JPS5881956A - Austenitic stainless steel - Google Patents

Austenitic stainless steel

Info

Publication number
JPS5881956A
JPS5881956A JP18052881A JP18052881A JPS5881956A JP S5881956 A JPS5881956 A JP S5881956A JP 18052881 A JP18052881 A JP 18052881A JP 18052881 A JP18052881 A JP 18052881A JP S5881956 A JPS5881956 A JP S5881956A
Authority
JP
Japan
Prior art keywords
less
steel
stainless steel
seawater resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18052881A
Other languages
Japanese (ja)
Other versions
JPH0152466B2 (en
Inventor
Takeshi Aizawa
相沢 武
Yoshinobu Motokura
義信 本蔵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP18052881A priority Critical patent/JPS5881956A/en
Publication of JPS5881956A publication Critical patent/JPS5881956A/en
Publication of JPH0152466B2 publication Critical patent/JPH0152466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To provide austenitic stainless steel to which excellent sea water resistance, strength and hot processability are imparted, by a method wherein the use amounts of Ni and Cr in an alloy are limitted to min. necessary amounts and the amount of N is made high to increase a Cr equivalent. CONSTITUTION:This stainless steel consists of, on the wt. basis, 0.08% or less C, 1.0% or less Si, 2.0-7.0% Mn, 6.0-8.8% Ni, 20.0-22.5% Cr, 0.20-0.50% N, 0.5-2.8% Mo and the remainder Fe and inevitable impurities and 0.0050% or less 0 and 0.015% S are further contained therein. In addition, according to necessity, one kind or more of 0.03% or less Al, 0.02% or less Ca, 0.01% or less B, 0.01% or less Mg and 0.05% rare earth elements and one kind or more of Ti, Ta, Zr, Nb in an appropriate amount are contained. By this composition, a Cr equivalent is brought to 31% or more and austenite type stainless steel suitable for a sea water plant is obtained.

Description

【発明の詳細な説明】 本発明は海洋油田開発、海洋資源探査、波力発電、淡水
化プラント等の各種海水プラントに用いられる耐海水用
オーステナイト系ステンレス鋼に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a seawater-resistant austenitic stainless steel used in various seawater plants such as offshore oil field development, marine resource exploration, wave power generation, and desalination plants.

従来、耐海水用ステンレス鋼としては、これまでSUS
 316.317が使用されてきたが、各種海水プラン
トの工業化とその拡大に伴って、その使用環境は高負荷
、高温と益々過酷化し、SUS 816 。
Up until now, the only stainless steel for seawater resistance was SUS.
316.317 has been used, but with the industrialization and expansion of various seawater plants, the environment in which they are used has become increasingly harsh with high loads and high temperatures, and SUS 816 has been used.

317では数年で孔食や隙間腐食が発生し、耐海水性の
点で不十分となってぎた。また引張り強さをこりいても
60kti/−程度と強度面でも不十分となってきてい
る。
317 developed pitting corrosion and crevice corrosion after several years, and its seawater resistance became insufficient. Furthermore, the tensile strength is about 60 kti/-, which is insufficient in terms of strength.

水 そこで、高負荷に耐えより侵れた耐海重性を有スルステ
ンレス鋼トLテ、SUS B29JI (25Cr −
5Ni −9Nb−0,1ON)、xM 19 (22
Cr−18Ni −5Nb−2MO−0+3ON−0,
2V−0,2Nb)、xM17(20Cr−6Ni−2
,5M。
Stainless steel, SUS B29JI (25Cr -
5Ni-9Nb-0,1ON), xM 19 (22
Cr-18Ni-5Nb-2MO-0+3ON-0,
2V-0, 2Nb), xM17 (20Cr-6Ni-2
,5M.

−3Nb−o 、 85N)−21Cr−12Ni−2
、5Nb−1、5Nb−o 、 2 ON颯25Cr−
14Ni−IMo−0,85Nm等カ開発され最近各種
プラントfこ使用されている。
-3Nb-o, 85N)-21Cr-12Ni-2
, 5Nb-1, 5Nb-o, 2 ON 25Cr-
14Ni-IMo-0.85Nm etc. have been developed and have recently been used in various plants.

しかしながら、808829J1は引張り強さ’15k
Q/−と優れた強度を有しているが、二相組織であるた
めCr濃度の高いフェライト相が溶接などの熱操作によ
りシグマ相を生成し易く、またシグマ相の生成は材質を
もろくするうえ 475℃脆性にも敏感であり、優れた
耐海水性を安定して得ることは困難である。
However, 808829J1 has a tensile strength of '15k.
Although it has an excellent strength of Q/-, since it has a two-phase structure, the ferrite phase with a high Cr concentration easily generates a sigma phase by thermal operations such as welding, and the formation of a sigma phase makes the material brittle. Moreover, it is sensitive to 475°C brittleness, making it difficult to consistently obtain excellent seawater resistance.

