JPH057457B2 - - Google Patents

Info

Publication number
JPH057457B2
JPH057457B2 JP59003548A JP354884A JPH057457B2 JP H057457 B2 JPH057457 B2 JP H057457B2 JP 59003548 A JP59003548 A JP 59003548A JP 354884 A JP354884 A JP 354884A JP H057457 B2 JPH057457 B2 JP H057457B2
Authority
JP
Japan
Prior art keywords
less
equation
value shown
ppm
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59003548A
Other languages
Japanese (ja)
Other versions
JPS60149748A (en
Inventor
Hidemaro Takeuchi
Harumi Tsuboi
Masanori Ueda
Shigehiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP354884A priority Critical patent/JPS60149748A/en
Publication of JPS60149748A publication Critical patent/JPS60149748A/en
Publication of JPH057457B2 publication Critical patent/JPH057457B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は熱間圧延において加工割れ疵の発生の
ないオーステナイト系ステンレス鋼の製造方法に
関するものである。 (b) 従来技術 ステンレス鋼は高価なNi、Cr、Mo、Cu等を
多量に含有しているため歩留向上は製造コスト低
減の最重要項目である。したがつて連続鋳造化お
よび製造工程での疵防止による歩留向上が望まれ
る。しかし耐食性、耐酸化性および強度の点から
Ni、Cr、Mo、Cu、N等を多量に含有したステ
ンレス鋼は熱間での加工性が劣り、熱間加工中に
デンドライト粒界で割れを起し、製造が不可能と
なり、連続鋳造化されていない高合金ステンレス
鋼が多い、また連続鋳造化されていてもヘゲ状の
疵を生じて歩留の低下をきたしていた。 さきに、連続鋳造鋳片の熱間加工性の向上のた
めには鋳造時のデンドライトの粒界延性をより一
層向上させる必要があり、(1)式で示されるPVが
30以下でかつ(2)式で示されるδFが−10以上で熱
間加工性が良好となることを明らかにしたが(特
願昭58−58200号)、δFが−10未満での熱間加工
性の改善方策は不明であつた。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8〔Ni+0.5(Mn+Cu) +30(C+N)〕−19.8 …(2) (c) 発明の目的 本発明は熱間加工性を改善してステンレス鋼の
製造における歩留を向上させることを目的とす
る。 (d) 発明の構成 S量、O量およびCa、Ceの添加量を変化させ
た幅広い成分系の合金を、真空溶解した鋳片およ
び電気炉−AOD−連続鋳造した鋳片について熱
間加工性の評価を行つた。第1図にその結果を示
すように、熱間加工性はδFとPVによつて整理で
きる。 また熱間加工性の良好な領域は、(3)式により整
理できることを見出した。 PV≦3δF+45 …(3) なお第1図の熱間加工性良好領域は高温引張試
験における950〜1200℃での最小絞り値が60%以
上でかつ熱間衝撃平均評点が1以下を示し、熱間
加工性不良領域は高温引張試験における950〜
1200℃での最小絞り値が60%未満、または熱間衝
撃平均評点が1以上を示す。第1図において〇印
は最小絞り値60%以上、熱間衝撃平均評点1以下
を表わし、●印は最小絞り値60%未満、熱間衝撃
平均評点1未満を表わす。 δFは鋳造組織中のδフエライト指標を表わし、
PVはS、Oの無害化の指標を示すもので、(3)式
の関係はδフエライト量が少ないときはS、Oを
より低減するかまたはCa、Ceをより添加しなけ
ればならないことを意味する。δフエライトはS
やOのγ粒界への偏析を軽減する。したがつて
δFが少ない場合SやOをより低くしγ粒界を清
浄にしないと熱間加工によるγ粒界の割れが発生
する。またCa、CeはOやSを固定し、MnSの生
成を防止して熱間加工性を大幅に向上する。すな
わち少ないδFでもPVを低減することにより熱間
加工性は改善される。本発明ではδF値が1.5未満
の領域にて(3)式を満足するように成分調整され
る。PV値を低減するために、本発明ではCa、Ce
を添加せずS含有量を0.001%以下に、O含有量
を0.003%以下にそれぞれ低減するか、またはCa
およびCeの1種または2種を合計で0.03%以下添
加し、かつS含有量を0.003%以下に、O含有量
を0.004%以下にそれぞれ低減する。SおよびO
は熱間加工性に有害であるため低減し、Caおよ
びCeは熱間加工性に有害なSおよびOを固定し
て熱間加工性を改善する効果があるが、過剰の添
加は熱間加工性および耐食性を劣化させるからで
ある。 以下その他の各成分の限定理由について記す。 C:Cはステンレス鋼の耐食性には有害である
が、高強度を得るためには有効である。従つて
0.15%までとした。 Si:Siはステンレス鋼の耐食性および耐酸化性を
増す。しかし5%を超えるSiの含有は、効果が
飽和すると共に熱間加工性を劣化させる。 Mn:MnはNの固溶度を増し、鋼のオーステナ
イト安定化にも有効でありNiの代替としても
使用されるが、耐食性を劣化させるので上限を
12%とした。 Cr:Crはステンレス鋼の基本成分で15%以上が
特に効果が大きく、多い程耐食性、耐酸化性を
増すが35%をこえると高価となる。 Ni:NiはCrと共にステンレス鋼、耐熱鋼の基本
成分である。2%未満ではオーステナイト組織
を維持し、最低限度の必要な性質を得ることも
困難であり、多い程効果的であるが、40%を超
えるときわめて高価となる。 Mo:Moはステンレス鋼の耐食性、強度を増し、
用途によつて5.5%以下で選択添加する。これ
以上では効果が飽和すると共に、熱間加工性を
劣化させる。 Cu:Cuはステンレス鋼の耐食性を増し、用途に
よつて5%以下で選択添加する。5%を超える
と熱間加工性を劣化させる。 N:Nはステンレス鋼の熱間加工性、強度および
耐食性向上に効果があり、用途に応じて0.01〜
0.35%の範囲で添加する。 Al:Alは強力な脱酸剤として0.1%以下で添加す
る。Alは低S鋼中でCa、又はCeと共存してO
を固定し、SiやMnの酸化物を減少させて熱間
加工性を大幅に改善する。 Ti、Nb、Zr、Ta:Ti、Nb、ZrおよびTaはC
と優先的に結合して、Cの耐食性におよぼす悪
影響を減少させる。これらの成分は1種でもま
た2種以上の組合せでも使用出来、合計含有量
としてC%の4倍以上が必要である。ただし多
量に添加すると鋼の清浄性、加工性を悪化させ
るから上限を1.5%に抑えるできである。 (e) 実施例 表−1に電気炉−AOD法で溶製し、100〜150
mm厚さ×1000mm幅のスラブおよび150mm角のビレ
ツトに連続鋳造した本発明例および比較例の鋼成
分を示す。さらに、前記鋳片から熱間圧延により
3.3〜5.0mm厚さの板材および5.5〜10mm丸の線材を
得、熱間加工性の評価を表−2に示す。本発明
法、すなわち、PV≦3δF+45を満足する鋼の連
続鋳造鋳片は熱間加工割れ、ヘゲ疵の発生もない
のに比較し、比較鋼、すなわち、PV≦3δF+45
を満足していない鋼の連続鋳造鋳片は熱間加工時
の割れが多発し製造不可能であるかあるいはホツ
トコイルの両サイドに割れが多発し、次工程での
サイド切捨増加およびヘゲ疵発生による著しい歩
留低下を来たした。
