JP6084769B2 - Oil supply pipe and manufacturing method thereof - Google Patents

Oil supply pipe and manufacturing method thereof Download PDF

Info

Publication number
JP6084769B2
JP6084769B2 JP2011277173A JP2011277173A JP6084769B2 JP 6084769 B2 JP6084769 B2 JP 6084769B2 JP 2011277173 A JP2011277173 A JP 2011277173A JP 2011277173 A JP2011277173 A JP 2011277173A JP 6084769 B2 JP6084769 B2 JP 6084769B2
Authority
JP
Japan
Prior art keywords
steel pipe
oil supply
pipe member
electrodeposition coating
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011277173A
Other languages
Japanese (ja)
Other versions
JP2012197071A (en
Inventor
坂本 俊治
俊治 坂本
利男 田上
利男 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2011277173A priority Critical patent/JP6084769B2/en
Priority to PCT/JP2011/079681 priority patent/WO2012086706A1/en
Publication of JP2012197071A publication Critical patent/JP2012197071A/en
Application granted granted Critical
Publication of JP6084769B2 publication Critical patent/JP6084769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • C25D13/14Tubes; Rings; Hollow bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L3/00Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets
    • F16L3/22Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals
    • F16L3/237Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets specially adapted for supporting a number of parallel pipes at intervals for two pipes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

本発明は、自動車用の給油管に関する。特に、現用のSUS436Lより廉価な素材より成り、かつ現用材相当の耐食性を確保した給油管に関する。   The present invention relates to an oil supply pipe for an automobile. In particular, the present invention relates to an oil supply pipe made of a material cheaper than the current SUS436L and having corrosion resistance equivalent to that of the current material.

自動車用の給油管には、米国の法規制で15年間もしくは15万マイル走行の寿命保証が義務付けられており、ステンレス鋼(SUS436L:17Cr−1.2Mo)を素材とした給油管が既に実用化されている。   For oil supply pipes for automobiles, a 15-year or 150,000-mile life guarantee is obligated by US regulations, and oil supply pipes made of stainless steel (SUS436L: 17Cr-1.2Mo) have already been put into practical use. Has been.

北米地区を走行する自動車は融雪塩環境に曝されるので給油管に適用される素材には優れた塩害耐食性が求められ、従来SUS436Lが適用されてきたが、昨今の資源価格高騰を背景として素材コスト低減の要求が生じてきている。SUS436Lは高価なMoを1%程度含有しており、Moを含まないAISI439鋼(17Cr)に代替するだけでも大きなコスト低減効果が得られる。   Since automobiles traveling in the North American region are exposed to the snow melting salt environment, excellent corrosion resistance is required for the materials used for the oil supply pipes. Conventionally, SUS436L has been applied. There is a demand for cost reduction. SUS436L contains about 1% of expensive Mo, and even if it is replaced with AISI 439 steel (17Cr) not containing Mo, a great cost reduction effect can be obtained.

しかしながら、素材の合金元素削減は耐食性劣化を招来する。そこで、素材の低級化による弱点を別の方法で補う必要がある。   However, the reduction of alloy elements in the material causes deterioration of corrosion resistance. Therefore, it is necessary to compensate for the weakness caused by the lowering of the material by another method.

給油管における腐食懸念部位は、塩害環境に曝される給油管外面側の隙間構造部である。従来、隙間部の塩害耐食性を向上させる手段としてカチオン電着塗装が用いられてきた。   The corrosion concern part in the oil supply pipe is a gap structure portion on the outer surface of the oil supply pipe that is exposed to a salt damage environment. Conventionally, cationic electrodeposition coating has been used as a means for improving the salt corrosion resistance of the gaps.

例えば、特許文献1では、SUS436パイプを素材としてプロジェクション溶接を用いて組み立てた給油管にカチオン電着塗装を施す製造方法が開示されている。しかしながら、この技術ではSUS436を素材としたものであり、発明者らの知見によればSUS436においても防錆が完全とはいえない。従って、より低級な素材を用いた場合に、この技術で充分な防錆効果が得られるとは確認できない。   For example, Patent Document 1 discloses a manufacturing method in which cationic electrodeposition coating is applied to an oil supply pipe that is assembled by using projection welding using a SUS436 pipe as a raw material. However, in this technique, SUS436 is used as a material, and according to the knowledge of the inventors, rust prevention is not complete even in SUS436. Therefore, when a lower material is used, it cannot be confirmed that this technique can provide a sufficient rust prevention effect.

また、特許文献2では、SUS436を素材として組み立てた給油管に静電塗装を施して隙間腐食を防止する技術が開示されている。あるいは、特許文献3では、ステンレス鋼製給油管に耐チップ塗装を施し、チッピングを受けても十分な防錆性を確保する技術が示されている。しかしながら、これらの技術は電着塗装の場合よりも塗装コストがかかる。一方、隙間内部には塗装できないため、十分な防錆効果が得られる保証はない。   Patent Document 2 discloses a technique for preventing crevice corrosion by applying electrostatic coating to an oil supply pipe assembled from SUS436. Alternatively, Patent Document 3 discloses a technique for ensuring sufficient rust prevention even if chipping is applied to a stainless steel oil supply pipe and chipping is applied. However, these techniques are more costly than the electrodeposition coating. On the other hand, since it cannot be painted inside the gap, there is no guarantee that a sufficient rust prevention effect will be obtained.

一方、塗装以外の防錆方法についても提示されている。例えば、特許文献4では、ステンレス鋼製給油管の組み立てにおける溶接、ろう付け、塑性加工などによって不働態皮膜が損なわれた部位や隙間部位に亜鉛の犠牲陽極を配して犠牲防食する技術が開示されている。しかしながら、腐食懸念部位の全てに亜鉛を配するのは煩雑であるし手間がかかる。また、亜鉛も高価な金属である。更に、亜鉛は塩害環境で消耗し易いので必要量が嵩むとの問題がある。これらのことから、給油管において犠牲防食は現実的な技術とは言い難い。   On the other hand, rust prevention methods other than painting are also presented. For example, Patent Document 4 discloses a technique for sacrificial corrosion prevention by disposing a zinc sacrificial anode in a part where a passive state film is damaged or a gap part by welding, brazing, plastic working, etc. in assembling a stainless steel oil supply pipe. Has been. However, it is cumbersome and troublesome to arrange zinc in all the corrosion-prone areas. Zinc is also an expensive metal. Furthermore, since zinc is easily consumed in a salt damage environment, there is a problem that a necessary amount increases. For these reasons, sacrificial anticorrosion is not a realistic technique in oil supply pipes.