また、×M19と25Cr−14Ni−IMo−0,8
5Nmは優れた耐海水性と強度を有しているが、前者は
Nb、Nを含有するため、後者は25チものCr量を含
有するために高温変形能が劣り、熱間圧延が困難である
。xM17は優れた強度を有しているが。
Also, ×M19 and 25Cr-14Ni-IMo-0,8
5Nm has excellent seawater resistance and strength, but since the former contains Nb and N, and the latter contains as much as 25% Cr, it has poor high temperature deformability and is difficult to hot roll. be. Although xM17 has excellent strength.

8チものMn量を含有しているため、熱間加工性耐海水
性の点でやや不十分である。
Since it contains as much as 80% Mn, it is somewhat insufficient in terms of hot workability and seawater resistance.

さらに、 2 ICr−12Ni−2、5Nb−1,5
Nb −0,2ONmは優れた耐海水性と熱間加工性を
有しているが、引張り強さ66旬/−と強度が低いとい
う欠点を有している。
Furthermore, 2 ICr-12Ni-2, 5Nb-1,5
Although Nb-0,2ONm has excellent seawater resistance and hot workability, it has the drawback of low tensile strength of 66/-.

本発明は従来鋼のかかる欠点を解消し、優れた耐海水性
、熱間加工性および、高い強度を有し、かつ比較的廉価
なオーステナイト系ステンレス鋼を得ることを目的とし
たものである。そこで1本発明者等はオーステナイト系
ステンレス鋼の針孔食性について研究を重ねた結果、耐
孔食性はCr当量=Cr−1−2,5Nb+0.2Ni
+15N なる関係式でおおむね評価でき、優れた耐孔
食性を得るためにはCr当量81以上にすればよいこと
、さらに2.0〜7.0%のMnを含有させることによ
り耐海水性を改善することができることを見い出した。
The object of the present invention is to eliminate such drawbacks of conventional steels, and to obtain an austenitic stainless steel that has excellent seawater resistance, hot workability, and high strength, and is relatively inexpensive. Therefore, as a result of repeated research on the needle pitting corrosion resistance of austenitic stainless steel, the present inventors found that the pitting corrosion resistance is Cr equivalent = Cr-1-2,5Nb + 0.2Ni
It can be roughly evaluated by the relational expression: +15N, and in order to obtain excellent pitting corrosion resistance, the Cr equivalent needs to be 81 or more, and seawater resistance is improved by containing 2.0 to 7.0% Mn. I found out that it can be done.

この関係式を利用して2本発明者等は比較的廉価で、優
れた耐海水性、熱間加工性および高い強度を兼ね合せ持
つオーステナイト系ステンレス鋼の化学組成を検討した
結果、Cr2O,0〜22.5 % 。
Using this relational expression, the inventors investigated the chemical composition of austenitic stainless steel that is relatively inexpensive and has excellent seawater resistance, hot workability, and high strength. ~22.5%.

Ni6.0〜8.8チ1MoQ、5〜2.8チ、N  
O,20〜0.50チMn2.0〜7.0チ、なる化学
組成の鋼を見い出した。
Ni6.0~8.8chi 1MoQ, 5~2.8chi, N
A steel having a chemical composition of O, 20-0.50 and Mn 2.0-7.0 was discovered.

この中で、Nは優れた耐海水性と高い強度な得と る1ともにオーステナイト相を安定させ、Nj含有蓄を
節約するもので、熱間加工性を太き(損う心配のない0
.20〜0.50%のN量を含有せしめた。
Among these, N provides excellent seawater resistance and high strength, stabilizes the austenite phase, saves Nj content, and improves hot workability (00% without fear of loss).
.. The content of N was 20 to 0.50%.

Cr、Moは耐海水性を向上させる重要な元素であるが
、多量に含有させるとオーステナイト相を安定させるに
多くのNiを含有させる必要があり合金量の増加にとも
ない熱間脆性を強める。したがって1本発明においては
耐海水性を得る上で必要なCr、Mo量をできるだけ少
なくするため、Nことに成功したものである。
Cr and Mo are important elements that improve seawater resistance, but if they are contained in large amounts, it is necessary to contain a large amount of Ni to stabilize the austenite phase, which increases hot embrittlement as the alloy content increases. Therefore, in the present invention, in order to minimize the amounts of Cr and Mo necessary to obtain seawater resistance, we have succeeded in using N.

Ni については、オーステナイト相を安定させるに最
小限必要な6.0〜8.8チ 含有せしめるものせるも
のでNが鋼塊中で気泡となるのを解消するため含有させ
、かつ耐海水性を向上させるに2.0〜7.0含有させ
た。
Regarding Ni, the minimum amount of Ni required to stabilize the austenite phase is 6.0 to 8.8%.It is included to prevent N from forming bubbles in the steel ingot, and to improve seawater resistance. It was made to contain 2.0 to 7.0 to improve the content.