(a) Industrial Application Field The present invention relates to a method for manufacturing austenitic stainless steel that does not generate work cracks during hot rolling. (b) Prior art Since stainless steel contains large amounts of expensive Ni, Cr, Mo, Cu, etc., improving yield is the most important item for reducing manufacturing costs. Therefore, it is desired to improve the yield through continuous casting and prevention of defects in the manufacturing process. However, in terms of corrosion resistance, oxidation resistance and strength
Stainless steel containing large amounts of Ni, Cr, Mo, Cu, N, etc. has poor hot workability and cracks occur at dendrite grain boundaries during hot working, making it impossible to manufacture and requiring continuous casting. There are many high-alloy stainless steels that have not been cast continuously, and even when they are continuously cast, they produce scratches that reduce yields. First, in order to improve the hot workability of continuously cast slabs, it is necessary to further improve the grain boundary ductility of dendrites during casting, and the PV shown by equation (1) is
It was revealed that hot workability is good when δF is 30 or less and δF shown by equation (2) is −10 or more (Japanese Patent Application No. 58-58200), but hot workability is improved when δF is less than −10. Measures to improve workability were unclear. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) (c) OBJECTS OF THE INVENTION The purpose of the present invention is to improve hot workability and increase yield in the production of stainless steel. (d) Structure of the Invention The hot workability of alloys with a wide range of compositions with varying amounts of S, O, and added amounts of Ca and Ce is obtained by vacuum melting slabs and slabs continuously cast in an electric furnace (AOD). We conducted an evaluation. As shown in Figure 1, hot workability can be organized by δF and PV. It was also found that the region with good hot workability can be organized using equation (3). PV≦3δF+45…(3) In addition, the good hot workability region in Figure 1 indicates a minimum reduction of area of 60% or more at 950 to 1200℃ in a high-temperature tensile test, and a hot impact average score of 1 or less. The poor machinability area is 950~ in high temperature tensile test.
Indicates a minimum reduction of area value of less than 60% at 1200°C or a hot shock average rating of 1 or more. In FIG. 1, the ○ mark indicates a minimum aperture value of 60% or more and the hot shock average rating of 1 or less, and the ● mark indicates a minimum aperture value of less than 60% and a hot impact average rating of less than 1. δF represents the δ ferrite index in the cast structure,
PV indicates the detoxification index of S and O, and the relationship in equation (3) indicates that when the amount of δ ferrite is small, S and O must be further reduced or Ca and Ce must be added. means. δ ferrite is S
This reduces the segregation of O and O to the γ grain boundaries. Therefore, if δF is low, cracks at the γ grain boundaries will occur due to hot working unless S and O are lowered to clean the γ grain boundaries. Additionally, Ca and Ce fix O and S, prevent the formation of MnS, and greatly improve hot workability. In other words, hot workability is improved by reducing PV even with a small δF. In the present invention, the components are adjusted so as to satisfy equation (3) in a region where the ΔF value is less than 1.5. In order to reduce the PV value, in the present invention, Ca, Ce
Either reduce the S content to 0.001% or less and the O content to 0.003% or less without adding Ca, or