特開2002−242779号公報Japanese Patent Laid-Open No. 2002-242779 特開2004−210003号公報JP 2004-210003 A 特開2006−231207号公報JP 2006-231207 A 特開2005−206064号公報Japanese Patent Laid-Open No. 2005-206064

本発明は、SUS436Lより低級な素材を用いることを前提とし、ステンレス鋼の弱点である塩害耐食性、特に隙間構造部における耐食性を確保することを目的とする。   The present invention is based on the premise that a material lower than SUS436L is used, and an object thereof is to ensure salt corrosion resistance, which is a weak point of stainless steel, particularly corrosion resistance in a gap structure portion.

本発明者らは、廉価であることを目的とする場合の防食法としては従来からも実績のあるカチオン電着塗装が最適であることを想起し、電着塗装およびその対象を工夫することで防食性を高め、その効果を素材低級化に還付できると考えた。そこで、先ず、電着塗装を施したSUS436L製給油管の隙間内部の塗膜形成状況を調査すると共に、給油管全体を塩害腐食試験に供して腐食状況を詳細に観察した。その結果、隙間内部に塗膜が形成されていなかった部位の腐食は、僅かでも塗膜が形成された部位よりも腐食損傷が激しいことを知見した。そして、隙間構造を形成させる前に、隙間内部を形成する部位に予め塗膜を形成させておけば腐食問題は生じないことも明らかにした。   The present inventors recalled that the cationic electrodeposition coating with a proven track record is the most suitable as an anticorrosion method for the purpose of being inexpensive, and devised the electrodeposition coating and its object. We thought that the anti-corrosion property could be improved and the effect could be returned to lowering the material. Therefore, first, the state of coating film formation in the gap of the SUS436L oil supply pipe subjected to electrodeposition coating was investigated, and the entire oil supply pipe was subjected to a salt corrosion test to observe the corrosion situation in detail. As a result, it was found that the corrosion of the portion where the coating film was not formed inside the gap was more severely corroded than the portion where the coating film was formed. It was also clarified that the corrosion problem does not occur if a coating film is formed in advance on the site forming the gap before forming the gap structure.

本発明は前記知見に基づいて構成したものであり、その要旨は以下の通りである。
(1)質量%で、C:≦0.015%、Si:0.01〜0.50%、Mn:0.01〜0.50%、P≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010〜0.100%、Cr:13.0〜18.0%、を含有し、更に、Ti:0.03〜0.30%およびNb:0.03〜0.30%の1種または2種を含有し、残部がFeおよび不可避的不純物より成るフェライト系ステンレス鋼を素材とした鋼管から成型した鋼管部材と、前記鋼管部材に非溶接手段で取り付けられた結束部品からなる給油管であって、前記鋼管部材に取り付けられる結束部品と鋼管部材との間において、塩害環境に曝される表面に隙間構造部を有し、前記隙間構造部内部の結束部品と鋼管部材の両方、または結束部材が非金属の場合は鋼管部材のみ、の全面積に対してカチオン電着塗膜が形成されていることを特徴とする給油管
(2)前記隙間構造部において、前記鋼管部材と結束部品それぞれの表面にカチオン電着塗膜を有し、隙間構造部において当該カチオン電着塗膜同士が接触していることを特徴とする上記(1)に記載の給油管。
)前記結束部品は、ボルトナットによって鋼管部材に締結されていることを特徴とする上記(1)又は(2)に記載の給油管。
)結束部品の鋼管部材への取り付け方法がボルトナットによる機械的締結であり、予め結束部品と鋼管部材に対して別々に、または結束部材が非金属の場合は鋼管部材のみに、カチオン電着塗装を施した後に締結することを特徴とする上記(1)又は(3)に記載の給油管の製造方法。
The present invention is configured based on the above findings, and the gist thereof is as follows.
(1) By mass%, C: ≦ 0.015%, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P ≦ 0.050%, S: ≦ 0.010 %, N: ≦ 0.015%, Al: 0.010-0.100%, Cr: 13.0-18.0%, Ti: 0.03-0.30% and Nb : A steel pipe member formed from a steel pipe made of ferritic stainless steel containing 0.03 to 0.30% of one or two types, the balance being Fe and inevitable impurities, and non-welded to the steel pipe member An oil supply pipe comprising a bundling part attached by means having a gap structure part on a surface exposed to a salt damage environment between the bundling part attached to the steel pipe member and the steel pipe member, and the gap structure part Both internal bundling parts and steel pipe members, or steel if the bundling member is non-metallic Oil supply pipe, characterized in that the cationic electrodeposition coating film is formed with respect to the total area of the member only.
(2 ) The gap structure portion has a cationic electrodeposition coating film on each surface of the steel pipe member and the binding component, and the cationic electrodeposition coating films are in contact with each other in the gap structure portion. The oil supply pipe according to (1 ) .
( 3 ) The oil supply pipe according to (1) or (2) , wherein the binding component is fastened to a steel pipe member by a bolt and nut.
( 4 ) The fastening method of the bundling part to the steel pipe member is mechanical fastening with bolts and nuts. In advance, separately from the bundling part and the steel pipe member, or when the bundling member is nonmetal, The method for producing an oil supply pipe according to the above (1) or (3) , wherein the fastening is performed after applying the coating.

本発明によって、塩害耐食性を安定的に確保しつつ廉価な給油管が提供できるので、産業上の効果は大きい。   According to the present invention, an inexpensive oil supply pipe can be provided while stably securing the salt corrosion resistance, so that the industrial effect is great.

ボルトナットによって給油管本体に結束部品が締結された状態を示す図である。It is a figure which shows the state by which the binding component was fastened by the oil supply pipe main body with the volt | bolt nut. 隙間サンプルを示す図であり、(a)は上面図、(b)(c)はA−A矢視部分断面図であり、(b)は隙間形成前に塗装した例、(c)は隙間形成後に塗装した比較例である。It is a figure which shows a crevice sample, (a) is a top view, (b) (c) is an AA arrow partial sectional view, (b) is an example painted before crevice formation, (c) is a crevice. It is a comparative example painted after formation. 従来の給油管に存在する隙間構造の例を示す図である。It is a figure which shows the example of the clearance gap structure which exists in the conventional oil supply pipe | tube.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