すなわち1本発明は上述の研究結果をもとをこ島相 Cr 、高合金耐海水性鋼に伴う問題に対して−Cr当
量式を利用して20.0−22.5チのCr、 6.0
−8.8%のNi、0.5〜2.8チのMoと、従来鋼
に比べて低い合金量と、0.20〜0.50%のN含有
量でもって優れた耐海水性と熱間加工性を有し、かつ、
引張り強さ70.#/−以上と優れ、た機械的性質を有
する耐海水性用オーステ゛ナイト系ステンレス鋼の開発
に成功したものである。
That is, the present invention is based on the above-mentioned research results and uses the -Cr equivalent equation to solve the problems associated with island-phase Cr and high-alloy seawater resistant steels. .0
- Excellent seawater resistance with 8.8% Ni, 0.5-2.8% Mo, lower alloy content than conventional steel, and 0.20-0.50% N content. has hot workability, and
Tensile strength 70. We have succeeded in developing an austenitic stainless steel for seawater resistance that has excellent mechanical properties of #/- or higher.

以下に本発明Vこついて詳述する。The present invention V will be explained in detail below.

20.0〜22.5チ、MoQ、5〜2.8チ、 N 
O,20〜0.50%を含有したもので、第2発明鋼は
第1発明鋼の0を0.0050 %以下、Sを0.01
5 %以下とし、第1発明鋼の耐海水性、熱間加工性を
さらに向上させたもので、第8発明鋼は第1発明w41
こさらtulo、08チ以下、ca O,02チ以下、
BOf)1チ以下Mg0.01チ以下、希土類元素0.
05%以下のうち1種ないしの 211以上を含有させ第1発明篇熱間加工性、耐食性を
さらに向上させたもので、第4発明鋼は第1発明鋼にさ
らにTi、Ta、Zr、Nbのうち1種ないし2種以上
をそれぞれ0.05〜1.0チ含有させ第1発明鋼の強
度、熱間加工性をさらtこ向上させたものである。
20.0 to 22.5 inches, MoQ, 5 to 2.8 inches, N
The second invention steel contains O of the first invention steel by 0.0050% or less and S by 0.01%.
5% or less, further improving the seawater resistance and hot workability of the first invention steel, and the eighth invention steel is the first invention w41 steel.
Kosara tulo, below 08 inches, ca O, below 02 inches,
BOf) 1% or less Mg 0.01% or less, rare earth elements 0.
The fourth invention steel further improves the hot workability and corrosion resistance of the first invention by containing one to 211 or more of 05% or less, and the fourth invention steel further contains Ti, Ta, Zr, and Nb in addition to the first invention steel. The strength and hot workability of the first invention steel are further improved by containing 0.05 to 1.0 of one or more of these, respectively.

以下に本発明鋼の成分限定理由について説明する。The reasons for limiting the composition of the steel of the present invention will be explained below.

Cは強力なオーステナイト相形成元素で、かつマトリシ
クスに固溶している場合には強度を高め耐海水性を改善
する元素である。一方CはCrと結合して炭化物を形成
し粒界#&食感受性を高めるなど一般的耐食性を損うの
でその上限を0.081とした、なお、溶接用、大型構
造部材のようシこ粒界に炭化物が生成し易い特殊な用途
に使用する場合には0.08 %以下にすることが望ま
しい。
C is a strong austenite phase-forming element, and when dissolved in the matrix, increases strength and improves seawater resistance. On the other hand, C combines with Cr to form carbides and impairs general corrosion resistance by increasing grain boundary # and corrosion sensitivity, so the upper limit was set at 0.081. When used in special applications where carbides are likely to form in the field, it is desirable to keep the content to 0.08% or less.

Crは本発明鋼の耐海水性を付与する基本元素であり、
かつN固溶限を高める元素である。
Cr is a basic element that imparts seawater resistance to the steel of the present invention,
It is also an element that increases the N solid solubility limit.

第1図に示したように優れた耐海水性を得るためにはC
r当量を81以上にする必要があり、  Cr含有量の
下限を20.(lとした。しかし、Crは強力なフェラ
イト相形成元素であり、 22.51以上の含有は高温
でオーステナイト−フェライトバランスを損い熱間加工
性を低下せしめるのでその上限22.5チとした。
As shown in Figure 1, in order to obtain excellent seawater resistance, C.
It is necessary to set the r equivalent to 81 or more, and the lower limit of the Cr content to 20. However, Cr is a strong ferrite phase-forming element, and the content of 22.51 or more impairs the austenite-ferrite balance at high temperatures and reduces hot workability, so the upper limit was set at 22.5. .

Ni は強力なオーステナイト相形成元素で耐海水性、
冷間および熱間加工性を向上させる元素である。
Ni is a strong austenite phase forming element and has seawater resistance.
It is an element that improves cold and hot workability.

本発明鋼の組成バランスでオーステナイト組織を得るた
めにはNi量を少なくとも6.0チ以上含有させる必要
があり、その下限を6.0チとした。
In order to obtain an austenitic structure with the composition balance of the steel of the present invention, it is necessary to contain at least 6.0 inches of Ni, and the lower limit is set at 6.0 inches.

本発明鋼の熱間加工性は、Ni量の増加とともに高温で
のオーステナイト−フェライトバランスが改善されて6
60〜8.8チの間で最も良好となり、9チ以上で、は
再び低下する。これはオースてナイト相が不安定な化学
組成では、Niはそれを安定化せしめることで熱間加工
性の改善に寄与するが。
The hot workability of the steel of the present invention is improved due to the improved austenite-ferrite balance at high temperatures as the amount of Ni increases.
It is best between 60 and 8.8 inches, and decreases again above 9 inches. This is because in chemical compositions where the austenite phase is unstable, Ni contributes to improving hot workability by stabilizing it.