and Ce in a total amount of 0.03% or less, and reduce the S content to 0.003% or less and the O content to 0.004% or less. S and O
Ca and Ce have the effect of fixing S and O, which are harmful to hot workability, and improve hot workability. This is because it deteriorates the properties and corrosion resistance. The reasons for limiting the other components will be described below. C: Although C is harmful to the corrosion resistance of stainless steel, it is effective for obtaining high strength. Accordingly
Up to 0.15%. Si: Si increases the corrosion and oxidation resistance of stainless steel. However, if Si content exceeds 5%, the effect becomes saturated and hot workability deteriorates. Mn: Mn increases the solid solubility of N and is effective in stabilizing austenite in steel, and is also used as a substitute for Ni, but it deteriorates corrosion resistance, so the upper limit should be limited.
It was set at 12%. Cr: Cr is a basic component of stainless steel, and 15% or more is particularly effective; the higher the amount, the better the corrosion resistance and oxidation resistance, but if it exceeds 35%, it becomes expensive. Ni: Ni, along with Cr, is a basic component of stainless steel and heat-resistant steel. If it is less than 2%, it is difficult to maintain the austenitic structure and obtain the minimum required properties; more is more effective, but if it exceeds 40%, it becomes extremely expensive. Mo: Mo increases the corrosion resistance and strength of stainless steel,
Selectively add 5.5% or less depending on the application. If it exceeds this value, the effect will be saturated and hot workability will deteriorate. Cu: Cu increases the corrosion resistance of stainless steel and is selectively added at 5% or less depending on the application. If it exceeds 5%, hot workability deteriorates. N: N is effective in improving the hot workability, strength, and corrosion resistance of stainless steel, and can be adjusted from 0.01 to 0.01 depending on the application.
Add in a range of 0.35%. Al: Al is added at 0.1% or less as a strong deoxidizing agent. Al coexists with Ca or Ce in low S steel and O
, and reduces Si and Mn oxides, greatly improving hot workability. Ti, Nb, Zr, Ta: Ti, Nb, Zr and Ta are C
It preferentially combines with C to reduce the negative effect of C on corrosion resistance. These components can be used alone or in combination of two or more, and the total content must be at least four times the C%. However, if added in large amounts, the cleanliness and workability of the steel will deteriorate, so the upper limit can be kept to 1.5%. (e) Example Table 1 shows the melting process using the electric furnace-AOD method.
The steel composition of the present invention example and the comparative example, which were continuously cast into slabs of mm thickness x 1000 mm width and billets of 150 mm square, are shown. Furthermore, by hot rolling the slab,
Plate materials with a thickness of 3.3 to 5.0 mm and wire rods with a diameter of 5.5 to 10 mm were obtained, and the evaluation of hot workability is shown in Table 2. Continuously cast slabs made using the method of the present invention, that is, steel that satisfies PV≦3δF+45, have no hot work cracks or sagging defects, compared to comparative steel, that is, PV≦3δF+45.
Continuously cast slabs made of steel that do not satisfy the above conditions are either impossible to manufacture due to frequent cracking during hot working, or cracks occur frequently on both sides of the hot coil, resulting in increased side truncation and peeling defects in the next process. This caused a significant decrease in yield.