従来の給油管には、図3に例示するような隙間構造部が含まれる。図3は、鋼管部材であるメインパイプとブリーザーチューブを結束して車体に固定するための結束部品(金具部品)が溶接によって取り付けられている様子を示しており、結束部品(金具部品)とメインパイプあるいはブリーザーチューブの溶接部近傍に隙間が形成されている様子を示す。このような隙間の内部に電着塗膜を形成させるのは通常は困難である。隙間開口量が小さすぎるため、電着塗料液が隙間内部に侵入し得ないためである。本発明において、結束部品としては後述のように金属材料と非金属材料のいずれを用いても良い。結束部品として金属材料を用いる場合、結束部品を金具部品ともいう。   The conventional oil supply pipe includes a gap structure as illustrated in FIG. FIG. 3 shows a state in which a bundling part (metal part) for bundling a main pipe, which is a steel pipe member, and a breather tube and fixing it to a vehicle body is attached by welding. A mode that the clearance gap is formed in the welding part vicinity of a pipe or a breather tube is shown. It is usually difficult to form an electrodeposition coating within such a gap. This is because the gap opening amount is too small, so that the electrodeposition coating liquid cannot penetrate into the gap. In the present invention, as the binding component, either a metal material or a non-metal material may be used as will be described later. When a metal material is used as the binding part, the binding part is also referred to as a metal part.

本発明においては、鋼管部材を結束する結束部品(金具部品)について、溶接によって取り付けることをしない。そして図1に例示するように、隙間構造部3において、鋼管部材1と結束部品(金具部品)2それぞれの表面にカチオン電着塗膜を有し、隙間構造部3において当該カチオン電着塗膜同士が接触している構造とすることにより、この問題を解決した。結束部品を非金属材料で構成する場合には、隙間構成部にカチオン電着塗膜を有するのは鋼管部材のみとし、結束部品にはカチオン電着塗膜を形成しなくても良い。鋼管部材1と結束部品(金具部品)2とを結合して隙間構造部を形成する前に、鋼管部材1と結束部品(金具部品)2のそれぞれ又は鋼管部材1のみの表面にカチオン電着塗膜を形成する。特に、鋼管部材1と結束部品(金具部品)2の表面であって隙間構造部3を形成する部分についてカチオン電着塗膜を形成する。その後、鋼管部材1と結束部品(金具部品)2とを結合して隙間構造部3を形成することにより、隙間構造部3内部の結束部品と鋼管部材の両方または鋼管部材のみの全面積に対してカチオン電着塗膜が形成されていることとなる。鋼管部材1と結束部品(金具部品)2両方の表面であって隙間構造部3を形成する部分についてカチオン電着塗膜を形成した後に鋼管部材1と結束部品(金具部品)2とを結合して隙間構造部3を形成することにより、隙間構造部3において、鋼管部材1と結束部品2のそれぞれの表面にカチオン電着塗膜を有し、隙間構造部3においてカチオン電着塗膜同士が接触していることとなる。また、本発明の給油管は、図1に示すように、結束部品(金具部品)2は、ボルトナット4によって締結されていると好ましい。   In the present invention, the binding parts (metal parts) for binding the steel pipe members are not attached by welding. As illustrated in FIG. 1, the gap structure portion 3 has a cation electrodeposition coating on the surfaces of the steel pipe member 1 and the binding component (metal fitting part) 2, and the cation electrodeposition coating on the gap structure portion 3. This problem was solved by adopting a structure in which they are in contact with each other. When the binding part is made of a non-metallic material, only the steel pipe member has the cationic electrodeposition coating film in the gap constituting part, and the cationic electrodeposition coating film need not be formed on the binding part. Before joining the steel pipe member 1 and the binding part (metal part) 2 to form the gap structure, cationic electrodeposition coating is performed on the surface of each of the steel pipe member 1 and the binding part (metal part) 2 or only the steel pipe member 1. A film is formed. In particular, a cationic electrodeposition coating film is formed on the surface of the steel pipe member 1 and the bundling component (metal component) 2 that forms the gap structure portion 3. Thereafter, the steel pipe member 1 and the binding part (metal part) 2 are joined to form the gap structure part 3, so that the total area of both the binding part and the steel pipe member inside the gap structure part 3 or only the steel pipe member is obtained. Thus, a cationic electrodeposition coating film is formed. After forming the cationic electrodeposition coating on the surface of both the steel pipe member 1 and the binding part (metal part) 2 and forming the gap structure part 3, the steel pipe member 1 and the binding part (metal part) 2 are combined. By forming the gap structure portion 3, the gap structure portion 3 has a cationic electrodeposition coating film on each surface of the steel pipe member 1 and the binding component 2, and the cationic electrodeposition coating films are formed in the gap structure portion 3. It will be in contact. Further, in the oil supply pipe of the present invention, as shown in FIG. 1, the binding part (metal part) 2 is preferably fastened by a bolt and nut 4.

また、本発明の給油管の製造方法において、図1に例示するような、ボルトナット4を用いて結束部品(金具部品)2を給油管本体の鋼管部材1に機械的に締結する場合は、予め結束部品(金具部品)2と鋼管部材1を別々にまたは鋼管部材のみに塗装した後に締結する方法を採ることによって隙間構造部3内部の全面積(隙間構造部3内部を形成する全ての部位)にわたってカチオン電着塗膜を確実に形成させることができるので、上記本発明の給油管とすることができる。結束部品が金属材料で構成される場合には結束部品と鋼管部材の両方に別々にカチオン電着塗装を施した後に結束する。結束部材が非金属材料で構成される場合には鋼管部材のみにカチオン電着塗装を施した後に結束しても良い。   Further, in the method of manufacturing the oil supply pipe of the present invention, when the binding part (metal part) 2 is mechanically fastened to the steel pipe member 1 of the oil supply pipe body using a bolt and nut 4 as illustrated in FIG. The entire area inside the gap structure part 3 (all parts forming the inside of the gap structure part 3) by adopting a method of fastening the bundled part (metal fitting part) 2 and the steel pipe member 1 separately or after coating only the steel pipe member in advance. ), The cationic electrodeposition coating film can be reliably formed, and the oil supply pipe of the present invention can be obtained. When the binding component is made of a metal material, the binding component and the steel pipe member are separately subjected to cationic electrodeposition coating and then bonded. When the binding member is made of a non-metallic material, the binding may be performed after the cationic electrodeposition coating is applied only to the steel pipe member.

次に、鋼管部材の素材について説明する。ここで言う鋼管部材とは、内部に燃料ガスが充満するメインパイプとブリーザーチューブのことを意味する。   Next, the material of the steel pipe member will be described. The steel pipe member here means a main pipe and a breather tube filled with fuel gas.