しかしオーステナイト相が十分安定な場合、には高合金
鋼特有の熱間脆性がNiの増加とともにひどくなるため
である。
However, if the austenite phase is sufficiently stable, the hot embrittlement characteristic of high alloy steel becomes worse as the Ni content increases.

さらシこ、Niは高価な元素であるので、その含有量は
必要最少限とすべきであり、その上限を8.8チとした
Since Ni is an expensive element, its content should be kept to the minimum necessary, and its upper limit was set at 8.8 inches.

Nは本発明鋼の主要な元素であり、優れた耐海水性−9
強度およびオーステナイト相を得るためにはなくてはな
らない元素である。これらの性能を十分tこ発揮させる
1こは0.20%以上の含有が必要である。
N is the main element of the steel of the present invention and has excellent seawater resistance-9
It is an indispensable element for obtaining strength and austenite phase. In order to fully exhibit these properties, the content must be 0.20% or more.

Nの固溶限はCrlMn量と凝固時のデルヌフェライト
量によって左右されるので、本発明鋼1こあってはN含
有量の増大に応じてMailを増加せしめるものである
。またN  O,50%以 上の含有は熱間加工時の変
形抵抗を著しく高め熱間圧延を困難にする。さらに造塊
時、鋼塊中に気泡を発生する危険を増加するのでその上
限を0.501とした。
Since the solid solubility limit of N depends on the amount of CrlMn and the amount of delnu ferrite during solidification, in the steel of the present invention 1, Mail is increased as the N content increases. Furthermore, if the content of NO is 50% or more, the deformation resistance during hot working increases significantly, making hot rolling difficult. Furthermore, since the risk of generating bubbles in the steel ingot during ingot formation increases, the upper limit was set at 0.501.

Mnは本発明鋼の主要な元素で、N固溶限を増加せしめ
て優れた耐海水性、強度と、オーステナイト相を得るた
めにはなくてはならない元素である。
Mn is a main element in the steel of the present invention, and is an essential element in order to increase the N solid solubility limit and obtain excellent seawater resistance, strength, and austenite phase.

さらにMnはそれ自身も耐海水性、オーステナ。Furthermore, Mn itself is seawater resistant and austenal.

オド相の安定化にも寄与するもので少なくとも2.0%
以上の含有が必要である。しかし、7.0 %以上の含
有は耐海水性、熱間加工性を損うのでその上限を7.0
%とした。
At least 2.0%, which also contributes to the stabilization of the odo phase
The above content is necessary. However, if the content exceeds 7.0%, it will impair seawater resistance and hot workability, so the upper limit should be set at 7.0%.
%.

MoはCr、Nとともに本発明鋼の耐海水性を付与する
元素であり少なくともtl=5%以上の含有が必要であ
る。MOの耐海水性改善効果はCrの2.5倍で、Mo
lチを添加すればCr 2,5チ少なくしても同じ耐海
水性を得ることができ、  Cr−4−M。
Mo, together with Cr and N, is an element that imparts seawater resistance to the steel of the present invention, and must be contained in an amount of at least tl=5% or more. The seawater resistance improvement effect of MO is 2.5 times that of Cr;
If Cr-4-M is added, the same seawater resistance can be obtained even with 2.5% less Cr.

量は1.5チ減少する。The amount decreases by 1.5 inches.

これによって、Ni  2.0%を低下せしめることが
可能である。すなわち、Mo1dの含有は同一の耐海水
性を得るに、Cr +N i +M o普を8.5チ減
少させることができ、高合金鋼特有の熱間脆性を和らげ
ることができる。反面Moは非常に高価な元素でありそ
の含有量は必要最少限をことどめるべき8チ であり、2.−を越えて含有せしめると高合金鋼特有の
熱間脆性が著しく高まり、熱間圧延が困難になるので羊
の上限を2.8チとした。なお、望ましくはその含有量
を1.5〜2.2% tこ抑えるとよい。
This makes it possible to reduce Ni by 2.0%. That is, the inclusion of Mo1d can reduce Cr + Ni + Mo by 8.5 inches to obtain the same seawater resistance, and can alleviate the hot embrittlement peculiar to high alloy steel. On the other hand, Mo is a very expensive element and its content should be kept to the minimum necessary, 2. If the content exceeds -, the hot brittleness peculiar to high-alloy steel will significantly increase, making hot rolling difficult, so the upper limit for sheep was set at 2.8 inches. Note that it is preferable to suppress the content by 1.5 to 2.2%.

Si は製鋼時の脱酸に必要な元素であるが、必要以上
のSi の含有は本発明w4ニおいては有害である。す
なわち、SiはCrの2倍もの強度なフエフイト形成元
素で著しくオー友テナイトーフエライトバランスを損な
い、かつ、SiはNの固溶量を低下させるのでその上限
を1.0チとした。。
Si is an element necessary for deoxidation during steel manufacturing, but the inclusion of more than necessary is harmful in W4 of the present invention. That is, Si is a ferrite-forming element that is twice as strong as Cr and significantly impairs the ottenite-ferrite balance, and Si reduces the amount of solid solution of N, so the upper limit was set at 1.0. .