【表】【table】

【表】【table】

【表】 (f) 発明の効果 本発明により耐食性、耐酸化性、高強度等を要
求されるNi、Cr、Mo、N等の含有量が高く、熱
間加工割れの問題で造塊法で製造している高合金
ステンレス鋼の連続鋳造化を可能にし、かつ熱間
圧延による加工割れ欠陥を減少することにより、
著しい生産コスト低減、歩留向上等多くの効果が
得られる。
[Table] (f) Effect of the invention The present invention has a high content of Ni, Cr, Mo, N, etc. that require corrosion resistance, oxidation resistance, high strength, etc. By enabling continuous casting of the high-alloy stainless steel we manufacture and reducing machining crack defects caused by hot rolling,
Many effects such as significant production cost reduction and yield improvement can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は熱間加工性良好領域と熱間加工性不良
領域を、δFとPVとの関係で示す。
FIG. 1 shows regions with good hot workability and regions with poor hot workability in terms of the relationship between δF and PV.

Claims (1)

【特許請求の範囲】 1 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、S:0.001%以下、
O:0.003%以下に低減し、残部Feおよび不可避
的不純物からなり、(1)式で示されるPV値と(2)式
で示されるδF値が(3)式の範囲となるように成分
調整した溶鋼を連続鋳造し、得られた連続鋳造鋳
片を熱間圧延することを特徴とする熱間加工性の
優れたオーステナイト系ステンレス鋼の製造方
法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 2 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにMo:5.5%以
下、Cu:5%以下のうちから選ばれた少なくと
も1種を含有し、S:0.001%以下、O:0.003%
以下に低減し、残部Feおよび不可避的不純物か
らなり、(1)式で示されるPV値と(2)式で示される
δF値が(3)式の範囲となるように成分調整した溶
鋼を連続鋳造し、得られた連続鋳造鋳片を熱間圧
延することを特徴とする熱間加工性の優れたオー
ステナイト系ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 3 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにAl:0.1%以下
を含有し、S:0.001%以下、O:0.003%以下に
低減し、残部Feおよび不可避的不純物からなり、
(1)式で示されるPV値と(2)式で示されるδF値が(3)
式の範囲となるように成分調整した溶鋼を連続鋳
造し、得られた連続鋳造鋳片を熱間圧延すること
を特徴とする熱間加工性の優れたオーステナイト
系ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 4 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%、Al:0.1%以下を含有し、さら
にMo:5.5%以下、Cu:5%以下のうちから選
ばれた少なくとも1種を含有し、S:0.001%以
下、O:0.003%以下に低減し、残部Feおよび不
可避的不純物からなり、(1)式で示されるPV値と
(2)式で示されるδF値が(3)式の範囲となるように
成分調整した溶鋼を連続鋳造し、得られた連続鋳
造鋳片を熱間圧延することを特徴とする熱間加工
性の優れたオーステナイト系ステンレス鋼の製造
方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 5 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにTi、Nb、Zr
およびTaのうち1種または2種以上合計で4×
C〜1.5%を含有し、S:0.001%以下、O:0.003
%以下に低減し、残部Feおよび不可避的不純物
からなり、(1)式で示されるPV値と(2)式で示され
るδF値が(3)式の範囲となるように成分調整した
溶鋼を連続鋳造し、得られた連続鋳造鋳片を熱間
圧延することを特徴とする熱間加工性の優れたオ
ーステナイト系ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 6 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%、Al:0.1%以下を含有し、さら
にTi、Nb、ZrおよびTaのうち1種または2種
以上合計で4×C〜1.5%を含有し、S:0.001%
以下、O:0.003%以下に低減し、残部Feおよび
不可避的不純物からなり、(1)式で示されるPV値
と(2)式で示されるδF値が(3)式の範囲となるよう
に成分調整した溶鋼を連続鋳造し、得られた連続
鋳造鋳片を熱間圧延することを特徴とする熱間加
工性の優れたオーステナイト系ステンレス鋼の製
造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 7 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにMo:5.5%以
下、Cu:5%以下のうちから選ばれた少なくと
も1種と、Ti、Nb、ZrおよびTaのうち1種ま
たは2種以上合計で4×C〜1.5%を含有し、
S:0.001%以下、O:0.003%以下に低減し、残
部Feおよび不可避的不純物からなり、(1)式で示
されるPV値と(2)式で示されるδF値が(3)式の範囲
となるように成分調整した溶鋼を連続鋳造し、得
られた連続鋳造鋳片を熱間圧延することを特徴と
する熱間加工性の優れたオーステナイト系ステン
レス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 8 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%、Al:0.1%以下を含有し、さら
にMo:5.5%以下、Cu:5%以下のうちから選
ばれた少なくとも1種と、Ti、Nb、Zrおよび
Taのうち1種または2種以上合計で4×C〜1.5
%を含有し、S:0.001%以下、O:0.003%以下
に低減し、残部Feおよび不可避的不純物からな
り、(1)式で示されるPV値と(2)式で示されるδF値
が(3)式の範囲となるように成分調整した溶鋼を連
続鋳造し、得られた連続鋳造鋳片を熱間圧延する
ことを特徴とする熱間加工性の優れたオーステナ
イト系ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 9 重量%にてC:0.15%以下、Si:5%以下、
Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、S:0.003%以下、
O:0.004%以下に低減するとともにCaおよびCe
の1種または2種を合計で0.03%以下含有し、残
部Feおよび不可避的不純物からなり、(1)式で示
されるPV値と(2)式で示されるδF値が(3)式の範囲
となるように成分調整した溶鋼を連続鋳造し、得
られた連続鋳造鋳片を熱間圧延することを特徴と
する熱間加工性の優れたオーステナイト系ステン
レス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 10 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにMo:5.5%以
下、Cu:5%以下のうちから選ばれた少なくと
も1種を含有し、S:0.003%以下、O:0.004%
以下に低減するとともにCaおよびCeの1種また
は2種を合計で0.03%以下含有し、残部Feおよび
不可避的不純物からなり、(1)式で示されるPV値
と(2)式で示されるδF値が(3)式の範囲となるよう
に成分調整した溶鋼を連続鋳造し、得られた連続
鋳造鋳片を熱間圧延することを特徴とする熱間加
工性の優れたオーステナイト系ステンレス鋼の製
造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 11 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにAl:0.1%以下
を含有し、S:0.003%以下、O:0.004%以下に
低減するとともにCaおよびCeの1種または2種
を合計で0.03%以下含有し、残部Feおよび不可避
的不純物からなり、(1)式で示されるPV値と(2)式
で示されるδF値が(3)式の範囲となるように成分
調整した溶鋼を連続鋳造し、得られた連続鋳造鋳
片を熱間圧延することを特徴とする熱間加工性の
優れたオーステナイト系ステンレス鋼の製造方