本発明では、SUS436Lより合金元素含有量が少なく、Moは無論、Ni,Cuなどの耐食性向上元素を含有せず、廉価な素材であることに特長を持たせる。具体的には、以下の組成より成るフェライト系ステンレス鋼を素材とする。   In the present invention, the alloy element content is lower than that of SUS436L. Of course, Mo does not contain an element for improving corrosion resistance such as Ni and Cu, and is characterized by being an inexpensive material. Specifically, ferritic stainless steel having the following composition is used as a raw material.

C、N:CおよびNは、溶接熱影響部における粒界腐食の原因となる元素であり、耐食性を劣化させる。また、冷間加工性を劣化させる。このため、C,Nの含有量は可及的低レベルに制限すべきであり、C、Nの上限は0.015%とするのが望ましく、より望ましは0.010%である。なお、下限値は特に規定するものではないが、精錬コストを考慮して、C:0.0010%、N:0.0050%とするのが良い。   C, N: C and N are elements that cause intergranular corrosion in the weld heat affected zone, and deteriorate the corrosion resistance. Moreover, cold workability is deteriorated. For this reason, the C and N contents should be limited to the lowest possible level. The upper limit of C and N is preferably 0.015%, and more preferably 0.010%. In addition, although a lower limit is not prescribed | regulated in particular, considering refinement cost, it is good to set it as C: 0.0010% and N: 0.0050%.

Si:Siは精錬工程における脱酸元素として有用であり、0.01%以上を含有させるが、加工性を劣化させるため多量に含有させるべきではなく上限を0.50%に制限するのがよい。好ましい範囲は0.10〜0.30%である。   Si: Si is useful as a deoxidizing element in the refining process and contains 0.01% or more. However, in order to deteriorate the workability, it should not be contained in a large amount, and the upper limit should be limited to 0.50%. . A preferable range is 0.10 to 0.30%.

Mn:Mnも脱酸元素、S固定元素として0.01%以上を含有させるが、Mnも加工性を劣化させるため多量に含有させるべきではなく上限を0.50%に制限するのがよい。好ましい範囲は、0.10〜0.30%である。   Mn: Mn also contains 0.01% or more as a deoxidizing element and S-fixing element, but Mn should not be contained in a large amount in order to deteriorate workability, and the upper limit should be limited to 0.50%. A preferable range is 0.10 to 0.30%.

P:Pは加工性を著しく劣化させる元素である。このため、Pの含有量は可及的低レベルが望ましい。許容可能な含有量の上限を0.050%とする。望ましいPの上限値は0.030%である。   P: P is an element that significantly deteriorates workability. For this reason, the P content is desirably as low as possible. The upper limit of the allowable content is 0.050%. A desirable upper limit of P is 0.030%.

S:Sは耐食性を劣化させる元素であるため、Sの含有量は可及的低レベルが望ましい。許容可能な含有量の上限を0.010%とする。望ましいS含有量の上限値は0.0050%である。   S: Since S is an element that degrades corrosion resistance, the content of S is preferably as low as possible. The upper limit of the allowable content is 0.010%. A desirable upper limit of the S content is 0.0050%.

Cr:Crは耐食性を確保する基本的元素であり適量の含有が必須であり、Cr含有量の下限を13.0%とする必要がある。一方、加工性を劣化させる元素であることと合金コスト抑制の観点から上限含有量を18.0%に設定するのがよい。Cr含有量の好ましい範囲は15.0%〜17.5%であり、より好ましくは16.5%〜17.5%である。   Cr: Cr is a basic element that ensures corrosion resistance, and an appropriate amount is essential, and the lower limit of the Cr content needs to be 13.0%. On the other hand, the upper limit content is preferably set to 18.0% from the viewpoints of being an element that deteriorates workability and suppressing alloy costs. A preferable range of the Cr content is 15.0% to 17.5%, and more preferably 16.5% to 17.5%.

Al:Alは脱酸元素として有用であり、脱酸に必要な最小量として0.010%を含有させるが、加工性を劣化させるため多量に含有させるべきではなく上限を0.100%に制限するのがよい。好ましくは、含有量の上限を0.070%とするのが良い。   Al: Al is useful as a deoxidizing element and contains 0.010% as the minimum amount necessary for deoxidation. However, in order to deteriorate the workability, the upper limit should be limited to 0.100%. It is good to do. Preferably, the upper limit of the content is 0.070%.

本発明においては、TiとNbの1種又は2種を含有する。   In this invention, 1 type or 2 types of Ti and Nb are contained.

Ti:TiはC,Nを炭窒化物として固定して粒界腐食を抑制する作用を有する。このため0.03%を下限として含有させるが、過剰に含有させても効果は飽和し加工性を損なうため、含有量の上限を0.30%とする。なお、Tiの適正含有量としてC,N合計含有量の5倍量以上かつ30倍量以下が望ましい。Tiは、CとNの合計量の10倍〜25倍の範囲で含有させるのが好ましい。   Ti: Ti has the action of fixing C and N as carbonitrides and suppressing intergranular corrosion. For this reason, 0.03% is contained as the lower limit, but even if it is contained excessively, the effect is saturated and the workability is impaired, so the upper limit of the content is made 0.30%. In addition, the proper content of Ti is preferably 5 times or more and 30 times or less the total content of C and N. Ti is preferably contained in the range of 10 to 25 times the total amount of C and N.

Nb:NbはTiと同様に、NbはC,Nを炭窒化物として固定して粒界腐食を抑制する作用を有するので0.03%を下限として含有させるが、過剰に含有させると加工性を損なうため含有量の上限を0.30%とする。なお、Nbの適正含有量としてC,N合計含有量の5倍量以上かつ30倍量以下がよい。Nbは、CとNの合計量の10倍〜20倍の範囲で含有させるのが好ましい。   Nb: Nb, like Ti, Nb fixes C and N as carbonitrides and suppresses intergranular corrosion, so 0.03% is included as the lower limit. Therefore, the upper limit of the content is made 0.30%. The appropriate content of Nb is preferably 5 times or more and 30 times or less the total content of C and N. Nb is preferably contained in the range of 10 to 20 times the total amount of C and N.

B:Bは2次加工脆化や熱間加工性劣化を防止するのに有用な元素であり、耐食性には影響を与えない元素である。このため必要に応じて0.0002%を下限として含有させるが、0.0050%を超えるとかえって熱間加工性が劣化するので、上限を0.0050%とするのが良い。好ましくは、B含有量の上限を0.0020%とするのが良い。   B: B is an element useful for preventing secondary work embrittlement and hot workability deterioration, and is an element that does not affect corrosion resistance. Therefore, if necessary, 0.0002% is contained as the lower limit. However, if it exceeds 0.0050%, hot workability deteriorates, so the upper limit is preferably made 0.0050%. Preferably, the upper limit of the B content is 0.0020%.