なお、製造にあたってはSi量を0680〜0.50%
に制限し、可能な限りCr、N量を増加せしめることが
望ましい。
In addition, during manufacturing, the amount of Si is 0.680% to 0.50%.
It is desirable to increase the amounts of Cr and N as much as possible.

0、Sは耐海水性、熱間加工性を著しく損う不純物元素
であるが、逆に特殊溶解により通常のレベルより低下さ
せることで、耐海水性、熱間加工性を改善することがで
きる。これらの効果を発揮せしめるにはその上限な0に
ついては0.0050 % 。
0 and S are impurity elements that significantly impair seawater resistance and hot workability, but on the other hand, by lowering them from normal levels through special melting, seawater resistance and hot workability can be improved. . The upper limit for these effects is 0.0050%.

Sについては0.015%とする必要がある。Regarding S, it is necessary to set it to 0.015%.

A I、 Ca、B、 Mg、希土類元素はいずれも本
発明鋼の熱間加工性を改善する元素である。しかし。
AI, Ca, B, Mg, and rare earth elements are all elements that improve the hot workability of the steel of the present invention. but.

多量に含有させた場合には鋼の清浄度を害し、かえって
熱間加工性を劣化させるのでその上限tこついてはAI
o、08%、Ca O,02チ、B 0.01*、Mg
o、olm、希土類元素0.05%とした。なお、希土
類元素とはCe、La、Y等である。
If it is contained in a large amount, it will impair the cleanliness of the steel and even deteriorate the hot workability, so if you have a problem with the upper limit of AI,
o, 08%, Ca O, 02chi, B 0.01*, Mg
o, olm, and rare earth elements were set at 0.05%. Note that rare earth elements include Ce, La, Y, and the like.

Ti、Ta、Zr、Nbは結晶粒を微細化して1本発明
鋼の強度、熱間加工性を向上させる元素で、これらの効
果を発揮せしめるためには、いずれについても0.05
1以上の含有が必要である。しかしこれらの元素は耐海
水性を低下せしめるので、その含有量は抑えるべきで、
#C1,011を越えて含有すると多量の炭窒化物が析
出し、耐海水性を大巾に低下させるのでその上限を1.
096とした。
Ti, Ta, Zr, and Nb are elements that refine the crystal grains and improve the strength and hot workability of the steel of the present invention.
It is necessary to contain one or more. However, these elements reduce seawater resistance, so their content should be suppressed.
If the content exceeds #C1,011, a large amount of carbonitrides will precipitate, greatly reducing seawater resistance, so the upper limit should be set at 1.01.
It was set as 096.

つぎに本発明鋼の特徴を従来鋼と比べ実施例でもって明
らかにする。
Next, the characteristics of the steel of the present invention will be clarified through examples in comparison with conventional steel.

第1表はこれらの供試鋼の化学成分を示すものである。Table 1 shows the chemical composition of these test steels.

第1表 第1表においてA1〜A7鋼は従来鋼で、Atは5US
804、A2 t! SUS+31a A8 )f、 
5US817.A4は壇七噂XM19.A5は&&&−
XMI7.A6は21Cr−12Ni−2,5Mo−0
,2ON、ATは25cr−14Ni −1Mo−0,
85Nであり、Bl〜B8鋼は本発明鋼で。
Table 1 In Table 1, A1 to A7 steels are conventional steels, and At is 5US.
804, A2 t! SUS+31a A8) f,
5US817. A4 is Danshichi Rumor XM19. A5 is &&&-
XMI7. A6 is 21Cr-12Ni-2,5Mo-0
,2ON,AT is 25cr-14Ni-1Mo-0,
85N, and Bl to B8 steels are the steels of the present invention.

B1〜B4は第1発明鋼、B5は第2発明鋼、B6明 は第8発明鋼、B7は第4発署鋼、B8は第5発明鋼で
あり、CI、C2鋼は比較鋼である。第2表は、第1表
の10*高周波溶解炉において溶製し80φ1こ鍛伸し
た供試材を、1050℃×80分加熱。
B1 to B4 are the first invention steels, B5 is the second invention steel, B6 Ming is the eighth invention steel, B7 is the fourth invention steel, B8 is the fifth invention steel, and CI and C2 steels are comparison steels. . Table 2 shows the test materials that were melted in the 10* high-frequency melting furnace shown in Table 1 and forged and stretched once to 80φ, and heated at 1050°C for 80 minutes.

保持後、W、Qという固溶体化熱処理を施したA1〜A
7鋼、B1〜B8鋼、cl、c2鋼の強度、耐海水性、
熱間加工性を示したものである。
After holding, A1 to A were subjected to solid solution heat treatment called W and Q.
7 steel, B1 to B8 steel, CL, C2 steel strength, seawater resistance,
This shows hot workability.

強度1こついては、JIS4号試験片を用いて耐力引張
り強さ、伸びを測定した。
For strength 1, proof tensile strength and elongation were measured using a JIS No. 4 test piece.