法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 12 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%、Al:0.1%以下を含有し、さら
にMo:5.5%以下、Cu:5%以下のうちから選
ばれた少なくとも1種を含有し、S:0.003%以
下、O:0.004%以下に低減するとともにCaおよ
びCeの1種または2種を合計で0.03%以下含有
し、残部Feおよび不可避的不純物からなり、(1)
式で示されるPV値と(2)式で示されるδF値が(3)式
の範囲となるように成分調整した溶鋼を連続鋳造
し、得られた連続鋳造鋳片を熱間圧延することを
特徴とする熱間加工性の優れたオーステナイト系
ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 13 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにTi、Nb、Zr
およびTaのうち1種または2種以上合計で4×
C〜1.5%を含有し、S:0.003%以下、O:0.004
%以下に低減するとともにCaおよびCeの1種ま
たは2種を合計で0.03%以下含有し、残部Feおよ
び不可避的不純物からなり、(1)式で示されるPV
値と(2)式で示されるδF値が(3)式の範囲となるよ
うに成分調整した溶鋼を連続鋳造し、得られた連
続鋳造鋳片を熱間圧延することを特徴とする熱間
加工性の優れたオーステナイト系ステンレス鋼の
製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 14 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%、Al:0.1%以下を含有し、さら
にTi、Nb、ZrおよびTaのうち1種または2種
以上合計で4×C〜1.5%を含有し、S:0.003%
以下、O:0.004%以下に低減するとともにCaお
よびCeの1種または2種を合計で0.03%以下含有
し、残部Feおよび不可避的不純物からなり、(1)
式で示されるPV値と(2)式で示されるδF値が(3)式
の範囲となるように成分調整した溶鋼を連続鋳造
し、得られた連続鋳造鋳片を熱間圧延することを
特徴とする熱間加工性の優れたオーステナイト系
ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 15 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni2〜40%、
N:0.01〜0.35%を含有し、さらにMo:5.5%以
下、Cu:5%以下のうちから選ばれた少なくと
も1種と、Ti、Nb、ZrおよびTaのうち1種ま
たは2種以上合計で4×C〜1.5%を含有し、
S:0.003%以下、O:0.004%以下に低減すると
ともにCaおよびCeの1種または2種を合計で
0.03%以下含有し、残部Feおよび不可避的不純物
からなり、(1)式で示されるPV値と(2)式で示され
るδF値が(3)式の範囲となるように成分調整した
溶鋼を連続鋳造し、得られた連続鋳造鋳片を熱間
圧延することを特徴とする熱間加工性の優れたオ
ーステナイト系ステンレス鋼の製造方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3) 16 重量%にてC:0.15%以下、Si:5%以
下、Mn:12%以下、Cr:15〜35%、Ni:2〜40
%、N:0.01〜0.35%、Al:0.1%以下を含有し、
さらにMo:5.5%以下、Cu:5%以下のうちか
ら選ばれた少なくとも1種と、Ti、Nb、Zrおよ
びTaのうち1種または2種以上合計で4×C〜
1.5%を含有し、S:0.003%以下、O:0.004%以
下に低減するとともにCaおよびCeの1種または
2種を合計で0.03%以下含有し、残部Feおよび不
可避的不純物からなり、(1)式で示されるPV値と
(2)式で示されるδF値が(3)式の範囲となるように
成分調整した溶鋼を連続鋳造し、得られた連続鋳
造鋳片を熱間圧延することを特徴とする熱間加工
性の優れたオーステナイト系ステンレス鋼の製造
方法。 PV(ppm)=S+O−0.8Ca−0.3Ce …(1) δF(%)=3(Cr+Mo+1.5Si) −2.8[Ni+0.5(Mn+Cu) +30(C+N)]−19.8 …(2) PV≦3δF+45 …(3)
[Claims] 1 C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, S: 0.001% or less,
O: reduced to 0.003% or less, with the remainder consisting of Fe and unavoidable impurities, and the components are adjusted so that the PV value shown by equation (1) and the δF value shown by equation (2) are within the range of equation (3). A method for producing austenitic stainless steel with excellent hot workability, which comprises continuously casting molten steel and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 2 C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, S: 0.001% or less, O: 0.003%
Continuously produce molten steel whose composition has been adjusted so that the PV value shown in equation (1) and the δF value shown in equation (2) are within the range of equation (3), with the balance being Fe and unavoidable impurities. A method for producing austenitic stainless steel with excellent hot workability, which comprises casting and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 3 C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, further contains Al: 0.1% or less, S: reduced to 0.001% or less, O: reduced to 0.003% or less, the balance consisting of Fe and inevitable impurities,
The PV value shown in equation (1) and the δF value shown in equation (2) are (3)
A method for producing austenitic stainless steel with excellent hot workability, characterized by continuously casting molten steel whose composition has been adjusted to fall within the range of the formula, and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 4 C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, Al: 0.1% or less, further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, S: 0.001% or less, O: 0.003 %, the remainder consists of Fe and unavoidable impurities, and the PV value shown by equation (1) and
Hot workability characterized by continuously casting molten steel whose composition has been adjusted so that the δF value shown by equation (2) falls within the range of equation (3), and hot rolling the obtained continuously cast slab. A method of manufacturing superior austenitic stainless steel. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 5% by weight: C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, and further contains Ti, Nb, and Zr.
A total of 4x of one or more of Ta and Ta
Contains C ~ 1.5%, S: 0.001% or less, O: 0.003