Sn:Snは微量の含有で耐食性を向上させるのに有用な元素であり、必要に応じて廉価性を損なわない範囲で含有させる。含有量0.01%未満では耐食性向上効果は発現されず、0.50%を超えるとコスト増が顕在化すると共に加工性も低下するので、含有量0.01〜0.50%を適正範囲とする。好ましくは0.05%から0.40%とするのが良い。   Sn: Sn is an element useful for improving the corrosion resistance with a small amount of inclusion, and is contained in a range that does not impair the inexpensiveness as required. If the content is less than 0.01%, the effect of improving the corrosion resistance is not expressed. If the content exceeds 0.50%, the increase in cost becomes obvious and the workability also decreases. And Preferably it is 0.05 to 0.40%.

Ni、Cu、Mo、V、Co:これら元素は耐銹性を向上させる元素であり、本発明においては含有しない。ただし、必要に応じて廉価性を損なわない範囲で含有させることができる。Snとの相乗効果によりその効果がより顕著になる。Ni、Cu、Moは、含有される場合、それぞれその効果が発現する0.05%以上とする。Ni、Cuの好ましい範囲は0.1〜0.4%、Moの好ましい範囲は0.1〜0.3%である。V、Coは、含有させる場合、それぞれその効果が発現する0.01%以上とする。但し、過度な添加は合金コストの上昇や製造性の低下に繋がるため、上限を0.5%とする。   Ni, Cu, Mo, V, Co: These elements are elements that improve weather resistance and are not contained in the present invention. However, it can be contained in a range that does not impair the inexpensiveness as required. The effect becomes more remarkable due to the synergistic effect with Sn. When Ni, Cu, and Mo are contained, the effect is 0.05% or more. A preferable range of Ni and Cu is 0.1 to 0.4%, and a preferable range of Mo is 0.1 to 0.3%. When V and Co are contained, they are each made 0.01% or more at which the effect is manifested. However, excessive addition leads to an increase in alloy costs and a decrease in manufacturability, so the upper limit is made 0.5%.

Mg:Mgは溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングやロ−ピングなどの粗大凝固組織に起因した表面欠陥を防止できる他、加工性の向上をもたらすため、廉価性を損なわない範囲で、必要に応じて含有させることができる。含有する場合は、これら効果を発現する0.0001%とする。但し、0.005%を超えると製造性が劣化するため、上限を0.005%とする。好ましくは、製造性を考慮して0.0003〜0.002%とする。   Mg: Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizer, and also acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By reducing the solidification structure, surface defects caused by coarse solidification structures such as product ridging and roping can be prevented, and workability can be improved. Can be contained. When it contains, it is made 0.0001% which expresses these effects. However, if it exceeds 0.005%, manufacturability deteriorates, so the upper limit is made 0.005%. Preferably, considering the manufacturability, the content is made 0.0003 to 0.002%.

Ca:Caは熱間加工性や鋼の清浄度を向上させる元素であり、必要に応じて廉価性を損なわない範囲で含有させることができる。含有する場合は、これら効果を発現する0.0003%以上とする。しかし、過度の添加は、製造性の低下やCaSなどの水溶性介在物による耐銹性の低下に繋がるため、上限を0.005%とする。好ましくは、製造性や耐銹性を考慮して0.0003〜0.0015%とする。   Ca: Ca is an element that improves the hot workability and the cleanliness of the steel, and can be contained in a range that does not impair the inexpensiveness as required. When it contains, it is made into 0.0003% or more which expresses these effects. However, excessive addition leads to a decrease in manufacturability and a decrease in weather resistance due to water-soluble inclusions such as CaS, so the upper limit is made 0.005%. Preferably, considering the manufacturability and weather resistance, the content is made 0.0003 to 0.0015%.

Zr、La、Y、Hf、REM:これら元素は熱間加工性や鋼の清浄度を向上させ、耐酸化性や熱間加工性を著しく向上させる効果を持つため、必要に応じて廉価性を損なわない範囲で含有させることができる。含有させる場合は、それぞれその効果が発現する0.001%以上とする。しかし、過度の添加は、合金コストの上昇と製造性の低下に繋がるため、上限をそれぞれ0.1%とする。好ましくは、効果と経済性および製造性を考慮して、1種または2種以上で0.001〜0.05%とする。   Zr, La, Y, Hf, REM: These elements have the effect of improving hot workability and cleanliness of steel, and significantly improving oxidation resistance and hot workability. It can contain in the range which does not impair. When it contains, it makes it 0.001% or more in which the effect expresses, respectively. However, excessive addition leads to an increase in alloy cost and a decrease in manufacturability, so the upper limit is made 0.1%. Preferably, considering the effect, economic efficiency, and manufacturability, one or two or more is 0.001 to 0.05%.

残部Feおよび不可避的不純物:上記に記載の元素以外は、Feと不可避的不純物からなる。   Remaining Fe and inevitable impurities: Fe and inevitable impurities other than the elements described above.

前記組成より成るステンレス鋼は、転炉や電気炉などで溶製、精錬された鋼片を熱間圧延、酸洗、冷延、焼鈍、仕上酸洗等を施す通常のステンレス鋼板の製造方法によって鋼板として製造され、さらに、この鋼板を素材として電気抵抗溶接、TIG溶接、レーザー溶接などの通常のステンレス鋼管の製造方法によって溶接管として製造される。   Stainless steel having the above composition is manufactured by a normal stainless steel sheet manufacturing method in which a steel piece melted and refined in a converter or electric furnace is subjected to hot rolling, pickling, cold rolling, annealing, finish pickling, and the like. It is manufactured as a steel plate, and is further manufactured as a welded pipe by a normal stainless steel pipe manufacturing method such as electric resistance welding, TIG welding, or laser welding using this steel plate as a raw material.

このステンレス鋼管は、曲げ加工、拡管加工、絞り加工といった冷間での塑性加工やスポット溶接、プロジェクション溶接、MIG溶接、TIG溶接といった溶接やろう付け、あるいはボルトナットによる種々の金具の取り付けなどの通常の成型、組立工程を経て給油管に成型される。   This stainless steel pipe is usually used for cold plastic working such as bending, pipe expansion, drawing, spot welding, projection welding, MIG welding, TIG welding, brazing, or mounting various metal fittings with bolts and nuts. After being molded and assembled, it is molded into an oil supply pipe.