耐海水性については、40℃の4−FeCl s水溶液
中’l 4 Hr浸漬した場合の腐食減量と、孔食電位
はものである。熱間加工性については、1250℃tこ
加熱保持し、1000℃に冷却後高温ねじり試験を行い
、その捻回値でもりて評価した。
Regarding seawater resistance, the corrosion weight loss and pitting corrosion potential when immersed in a 4-FeCl s aqueous solution at 40° C. for 4 hours are remarkable. Hot workability was evaluated by heating and holding at 1,250°C, cooling to 1,000°C, performing a high-temperature torsion test, and determining the torsion value.

第2表から知られるように、従来鋼であるAl鋼は熱間
加工性については優れているが1強度。
As is known from Table 2, Al steel, which is a conventional steel, has excellent hot workability, but has a strength of 1.

耐海水性についてはいずれも劣るものである。All of them are inferior in seawater resistance.

Al mに対してNitを増加するとともに2.2 %
のMOを含有させたA2鋼については、耐海水性につい
ては相当の向上が見られ、熱間加工性についても良好で
あるが、強度tこついては劣るものであり、A2鋼に対
してNi1l、Cr tuよびMO量を増加させたA3
鋼は、A2鋼tこ比べ、さらをこ耐海水性は向上し、熱
間加工性についても良好であやが、強度1こりいては劣
るものである。22Cr−18Ni −5Ni−2Ni
−0,8ON−0,2V−0,2Nbか一8MJ?−0
,8蓉らなるA6鋼は優れた強度を有しているが8チも
のMn1iを含有しているため熱間加工性、耐海水性が
若干不足するものであり、21Cr−12Ni−2,5
Ni−1,5Ni−0,20QからなるA6鋼は優れた
耐海水性と熱間加工性を有しているが、引張り強さが6
6kti/−と強度が低いものであり、25Cr−14
Ni−IMo−0,85Nからなる;4鋼は優れた耐海
水性と強度を有しているが、25チものCr量を含有す
るために捻回値が4.8回と低く熱間加工性が劣るもの
である。
2.2% with increasing Nit for Al m
Regarding A2 steel containing MO, there is a considerable improvement in seawater resistance and good hot workability, but the strength is inferior to A2 steel. A3 with increased Cr tu and MO amount
Compared to A2 steel, the steel has improved seawater resistance and good hot workability, but is inferior in strength. 22Cr-18Ni-5Ni-2Ni
-0,8ON-0,2V-0,2Nb or -8MJ? -0
A6 steel made of 21Cr-12Ni-2,5 has excellent strength, but contains as much as 80% Mn1i, so it is slightly lacking in hot workability and seawater resistance.
A6 steel made of Ni-1,5Ni-0,20Q has excellent seawater resistance and hot workability, but has a tensile strength of 6
It has a low strength of 6kti/-, and 25Cr-14
Composed of Ni-IMo-0.85N; 4 steel has excellent seawater resistance and strength, but because it contains as much as 25 Cr, it has a low twist value of 4.8 turns and is difficult to hot work. It is of inferior quality.

また、比較鋼であるC1鋼はMn量が0.52  チと
少な(、N固溶限が低いため、鋼塊に気泡が発生し、C
2鋼は逆にMn量が9.0 %と多く含有しているため
かえって耐海水性、熱間加工性が低下している。これら
に対して本発明鋼であるB1〜B8鋼は、 Cr、Ni
、N1Mnを適宜ンこ含有させるとともにCr当量を8
1以上とすることtこより、耐海水性をこりいては、耐
FeCl3に対するその鳴食減貴が1 、0−0 、6
 f/m’Hr 、 NaCltn対する孔食電位が6
90−740mVvsSCEと、14チのNiと、25
チのCrを含有させたA7鋼と同等の優れた耐海水性を
有g しており、強度についても耐力40/−以上、引張り強
さが7・2に9/−以上、伸び50チ以上と優れた機械
的性質を有し、かつ、熱間加工性についても捻回値が5
.0回以上と優れているものである。
In addition, C1 steel, which is a comparison steel, has a low Mn content of 0.52% (and has a low solid solubility limit of N, so bubbles are generated in the steel ingot and C
On the contrary, steel No. 2 has a high Mn content of 9.0%, so its seawater resistance and hot workability are rather reduced. On the other hand, B1 to B8 steels, which are the steels of the present invention, have Cr, Ni
, N1Mn is appropriately contained and the Cr equivalent is 8
1 or more.Thus, if seawater resistance is compromised, the corrosion resistance against FeCl3 is 1, 0-0, 6.
f/m'Hr, pitting potential against NaCltn is 6
90-740mV vs SCE, 14T Ni, 25
It has excellent seawater resistance equivalent to A7 steel containing Cr, and has a yield strength of 40/- or more, a tensile strength of 7.2 to 9/- or more, and an elongation of 50 cm or more. It has excellent mechanical properties, and also has a torsion value of 5 in terms of hot workability.
.. This is excellent, with 0 or more times.

