co:0.5%以下、
Ca:0.01%以下、
Mg:0.01%以下、
REM:0.1%以下、
の1種または2種以上を含有することを特徴とする請求項8〜10のいずれか一項に記載のフェライト系ステンレス鋼。
Furthermore, in mass%,
Zr: 0.20% or less,
Co: 0.5% or less,
Ca: 0.01% or less,
Mg: 0.01% or less,
REM: 0.1% or less,
The ferritic stainless steel according to any one of claims 8 to 10, comprising one or more of the following.
冷延板焼鈍後の結晶粒度番号を5.0以上、9.0以下とすることを特徴とする請求項8〜11のいずれか一項に記載のフェライト系ステンレス鋼。   The ferritic stainless steel according to any one of claims 8 to 11, wherein the grain size number after cold-rolled sheet annealing is 5.0 or more and 9.0 or less. 請求項8、または11に記載の組成のステンレス鋼を、冷延板焼鈍温度を850℃〜1100℃とし、その後冷延板焼鈍温度からの冷却に際し、800〜500℃の温度範囲において冷却速度を5℃/s以上とすることを特徴とする請求項8〜12のいずれか一項に記載のフェライト系ステンレス鋼の製造方法。 The stainless steel having the composition according to claim 8, 9, or 11 is set to a cold-rolled sheet annealing temperature of 850 ° C. to 1100 ° C., and then cooled from the cold-rolled plate annealing temperature in a temperature range of 800 to 500 ° C. The method for producing a ferritic stainless steel according to any one of claims 8 to 12, wherein the temperature is 5 ° C / s or more. 請求項8〜12のうちいずれか1項のフェライト系ステンレス鋼を用いたことを特徴とする排気系部材。   An exhaust system member using the ferritic stainless steel according to any one of claims 8 to 12.
JP2014544565A 2012-10-30 2013-10-30 Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel Active JP6223351B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012239148 2012-10-30
JP2012239148 2012-10-30
PCT/JP2013/079461 WO2014069543A1 (en) 2012-10-30 2013-10-30 Ferritic stainless steel sheet having excellent heat resistance

Publications (2)

Publication Number Publication Date
JPWO2014069543A1 JPWO2014069543A1 (en) 2016-09-08
JP6223351B2 true JP6223351B2 (en) 2017-11-08

Family

ID=50627443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014544565A Active JP6223351B2 (en) 2012-10-30 2013-10-30 Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel

Country Status (9)

Country Link
US (1) US20150292068A1 (en)
EP (1) EP2915894B1 (en)
JP (1) JP6223351B2 (en)
KR (1) KR101690441B1 (en)
CN (1) CN104769144B (en)
BR (1) BR112015009634B1 (en)
ES (1) ES2787353T3 (en)
TW (1) TWI504763B (en)
WO (1) WO2014069543A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170018457A (en) * 2014-07-31 2017-02-17 제이에프이 스틸 가부시키가이샤 Ferritic stainless steel sheet for plasma welding and welding method therefor
JP6573459B2 (en) * 2015-02-25 2019-09-11 日鉄ステンレス株式会社 Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
WO2016052528A1 (en) * 2014-09-29 2016-04-07 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel sheet having excellent hole expandability, and manufacturing method therefor
JP6410543B2 (en) * 2014-09-29 2018-10-24 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate excellent in hole expansibility and manufacturing method thereof
JP6159775B2 (en) 2014-10-31 2017-07-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent resistance to exhaust gas condensate corrosion and brazing, and method for producing the same
MX2017005210A (en) 2014-10-31 2017-07-26 Nippon Steel & Sumikin Sst Ferrite-based stainless steel plate, steel pipe, and production method therefor.
WO2018003521A1 (en) * 2016-06-27 2018-01-04 Jfeスチール株式会社 Ferritic stainless steel sheet
CN106435352A (en) * 2016-06-30 2017-02-22 宝钢不锈钢有限公司 Sn-containing ferrite stainless steel with low cost and high corrosion resistance, and manufacturing method thereof
MX2019001947A (en) 2016-09-02 2019-05-15 Jfe Steel Corp Ferritic stainless steel.
CN109563597A (en) 2016-09-02 2019-04-02 杰富意钢铁株式会社 Ferrite-group stainless steel
US20200002779A1 (en) * 2017-01-26 2020-01-02 Jfe Steel Corporation Hot-rolled ferritic stainless steel sheet and method for manufacturing same
JP6274372B1 (en) 2017-03-30 2018-02-07 Jfeスチール株式会社 Ferritic stainless steel
CN107246010B (en) * 2017-05-07 2019-05-10 云南建投第十三建设有限公司 Karst area Percussion Piles construction
CN108411198A (en) * 2018-03-28 2018-08-17 浙江益宏不锈钢有限公司 A kind of high-performance stainless steel and seamless steel pipe and its manufacturing method
CN108572187A (en) * 2018-04-03 2018-09-25 上海大学 Element cyrystal boundary segregation semi-quantitative method based on scanning electron microscope
CN108823488A (en) * 2018-05-29 2018-11-16 哈尔滨工程大学 The ferrite heat resistant steel and its heat treatment process of a kind of resistance to high temperature oxidation and resistance to salt hot corrosion
CN109023072A (en) * 2018-09-04 2018-12-18 合肥久新不锈钢厨具有限公司 A kind of high stability corrosion-resistant stainless steel and preparation method thereof
JP6722740B2 (en) * 2018-10-16 2020-07-15 日鉄ステンレス株式会社 Ferritic stainless steel with excellent magnetic properties
JP7186601B2 (en) * 2018-12-21 2022-12-09 日鉄ステンレス株式会社 Cr-based stainless steel used as a metal material for high-pressure hydrogen gas equipment
WO2023089693A1 (en) * 2021-11-17 2023-05-25 日鉄ステンレス株式会社 Ferritic stainless steel sheet