結束部品としては、炭素鋼、低合金鋼、ステンレス鋼などの鉄系金属材料やアルミ、アルミ合金、チタン、チタン合金、銅合金、マグネシウム合金などの非鉄金属材料からなる金属材料で構成した金具のほか、金具以外の非金属材料で構成した結束部品として、エポキシ、ポリカーボネートなどの樹脂あるいはガラス繊維、炭素繊維などで強化したFRPを用いた成型品等を使用してかまわない。   Bundling parts include metal parts made of ferrous metal materials such as carbon steel, low alloy steel, and stainless steel, and nonferrous metal materials such as aluminum, aluminum alloy, titanium, titanium alloy, copper alloy, and magnesium alloy. In addition, a molded part using FRP reinforced with resin such as epoxy and polycarbonate, glass fiber, carbon fiber, or the like may be used as a binding part composed of a non-metallic material other than the metal fitting.

結束部品に金具を使用する場合、素材としては、鋼管部材と同一素材であることが望ましい。金具が腐食されても給油管内部の燃料が漏れることはないと考えられがちであるが、金具部品の腐食は隙間内部の環境を過酷化させ、その結果として鋼管部材側の隙間腐食を誘起・加速させることになるからである。   When using metal fittings for the binding parts, it is desirable that the material is the same material as the steel pipe member. It is often thought that the fuel inside the oil supply pipe does not leak even if the metal fitting is corroded, but the corrosion of the metal fitting parts makes the environment inside the gap severe, and as a result induces crevice corrosion on the steel pipe member side. This is because it will accelerate.

実施例に基づいて、本発明をより詳細に説明する。   The invention is explained in more detail on the basis of examples.

表1に示す組成のフェライト系ステンレス鋼を150kg真空溶解炉で溶製し、50kg鋼塊に鋳造した後、熱延−熱延板焼鈍−酸洗−冷延−焼鈍−仕上酸洗の工程を通して板厚0.8mmの鋼板を作製した。   Ferritic stainless steel having the composition shown in Table 1 is melted in a 150 kg vacuum melting furnace, cast into a 50 kg steel ingot, and then subjected to hot rolling, hot rolled sheet annealing, pickling, cold rolling, annealing, and finish pickling. A steel plate having a thickness of 0.8 mm was produced.

Figure 0006084769
Figure 0006084769
Figure 0006084769
Figure 0006084769

<隙間サンプルの作製>
前記鋼板素材より、t0.8×70×70サイズの大板およびt0.8×40×40サイズの小板を採取した(大板は鋼管部材、小板は結束部品(金具部品)を模擬したものである)。これら2枚の中央部にφ5mmのボルトナット締結用の穴を開け、大板と小板のそれぞれについてカチオン電着塗装を施した。塗料は、日本ペイント(株)製PN−110を用い、浴温28℃、塗装電圧170Vで通電し、塗膜厚みが一般部において20〜25μmになるように条件選定した。焼付条件は、170℃×20分とした。その後、φ4mmのポリカーボネート製のボルト14とナット15を用いて大板11と小板12を締結し、図2(a)(b)に示すような隙間サンプルを作製した(本発明例20〜55、比較例102、103)。大板11と小板12との隙間構造部3は両者の塗膜13で接している。また、比較例101については、大板11と小板12に電着塗装を行う前にボルト14とナット15を用いて2枚を締結し、その後カチオン電着塗装を施した。その結果、図2(a)(c)に示すように、隙間構造部3にわずかな隙間が形成され、隙間構造部3については塗膜を有しない大板11と小板12が対面することとなった。なお、図2(c)において、隙間構造部3については違いを明確にするために実際よりも大きな隙間を描いている。
<Preparation of gap sample>
From the steel plate material, a large plate of t0.8 × 70 × 70 size and a small plate of t0.8 × 40 × 40 size were collected (a large plate was a steel pipe member, and a small plate was a binding component (metal fitting)). ). A hole for fastening a bolt and nut with a diameter of 5 mm was formed in the center of these two sheets, and cationic electrodeposition was applied to each of the large plate and the small plate. The paint used was PN-110 manufactured by Nippon Paint Co., Ltd., energized at a bath temperature of 28 ° C. and a coating voltage of 170 V, and the conditions were selected so that the coating thickness would be 20 to 25 μm in the general part. The baking conditions were 170 ° C. × 20 minutes. Thereafter, the large plate 11 and the small plate 12 were fastened using a bolt 14 and a nut 15 made of polycarbonate having a diameter of 4 mm, and gap samples as shown in FIGS. 2A and 2B were produced (Examples 20 to 55 of the present invention). Comparative Examples 102 and 103). The gap structure portion 3 between the large plate 11 and the small plate 12 is in contact with both coating films 13. Moreover, about the comparative example 101, before performing the electrodeposition coating to the large board 11 and the small board 12, two sheets were fastened using the volt | bolt 14 and the nut 15, and the cationic electrodeposition coating was performed after that. As a result, as shown in FIGS. 2A and 2C, a slight gap is formed in the gap structure portion 3, and the large plate 11 and the small plate 12 that do not have a coating film face each other with respect to the gap structure portion 3. It became. In FIG. 2C, a gap larger than the actual gap is drawn for the gap structure portion 3 in order to clarify the difference.

一部の隙間サンプルの作成においては、大板に表1に示す組成E01のフェライト系ステンレス鋼を用い、小板を非金属材料(ポリカーボネート樹脂)で構成した。本発明例No.56は、大板のみカチオン電着塗装を施し、その後、φ4mmのポリカーボネート製のボルトとナットを用いて大板と小板を締結し、隙間サンプルを作成した。比較例No.104については、カチオン電着塗装を施す前に、ボルトとナットを用いて大板と子板の2枚を締結し、その後カチオン電着塗装を施した。   In preparing some of the gap samples, ferritic stainless steel having the composition E01 shown in Table 1 was used for the large plate, and the small plate was made of a non-metallic material (polycarbonate resin). Invention Example No. In No. 56, only the large plate was subjected to cationic electrodeposition coating, and thereafter, the large plate and the small plate were fastened using a φ4 mm polycarbonate bolt and nut to prepare a gap sample. Comparative Example No. For 104, before applying the cationic electrodeposition coating, two plates, a large plate and a child plate, were fastened using bolts and nuts, and then the cationic electrodeposition coating was applied.