%, the remainder consists of Fe and unavoidable impurities, and the composition has been adjusted so that the PV value shown by equation (1) and the δF value shown by equation (2) are within the range of equation (3). A method for producing austenitic stainless steel with excellent hot workability, which comprises continuous casting and hot rolling of the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 6 C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, Al: 0.1% or less, and further contains 4×C to 1.5% in total of one or more of Ti, Nb, Zr, and Ta, S: 0.001%
Hereinafter, O: is reduced to 0.003% or less, the remainder consists of Fe and unavoidable impurities, and the PV value shown by equation (1) and the δF value shown by equation (2) are within the range of equation (3). A method for producing austenitic stainless steel with excellent hot workability, characterized by continuously casting molten steel whose composition has been adjusted and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 7 In terms of weight%, C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, and further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, and one or more of Ti, Nb, Zr, and Ta in total. Contains 4×C ~ 1.5%,
S: reduced to 0.001% or less, O: reduced to 0.003% or less, and the remainder consists of Fe and unavoidable impurities, and the PV value shown by equation (1) and the δF value shown by equation (2) are within the range of equation (3). A method for producing austenitic stainless steel with excellent hot workability, characterized by continuously casting molten steel whose composition has been adjusted so as to have the following properties, and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 8 At weight%, C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, Al: 0.1% or less, and further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, Ti, Nb, Zr, and
Total of 1 or 2 or more types of Ta: 4 x C ~ 1.5
%, S: 0.001% or less, O: 0.003% or less, the remainder consists of Fe and unavoidable impurities, and the PV value shown by equation (1) and the δF value shown by equation (2) are ( 3) A method for producing austenitic stainless steel with excellent hot workability, characterized by continuously casting molten steel whose composition has been adjusted to fall within the range of the formula, and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 9 C: 0.15% or less, Si: 5% or less,
Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, S: 0.003% or less,
O: reduced to 0.004% or less and Ca and Ce
Contains 0.03% or less in total of one or two of the following, with the balance consisting of Fe and unavoidable impurities, and the PV value shown by formula (1) and the δF value shown by formula (2) are within the range of formula (3). A method for producing austenitic stainless steel with excellent hot workability, characterized by continuously casting molten steel whose composition has been adjusted so as to have the following properties, and hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 10% by weight: C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, S: 0.003% or less, O: 0.004%
It contains 0.03% or less of one or both of Ca and Ce in total, and the balance consists of Fe and unavoidable impurities, and the PV value shown by formula (1) and δF shown by formula (2) An austenitic stainless steel with excellent hot workability is produced by continuously casting molten steel whose composition has been adjusted so that the value falls within the range of formula (3), and hot rolling the obtained continuously cast slab. Production method. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 11 In weight%, C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, further contains Al: 0.1% or less, S: 0.003% or less, O: 0.004% or less, and one or both of Ca and Ce in total is 0.03% or less. Continuously cast molten steel whose composition is adjusted so that the PV value shown by equation (1) and the δF value shown by equation (2) fall within the range of equation (3). A method for producing austenitic stainless steel with excellent hot workability, which comprises hot rolling the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 12 C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, Al: 0.1% or less, further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, S: 0.003% or less, O: 0.004 % or less, and contains one or both of Ca and Ce in a total of 0.03% or less, with the balance consisting of Fe and unavoidable impurities, (1)