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3904683B2 (en) 1997-09-12 2007-04-11 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent surface properties and method for producing the same
JP2000169943A (en) 1998-12-04 2000-06-20 Nippon Steel Corp Ferritic stainless steel excellent in high temperature strength and its production
JP3958921B2 (en) * 2000-08-04 2007-08-15 新日本製鐵株式会社 Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
ES2230227T3 (en) * 2000-12-25 2005-05-01 Nisshin Steel Co., Ltd. FERRITIC STAINLESS STEEL SHEET WITH GOOD WORKABILITY AND METHOD FOR MANUFACTURING.
CN100420767C (en) * 2001-05-15 2008-09-24 日新制钢株式会社 Ferritic stainless steel and martensitic stainless steel both being excellent in machinability
JP4519505B2 (en) * 2004-04-07 2010-08-04 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet having excellent formability and method for producing the same
JP4498950B2 (en) * 2005-02-25 2010-07-07 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for exhaust parts with excellent workability and manufacturing method thereof
JP4752620B2 (en) * 2005-06-09 2011-08-17 Jfeスチール株式会社 Ferritic stainless steel sheet for bellows tube
JP4727601B2 (en) * 2007-02-06 2011-07-20 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent crevice corrosion resistance
JP5297630B2 (en) * 2007-02-26 2013-09-25 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
JP2009097079A (en) * 2007-09-27 2009-05-07 Nippon Steel & Sumikin Stainless Steel Corp Ferritic stainless steel having excellent atmospheric corrosion resistance
JP4651682B2 (en) * 2008-01-28 2011-03-16 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel with excellent corrosion resistance and workability and method for producing the same
JP5320034B2 (en) * 2008-11-14 2013-10-23 新日鐵住金ステンレス株式会社 Mo-type ferritic stainless steel for automotive exhaust system parts with excellent corrosion resistance after heating
JP5610796B2 (en) * 2010-03-08 2014-10-22 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent corrosion resistance in condensed water environment generated from hydrocarbon combustion exhaust gas
JP5586279B2 (en) * 2010-03-15 2014-09-10 新日鐵住金ステンレス株式会社 Ferritic stainless steel for automotive exhaust system parts
JP5546922B2 (en) * 2010-03-26 2014-07-09 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent heat resistance and workability and method for producing the same
KR101536291B1 (en) * 2010-03-29 2015-07-13 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same
JP6084769B2 (en) * 2010-12-21 2017-02-22 新日鐵住金ステンレス株式会社 Oil supply pipe and manufacturing method thereof
EP2677055B1 (en) * 2011-02-17 2020-10-07 Nippon Steel & Sumikin Stainless Steel Corporation High-purity ferritic stainless steel sheet having excellent oxidation resistance and high-temperature strength, and method for producing same
JP5709571B2 (en) * 2011-02-17 2015-04-30 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel sheet excellent in oxidation resistance and high temperature strength and method for producing the same
JP5709594B2 (en) * 2011-03-14 2015-04-30 新日鐵住金ステンレス株式会社 High purity ferritic stainless steel plate with excellent weather resistance and antiglare properties
JP5703075B2 (en) * 2011-03-17 2015-04-15 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance
JP5659061B2 (en) * 2011-03-29 2015-01-28 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet excellent in heat resistance and workability and manufacturing method thereof
JP5960951B2 (en) * 2011-03-30 2016-08-02 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet for automobile fuel tank with excellent fatigue characteristics and method for producing the same
JP5937861B2 (en) * 2012-03-27 2016-06-22 新日鐵住金ステンレス株式会社 Heat-resistant ferritic stainless steel sheet with excellent weldability
JP6025362B2 (en) * 2012-03-29 2016-11-16 新日鐵住金ステンレス株式会社 Ferritic stainless steel plate with excellent heat resistance