これらの隙間サンプルについて、大板の裏端面をシールした後、塩害環境を模擬したJASO−M609−91規定のサイクル腐食試験(塩水噴霧:5%NaCl噴霧35℃×2Hr、乾燥:相対湿度20%、60℃×4Hr、湿潤:相対湿度90%、50℃×2Hrの繰り返し)に供した。試験期間は300サイクルとした。300サイクル経過後にボルトナットを外して塗膜剥離剤に浸漬して塗膜を剥離した後、隙間内部における腐食深さを顕微鏡焦点深度法により測定した。10点の測定を行い、その最大値をサンプルの代表値とした。最大腐食深さ400μm以下を良好とした。   For these gap samples, after sealing the back end face of the large plate, a cycle corrosion test stipulated by JASO-M609-91 simulating a salt damage environment (salt water spray: 5% NaCl spray 35 ° C. × 2 Hr, dry: relative humidity 20% , 60 ° C. × 4 Hr, wet: relative humidity 90%, 50 ° C. × 2 Hr repeated). The test period was 300 cycles. After 300 cycles, the bolts and nuts were removed and immersed in a coating film release agent to peel the coating film, and then the corrosion depth inside the gap was measured by a microscope focal depth method. Ten points were measured and the maximum value was taken as the representative value of the sample. The maximum corrosion depth of 400 μm or less was considered good.

サンプルの履歴、評価方法、評価結果を表2に示す。   Table 2 shows the sample history, evaluation method, and evaluation results.

Figure 0006084769
Figure 0006084769

本発明No.20〜55は隙間内部の全面積にわたって確実に隙間外の一般部と同等の塗膜が確実に形成されているため、また本発明例No.56は小板にポリカーボネート樹脂を用いるとともに隙間の大板側に確実に隙間外の一般部と同等の塗膜が確実に形成されているため、極めて優れた耐食性が得られた。   This invention No. In Nos. 20 to 55, a coating film equivalent to the general portion outside the gap is reliably formed over the entire area inside the gap. In No. 56, polycarbonate resin was used for the small plate, and a coating film equivalent to the general portion outside the gap was reliably formed on the large plate side of the gap, so extremely excellent corrosion resistance was obtained.

比較例No.101及び104については、素材は本発明の条件を満たすが、隙間部を形成した後に電着塗装を行ったため、満足すべき耐隙間腐食性が得られていない。比較例No.102は現用素材であるX01(SUS436L)を用いた場合の試験結果である。SUS436Lを用いているので耐隙間腐食性は良好であったが、素材が高価なためにコスト低減効果を得ることができなかった。比較例No.103は素材が本発明範囲外の11Cr鋼の結果である。隙間部形成前に電着塗装を行って塗膜を形成させても、素材の耐食性が不十分であり、塗膜下腐食が進行してやがて激しい隙間腐食に至る。本発明例No.24(素材E05)と比較例No.103を対比すると、隙間内に塗膜が形成された場合、Cr量11%から13%の間で耐食性が急激に遷移することがわかる。   Comparative Example No. For 101 and 104, the material satisfies the conditions of the present invention, but satisfactory gap corrosion resistance was not obtained because electrodeposition coating was performed after the gap was formed. Comparative Example No. Reference numeral 102 denotes a test result when the current material X01 (SUS436L) is used. Since SUS436L was used, the crevice corrosion resistance was good, but the cost reduction effect could not be obtained because the material was expensive. Comparative Example No. 103 is a result of 11Cr steel whose material is outside the scope of the present invention. Even if electrodeposition coating is performed before forming the gap portion to form a coating film, the corrosion resistance of the material is insufficient, and corrosion under the coating film progresses, leading to severe crevice corrosion. Invention Example No. 24 (material E05) and Comparative Example No. Comparing 103, it can be seen that when a coating film is formed in the gap, the corrosion resistance rapidly changes between 11% and 13% of Cr.

1 鋼管部材
1a メインパイプ
1b ブリーザーチューブ
2 結束部品
3 隙間構造部
4 ボルトナット
5 ボルト穴
6 ロウ付け
11 大板
12 小板
13 塗膜
14 ボルト
15 ナット
DESCRIPTION OF SYMBOLS 1 Steel pipe member 1a Main pipe 1b Breather tube 2 Bundling parts 3 Gap structure part 4 Bolt nut 5 Bolt hole 6 Brazing 11 Large plate 12 Small plate 13 Coating film 14 Bolt 15 Nut

Claims (4)

質量%で、C:≦0.015%、Si:0.01〜0.50%、Mn:0.01〜0.50%、P≦0.050%、S:≦0.010%、N:≦0.015%、Al:0.010〜0.100%、Cr:13.0〜18.0%、を含有し、更に、Ti:0.03〜0.30%およびNb:0.03〜0.30%の1種または2種を含有し、残部がFeおよび不可避的不純物より成るフェライト系ステンレス鋼を素材とした鋼管から成型した鋼管部材と、前記鋼管部材に非溶接手段で取り付けられた結束部品からなる給油管であって、前記鋼管部材に取り付けられる結束部品と鋼管部材との間において、塩害環境に曝される表面に隙間構造部を有し、前記隙間構造部内部の結束部品と鋼管部材の両方、または結束部材が非金属の場合は鋼管部材のみ、の全面積に対してカチオン電着塗膜が形成されていることを特徴とする給油管。   In mass%, C: ≦ 0.015%, Si: 0.01 to 0.50%, Mn: 0.01 to 0.50%, P ≦ 0.050%, S: ≦ 0.010%, N : ≦ 0.015%, Al: 0.010 to 0.100%, Cr: 13.0 to 18.0%, Ti: 0.03 to 0.30%, and Nb: 0.0. A steel pipe member molded from a steel pipe made of ferritic stainless steel containing 03 or 0.30% of one or two types, the balance being Fe and inevitable impurities, and attached to the steel pipe member by non-welding means An oil supply pipe composed of a bundled part having a gap structure part on a surface exposed to a salt damage environment between the bundle part attached to the steel pipe member and the steel pipe member, and the bundle inside the gap structure part Both parts and steel pipe members, or steel pipe members if the bundling member is non-metallic See, filler tube, characterized in that the cationic electrodeposition coating film is formed with respect to the total area of. 前記隙間構造部において、前記鋼管部材と結束部品のそれぞれの表面にカチオン電着塗膜を有し、隙間構造部において当該カチオン電着塗膜同士が接触していることを特徴とする請求項1に記載の給油管。 In the gap structure, according to claim 1, characterized in that a cationic electrodeposition coating film on each surface of the binding component and the steel pipe member, is the cationic electrodeposition coating together in the gap structure is in contact Refueling pipe as described in 4. 前記結束部品は、ボルトナットによって鋼管部材に締結されていることを特徴とする請求項1又は請求項2に記載の給油管。 The oil supply pipe according to claim 1 or 2 , wherein the binding part is fastened to the steel pipe member by a bolt and a nut. 結束部品の鋼管部材への取り付け方法がボルトナットによる機械的締結であり、予め結束部品と鋼管部材に対して別々に、または結束部材が非金属の場合は鋼管部材のみに、カチオン電着塗装を施した後に締結することを特徴とする請求項1又は請求項3に記載の給油管の製造方法。 The method of attaching the bundled part to the steel pipe member is mechanical fastening with bolts and nuts. Cationic electrodeposition coating is applied separately to the bundled part and the steel pipe member in advance, or only to the steel pipe member if the binding member is non-metallic. The method for manufacturing an oil supply pipe according to claim 1 , wherein the oil supply pipe is fastened after being applied.
JP2011277173A 2010-12-21 2011-12-19 Oil supply pipe and manufacturing method thereof Active JP6084769B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011277173A JP6084769B2 (en) 2010-12-21 2011-12-19 Oil supply pipe and manufacturing method thereof
PCT/JP2011/079681 WO2012086706A1 (en) 2010-12-21 2011-12-21 Oil feed pipe and method for producing same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2010284289 2010-12-21
JP2010284289 2010-12-21
JP2011053149 2011-03-10
JP2011053149 2011-03-10
JP2011277173A JP6084769B2 (en) 2010-12-21 2011-12-19 Oil supply pipe and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012197071A JP2012197071A (en) 2012-10-18
JP6084769B2 true JP6084769B2 (en) 2017-02-22