これからしても1本発明鋼が耐海水性のみならず強度、
熱間加工性についても優れていることがわかる。
In the future, the steel of the present invention will not only have seawater resistance but also strength.
It can be seen that the hot workability is also excellent.

上述の如く本発明鋼は安価で優れた耐海水性を得るに高
価なN1、Crの使用量を最少必要量−ことどめて、高
NとすることによりCr当量を高めその値を81以上と
し、かつ強度を向上させたもので、優れた耐海水性と1
強度、熱間加工性を有するオーステナイト系ステンレス
鋼を得ることに成功したもので、海洋油田開発、海洋資
源探査、波力発電、淡水化プラント等として高い実用性
を有するものである。
As mentioned above, in order to obtain excellent seawater resistance at low cost, the steel of the present invention uses the minimum necessary amount of expensive N1 and Cr, and by increasing the N content, the Cr equivalent value is increased to 81 or more. , and has improved strength, with excellent seawater resistance and 1.
We succeeded in obtaining an austenitic stainless steel with high strength and hot workability, and it has high practicality in offshore oil field development, marine resource exploration, wave power generation, desalination plants, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は耐海水性に及ぼすCr当量の影響を示した線図
である。第2@1$幇*ホJ薫−1−〜ヱ゛T門り今5
ンン大−rε しtニ して; ぐミ撃ξ1爺・南 る
。 特許出願人 第 1 図 第 2 図 274−
FIG. 1 is a diagram showing the influence of Cr equivalent on seawater resistance. Part 2 @ 1 $ 幇 * Ho J Kaoru - 1 - ~ E゛T gate now 5
Gumi attack ξ1 old man, south Ru. Patent applicant Figure 1 Figure 2 Figure 274-

Claims (1)

【特許請求の範囲】 1、重量比&!ニー L テC0,081以下、Si 
1.0%以下Mn 2.0−7.0 %、 Ni 6.
0−8.8%、Cr 20.0−22.5%N O,2
0−0,50%、Mo 0 、5−2 、 s*を含有
し、残部Fe ならびに不純物元素からなることを特徴
゛とするオーステナイト系ステンレス鋼。 2、重量比にして、 Co、0811以下、 Si 1
.096以下1Mn 2.0−′lO%、      
  Ni  6.0−8.81Cr 20.0−22.
5%、、Mo 0.5〜2.8%、N O,20−0,
5096゜を含有し、さらE OO,0050チ以下’
、S 0.015%以下とし、残部Feならびに不純物
元素からなることを特徴とするオーステナイト系ステン
レス鋼。 8、重量比ELテC0,08チ以下、Si l、Q%以
下Mn 2.0−7.0%、Ni 6.0−8.8%、
Cr 20.0−22.5%\下1Mg 0.011以
下、希土類元素0.05%以下のうち1種ないし2種以
上を含有し、残部Feならびに不純物元素からなる、こ
とを特徴とするオーステナイト系ステンレス鋼。 4、重量比にしてc o、osチ以下、Si  l、Q
チ以下、 Mn 2.0−7.0%、Ni 6.0−8
.81、Cr  20.0−22.59b、Mo 0.
5〜2.8チ、N O,20〜0.50チを含有しさら
Ic Ti、 Ta、 Zr 、Nb  のうち1種な
いし2種以上をそれぞれ0.05〜1.0チ含有し、残
部Feならびに不純物元素からなることを特徴とするオ
ーステナイト系ステンレス鋼。 5、重量比にしてC(1,08チ以下、Si 1.0チ
以下、Mn 2.0−7.0%、Ni 6.0−s、s
*、cr  20.0−22.5チ、Mo0.5〜2.
8チ、N0020〜0.50チを含有しチ さらにOO,0050チ以下、 S O,015”乳以
下とし、AIo、oas以下、Ca O,02%以下、
B O,0,1%以下。 し2種以上をそれぞれ0.05%〜1.O1とを含有し
。 残部Feならびに不純物元素からなることを特徴とする
オーステナイト系ステンレス鋼。
[Claims] 1. Weight ratio &! Knee L Te C0,081 or less, Si
1.0% or less Mn 2.0-7.0%, Ni 6.
0-8.8%, Cr 20.0-22.5%N O,2
An austenitic stainless steel characterized by containing 0-0.50%, Mo 0 , 5-2, s*, and the balance consisting of Fe and impurity elements. 2. In terms of weight ratio, Co, 0811 or less, Si 1
.. 096 or less 1Mn 2.0-'lO%,
Ni 6.0-8.81Cr 20.0-22.
5%, Mo 0.5-2.8%, NO, 20-0,
Contains 5096° and less than E OO,0050°'
, S 0.015% or less, and the remainder consists of Fe and impurity elements. 8. Weight ratio EL Te C 0.08% or less, Si I, Q% or less Mn 2.0-7.0%, Ni 6.0-8.8%,
Austenite characterized by containing one or more of Cr 20.0-22.5%\lower 1Mg 0.011 or less, rare earth elements 0.05% or less, and the balance consisting of Fe and impurity elements. stainless steel. 4. Less than co, osti, Si l, Q in terms of weight ratio
Below H, Mn 2.0-7.0%, Ni 6.0-8
.. 81, Cr 20.0-22.59b, Mo 0.
Contains 5 to 2.8 H, NO, 20 to 0.50 H, and 0.05 to 1.0 H of one or more of Ti, Ta, Zr, and Nb, and the remainder Austenitic stainless steel characterized by consisting of Fe and impurity elements. 5. Weight ratio: C (1.08 cm or less, Si 1.0 cm or less, Mn 2.0-7.0%, Ni 6.0-s, s
*, cr 20.0-22.5chi, Mo0.5-2.
8chi, containing N0020 to 0.50chi, further OO, 0050chi or less, SO, 015" or less, AIo, oas or less, Ca O, 02% or less,
BO, 0.1% or less. and 0.05% to 1.0% of each of two or more species. Contains O1. An austenitic stainless steel characterized in that the remainder consists of Fe and impurity elements.
JP18052881A 1981-11-10 1981-11-10 Austenitic stainless steel Granted JPS5881956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18052881A JPS5881956A (en) 1981-11-10 1981-11-10 Austenitic stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18052881A JPS5881956A (en) 1981-11-10 1981-11-10 Austenitic stainless steel