Also Published As

Publication number Publication date
EP2915894B1 (en) 2020-03-04
EP2915894A4 (en) 2016-10-26
CN104769144B (en) 2017-10-10
TWI504763B (en) 2015-10-21
KR101690441B1 (en) 2016-12-27
TW201422828A (en) 2014-06-16
JPWO2014069543A1 (en) 2016-09-08
US20150292068A1 (en) 2015-10-15
CN104769144A (en) 2015-07-08
ES2787353T3 (en) 2020-10-15
BR112015009634A2 (en) 2017-07-04
EP2915894A1 (en) 2015-09-09
BR112015009634B1 (en) 2019-08-20
WO2014069543A1 (en) 2014-05-08
KR20150056656A (en) 2015-05-26

Similar Documents

Publication Publication Date Title
JP6223351B2 (en) Ferritic stainless steel, exhaust system member using the same, and method for producing ferritic stainless steel
JP5793459B2 (en) Heat-resistant ferritic stainless steel cold-rolled steel sheet excellent in workability, ferritic stainless hot-rolled steel sheet for cold-rolled material, and production method thereof
KR101557463B1 (en) Ferritic stainless steel sheet having excellent heat resistance and processability, and method for producing same
JP5885884B2 (en) Ferritic stainless hot-rolled steel sheet, manufacturing method thereof, and steel strip
WO2010110466A1 (en) Ferritic stainless steel plate having excellent heat resistance and excellent workability
JP6353839B2 (en) Martensitic stainless steel excellent in wear resistance and corrosion resistance and method for producing the same
JP5846950B2 (en) Ferritic stainless steel hot-rolled steel sheet and method for producing the same, and method for producing ferritic stainless steel sheet
CN102725432B (en) Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
JP5918796B2 (en) Ferritic stainless hot rolled steel sheet and steel strip with excellent toughness
WO2012036313A1 (en) Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance
JP2016191150A (en) Stainless steel sheet excellent in toughness and production method thereof
JP5703075B2 (en) Ferritic stainless steel plate with excellent heat resistance
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
EP3722448A1 (en) High-mn steel and method for manufacturing same
JP6025362B2 (en) Ferritic stainless steel plate with excellent heat resistance
JP5111910B2 (en) Ferritic stainless steel with low surface defects and excellent weldability and crevice corrosion resistance
JP7285050B2 (en) Ferrite-Austenite Duplex Stainless Steel Sheet and Welded Structure, and Manufacturing Method Therefor
RU2551324C1 (en) Manufacturing method of strips of low-alloyed weld steel
KR20130034349A (en) Lean duplex stainless steel excellent in corrosion resistance and hot workability
KR102387364B1 (en) High Mn steel and manufacturing method thereof
JP4848651B2 (en) High strength thin steel sheet with excellent torsional rigidity and method for producing the same
KR20140080350A (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2005133145A (en) Austenitic stainless steel having excellent hot workability and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250