Family

ID=46313974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011277173A Active JP6084769B2 (en) 2010-12-21 2011-12-19 Oil supply pipe and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP6084769B2 (en)
WO (1) WO2012086706A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504763B (en) * 2012-10-30 2015-10-21 Nippon Steel & Sumikin Sst High-heat-resistant fat iron-based stainless steel plate
CN105764733B (en) * 2013-09-13 2018-09-07 新日铁住金不锈钢株式会社 Member for automobile and fuel feed pump cheap and with good salt tolerance
WO2016068291A1 (en) * 2014-10-31 2016-05-06 新日鐵住金ステンレス株式会社 Ferrite-based stainless steel with high resistance to corrosiveness caused by exhaust gas and condensation and high brazing properties and method for manufacturing same
JP6159775B2 (en) 2014-10-31 2017-07-05 新日鐵住金ステンレス株式会社 Ferritic stainless steel with excellent resistance to exhaust gas condensate corrosion and brazing, and method for producing the same
MX2017010253A (en) * 2015-02-10 2017-11-28 Nippon Steel & Sumikin Sst Inexpensive automobile component and oil feed pipe having excellent salt corrosion resistance.
JP6541992B2 (en) * 2015-03-12 2019-07-10 日鉄ステンレス株式会社 Automotive parts and automotive fueling pipes excellent in puncture resistance utilizing painting and sacrificial corrosion protection effect
JP6598478B2 (en) * 2015-03-12 2019-10-30 日鉄ステンレス株式会社 Oil supply pipe for automobiles with excellent salt damage resistance and reduced external appearance deterioration
EP3461670A4 (en) * 2016-06-24 2019-07-31 Unipres Corporation Structure for installing tubular member to be connected to fuel tank on vehicle, and piping structure
WO2017221450A1 (en) * 2016-06-24 2017-12-28 ユニプレス株式会社 Filler tube structure
JP7186601B2 (en) * 2018-12-21 2022-12-09 日鉄ステンレス株式会社 Cr-based stainless steel used as a metal material for high-pressure hydrogen gas equipment
JP2020152992A (en) * 2019-03-22 2020-09-24 日鉄ステンレス株式会社 Stainless steel plate, die quench member, and method for manufacturing die quench member

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5882639A (en) * 1981-11-06 1983-05-18 Mitsubishi Motors Corp Manufacturing method of workpiece
JPS60110898A (en) * 1983-11-21 1985-06-17 Fuji Heavy Ind Ltd Rust preventive painting method of automotive body and joining member
JP4014907B2 (en) * 2002-03-27 2007-11-28 日新製鋼株式会社 Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance
JP3941762B2 (en) * 2002-09-06 2007-07-04 Jfeスチール株式会社 Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts
JP4340478B2 (en) * 2003-06-09 2009-10-07 ユニプレス株式会社 Filler pipe
JP2007216935A (en) * 2006-02-20 2007-08-30 Asteer Co Ltd Fuel feed pipe

Also Published As

Publication number Publication date
WO2012086706A1 (en) 2012-06-28
JP2012197071A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP6084769B2 (en) Oil supply pipe and manufacturing method thereof
WO2011152537A9 (en) Oil feed pipe and process for producing same
JP6363084B2 (en) Low-priced automobile member manufacturing method with excellent salt corrosion resistance, automobile member, oil pipe manufacturing method, and oil pipe
JP4014907B2 (en) Stainless steel fuel tank and fuel pipe made of stainless steel with excellent corrosion resistance
JP6270821B2 (en) Ferritic stainless steel plate with excellent brazing, heat exchanger, ferritic stainless steel plate for heat exchanger, ferritic stainless steel, ferritic stainless steel for fuel supply system members, and fuel supply system parts
WO2007129703A1 (en) Stainless steel excellent in corrosion resistance, ferritic stainless steel excellent in crevice corrosion resistance and formability, and ferritic stainless steel excellent in crevice corrosion resistance
KR101240743B1 (en) Welded joint having excellent corrosion resistance and crude oil tank
KR101314022B1 (en) Welded joint having excellent corrosion resistance and crude oil tank
JP6412596B2 (en) Inexpensive automotive parts and oil pipes with excellent salt corrosion resistance
JP6782621B2 (en) Automotive parts
JP6598478B2 (en) Oil supply pipe for automobiles with excellent salt damage resistance and reduced external appearance deterioration
JP6260755B1 (en) Steel for ship ballast tank and ship
JP4578280B2 (en) Austenitic stainless steel for automotive refueling components
JP2004277767A (en) Austenitic stainless steel for automotive oil filler pipe and fuel tank, and automotive oil filler pipe and fuel tank
JP3941762B2 (en) Ferritic stainless steel for automobile fuel tank and fuel tank peripheral parts
JP2004330993A (en) Automobile fuel tank and fuel supply pipe made of stainless steel excellent in corrosion resistance
JP6541992B2 (en) Automotive parts and automotive fueling pipes excellent in puncture resistance utilizing painting and sacrificial corrosion protection effect
JP2010173525A (en) Plated steel sheet for fuel tank of motorcycle, and fuel tank

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140807

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170126

R150 Certificate of patent or registration of utility model

Ref document number: 6084769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250