Publications (2)

Publication Number Publication Date
JPS5881956A true JPS5881956A (en) 1983-05-17
JPH0152466B2 JPH0152466B2 (en) 1989-11-08

Family

ID=16084835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18052881A Granted JPS5881956A (en) 1981-11-10 1981-11-10 Austenitic stainless steel

Country Status (1)

Country Link
JP (1) JPS5881956A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149748A (en) * 1984-01-13 1985-08-07 Nippon Steel Corp Austenitic stainless steel having superior hot workability
JPS60197853A (en) * 1984-03-20 1985-10-07 Aichi Steel Works Ltd High strength nonmagnetic stainless steel and its manufacture
WO1987002388A1 (en) * 1985-10-15 1987-04-23 Aichi Steel Works Ltd. High strength stainless steel, and process for its production
JPH0390536A (en) * 1989-08-31 1991-04-16 Nippon Stainless Steel Co Ltd High strength non-magnetic stainless steel
JP2004298944A (en) * 2003-03-31 2004-10-28 Nippon Sanso Corp Shielding gas for welding and welding method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346421A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Seawater resistant stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346421A (en) * 1976-10-08 1978-04-26 Sumitomo Electric Ind Ltd Seawater resistant stainless steel

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149748A (en) * 1984-01-13 1985-08-07 Nippon Steel Corp Austenitic stainless steel having superior hot workability
JPH057457B2 (en) * 1984-01-13 1993-01-28 Nippon Steel Corp
JPS60197853A (en) * 1984-03-20 1985-10-07 Aichi Steel Works Ltd High strength nonmagnetic stainless steel and its manufacture
JPH0153347B2 (en) * 1984-03-20 1989-11-14 Aichi Steel Works Ltd
WO1987002388A1 (en) * 1985-10-15 1987-04-23 Aichi Steel Works Ltd. High strength stainless steel, and process for its production
JPH0390536A (en) * 1989-08-31 1991-04-16 Nippon Stainless Steel Co Ltd High strength non-magnetic stainless steel
JP2004298944A (en) * 2003-03-31 2004-10-28 Nippon Sanso Corp Shielding gas for welding and welding method

Also Published As

Publication number Publication date
JPH0152466B2 (en) 1989-11-08

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
US4086085A (en) Austenitic iron alloys
JP2000239807A (en) Heat resistant austenitic stainless steel
US5000797A (en) Method for producing a stainless steel having a good corrosion resistance and a good resistance to corrosion in seawater
US5017246A (en) Martensitic stainless steels excellent in corrosion resistance and stress corrosion cracking resistance and method of heat treatment of the steels
JPWO2006112428A1 (en) Low alloy steel
US5383983A (en) Martensitic stainless steel suitable for use in oil wells
JP3982069B2 (en) High Cr ferritic heat resistant steel
JPH01275739A (en) Low si high strength and heat-resistant steel tube having excellent ductility and toughness
JPS5881956A (en) Austenitic stainless steel
JPH06322488A (en) High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance
JP2668113B2 (en) Method for producing high-strength non-magnetic stainless steel material with excellent workability
KR100708616B1 (en) Low Activation High Chromium Ferritic Heat Resistant Steels for Fission Reactor, Fast Breed Reactor and Fusion Reactor
JPH0215148A (en) High mn nonmagnetic steel having excellent corrosion resistance
JPH09209087A (en) Duplex stainless steel
JPH0586463B2 (en)
JPH0770700A (en) High proof stress and high corrosion resistant austenitic stainless cast steel
JPH01165752A (en) Ferritic stainless steel having superior corrosion resistance in highly concentrated halide solution
JP3777421B2 (en) High chromium ferritic heat resistant steel
JPS63434A (en) High strength ferrite steel for atomic reactor
JPS61147855A (en) Precipitation hardening stainless steel
JPH0256418B2 (en)
JPH0312136B2 (en)
JP2672430B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe with excellent corrosion resistance
JPS60162757A (en) Austenitic stainless steel having high corrosion resistance at high temperature