The molten steel whose composition has been adjusted so that the PV value shown by equation (2) and the δF value shown by equation (2) are within the range of equation (3) is continuously cast, and the obtained continuously cast slab is hot rolled. A manufacturing method for austenitic stainless steel with excellent hot workability. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 13 In weight%, C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, and further contains Ti, Nb, and Zr.
A total of 4x of one or more of Ta and Ta
Contains C ~ 1.5%, S: 0.003% or less, O: 0.004
% or less, and contains one or both of Ca and Ce in a total of 0.03% or less, with the balance consisting of Fe and unavoidable impurities, and is expressed by formula (1).
A hot rolling process characterized by continuous casting of molten steel whose composition has been adjusted so that the δF value shown in equation (2) is within the range of equation (3), and the obtained continuously cast slab is hot rolled. A method for manufacturing austenitic stainless steel with excellent workability. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 14 In weight%, C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, Al: 0.1% or less, and further contains 4×C to 1.5% in total of one or more of Ti, Nb, Zr, and Ta, S: 0.003%
Hereinafter, O: is reduced to 0.004% or less, and contains one or both of Ca and Ce in a total of 0.03% or less, with the balance consisting of Fe and unavoidable impurities, (1)
The molten steel whose composition has been adjusted so that the PV value shown by equation (2) and the δF value shown by equation (2) are within the range of equation (3) is continuously cast, and the obtained continuously cast slab is hot rolled. A manufacturing method for austenitic stainless steel with excellent hot workability. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 15% by weight: C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni2-40%,
Contains N: 0.01 to 0.35%, and further contains at least one selected from Mo: 5.5% or less, Cu: 5% or less, and one or more of Ti, Nb, Zr, and Ta in total. Contains 4×C ~ 1.5%,
Reduce S: 0.003% or less, O: 0.004% or less, and reduce the total content of one or both of Ca and Ce.
Molten steel containing 0.03% or less, the balance consisting of Fe and unavoidable impurities, and whose composition has been adjusted so that the PV value shown by equation (1) and the δF value shown by equation (2) are within the range of equation (3). A method for producing austenitic stainless steel with excellent hot workability, which comprises continuous casting and hot rolling of the obtained continuously cast slab. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 ...(3) 16 In weight%, C: 0.15% or less, Si: 5% or less, Mn: 12% or less, Cr: 15-35%, Ni: 2-40
%, N: 0.01 to 0.35%, Al: 0.1% or less,
Furthermore, at least one selected from Mo: 5.5% or less, Cu: 5% or less, and one or more of Ti, Nb, Zr, and Ta, in total 4 × C ~
Contains 1.5%, S: 0.003% or less, O: 0.004% or less, and contains one or both of Ca and Ce in a total of 0.03% or less, the balance consisting of Fe and inevitable impurities, (1 ) and the PV value shown by the formula
Hot workability characterized by continuously casting molten steel whose composition has been adjusted so that the δF value shown by equation (2) falls within the range of equation (3), and hot rolling the obtained continuously cast slab. A method of manufacturing superior austenitic stainless steel. PV (ppm) = S + O - 0.8Ca - 0.3Ce ... (1) δF (%) = 3 (Cr + Mo + 1.5Si) -2.8 [Ni + 0.5 (Mn + Cu) + 30 (C + N)] -19.8 ... (2) PV≦3δF + 45 …(3)
JP354884A 1984-01-13 1984-01-13 Austenitic stainless steel having superior hot workability Granted JPS60149748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP354884A JPS60149748A (en) 1984-01-13 1984-01-13 Austenitic stainless steel having superior hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP354884A JPS60149748A (en) 1984-01-13 1984-01-13 Austenitic stainless steel having superior hot workability

Publications (2)

Publication Number Publication Date
JPS60149748A JPS60149748A (en) 1985-08-07
JPH057457B2 true JPH057457B2 (en) 1993-01-28

Family

ID=11560469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP354884A Granted JPS60149748A (en) 1984-01-13 1984-01-13 Austenitic stainless steel having superior hot workability

Country Status (1)

Country Link
JP (1) JPS60149748A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207552A (en) * 1985-03-12 1986-09-13 Kawasaki Steel Corp Nonmagnetic austenitic stainless steel having superior working stability
JPH0694057B2 (en) * 1987-12-12 1994-11-24 新日本製鐵株式會社 Method for producing austenitic stainless steel with excellent seawater resistance
JP4943219B2 (en) * 2007-04-26 2012-05-30 山陽特殊製鋼株式会社 Mo and Ti-containing austenitic stainless steel with high strength and good hot workability
JP5176561B2 (en) 2007-07-02 2013-04-03 新日鐵住金株式会社 Manufacturing method of high alloy pipe
JP6326265B2 (en) * 2014-03-31 2018-05-16 新日鐵住金ステンレス株式会社 Austenitic stainless steel excellent in hot workability and hydrogen embrittlement resistance and its production method
KR101991000B1 (en) * 2017-12-15 2019-06-20 주식회사 포스코 High corrosion resistant austenitic stainless steel and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109420A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting austenite stainless steel
JPS54141310A (en) * 1978-04-24 1979-11-02 Kobe Steel Ltd Austentic stainless steel with superior corrosion resistance and hot workability
JPS56158853A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel
JPS56158851A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel
JPS5735668A (en) * 1980-05-05 1982-02-26 Armco Steel Corp Abrasion-resistant austenite stainless steel
JPS57185960A (en) * 1981-05-09 1982-11-16 Aichi Steel Works Ltd Mo saving austenite stainless steel with superior resistance against seawater
JPS5881956A (en) * 1981-11-10 1983-05-17 Aichi Steel Works Ltd Austenitic stainless steel
JPS5947360A (en) * 1982-09-09 1984-03-17 Daido Steel Co Ltd Austenitic stainless steel
JPS5953623A (en) * 1982-09-21 1984-03-28 Kawasaki Steel Corp Manufacture of high-alloy austenitic stainless steel billet
JPS59229471A (en) * 1983-06-10 1984-12-22 Nippon Yakin Kogyo Co Ltd High nitrogen austenitic stainless steel having excellent hot workability

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52109420A (en) * 1976-03-10 1977-09-13 Nippon Steel Corp Heat resisting austenite stainless steel
JPS54141310A (en) * 1978-04-24 1979-11-02 Kobe Steel Ltd Austentic stainless steel with superior corrosion resistance and hot workability
JPS5735668A (en) * 1980-05-05 1982-02-26 Armco Steel Corp Abrasion-resistant austenite stainless steel
JPS56158853A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel
JPS56158851A (en) * 1980-05-14 1981-12-07 Aichi Steel Works Ltd High-strength austenite stainless steel
JPS57185960A (en) * 1981-05-09 1982-11-16 Aichi Steel Works Ltd Mo saving austenite stainless steel with superior resistance against seawater
JPS5881956A (en) * 1981-11-10 1983-05-17 Aichi Steel Works Ltd Austenitic stainless steel
JPS5947360A (en) * 1982-09-09 1984-03-17 Daido Steel Co Ltd Austenitic stainless steel
JPS5953623A (en) * 1982-09-21 1984-03-28 Kawasaki Steel Corp Manufacture of high-alloy austenitic stainless steel billet
JPS59229471A (en) * 1983-06-10 1984-12-22 Nippon Yakin Kogyo Co Ltd High nitrogen austenitic stainless steel having excellent hot workability

Also Published As

Publication number Publication date
JPS60149748A (en) 1985-08-07

Similar Documents

Publication Publication Date Title
AU600771B2 (en) Ferritic stainless steel and processing therefore
JPH0214419B2 (en)
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
JP2019189889A (en) Austenitic stainless steel
JPH11293412A (en) Austenitic stainless steel excellent in hot workability
JPH0693389A (en) High si stainless steel excellent in corrosion resistance and ductility-toughness and its production
JP2533968B2 (en) Austenitic stainless wire with excellent MIG welding workability
JPH057457B2 (en)
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
JPH0463146B2 (en)
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
WO2022145068A1 (en) Steel material
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
JP4683712B2 (en) Ni-base alloy with excellent hot workability
JP3687315B2 (en) B-containing stainless steel and method for producing hot rolled sheet thereof
WO2023286338A1 (en) Ni-cr-mo-based alloy for welded pipe having excellent workability and corrosion resistance
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP4357080B2 (en) Solidified grain refined steel and solidified grain refined austenitic stainless steel and their welded joints
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
WO2022025078A1 (en) Highly corrosion-resistant austenitic stainless steel and method for producing same
WO2022145061A1 (en) Steel material
WO2022145069A1 (en) Steel material
WO2023166926A1 (en) HIGH-Ni ALLOY THICK STEEL SHEET HAVING EXCELLENT WELD HIGH-TEMPERATURE CRACKING RESISTANCE, AND METHOD FOR PRODUCING SAME
JP2759678B2 (en) Stainless steel with excellent hot workability