JPH0579733B2 - - Google Patents

Info

Publication number
JPH0579733B2
JPH0579733B2 JP62187024A JP18702487A JPH0579733B2 JP H0579733 B2 JPH0579733 B2 JP H0579733B2 JP 62187024 A JP62187024 A JP 62187024A JP 18702487 A JP18702487 A JP 18702487A JP H0579733 B2 JPH0579733 B2 JP H0579733B2
Authority
JP
Japan
Prior art keywords
steel
rolling
slabs
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62187024A
Other languages
Japanese (ja)
Other versions
JPS6431930A (en
Inventor
Shinzo Ashida
Takehiko Kato
Yoshiaki Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP62187024A priority Critical patent/JPS6431930A/en
Publication of JPS6431930A publication Critical patent/JPS6431930A/en
Publication of JPH0579733B2 publication Critical patent/JPH0579733B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は冷間加工用鋼材の製造法に関し、更に
詳しくは、特に機械構造用部品の冷間鍛造に際し
て鍛造割れが発生し難く、かつ鍛造後の被削性に
優れた熱間圧延棒鋼及びバーインコイルの製造方
法に関する。 (従来の技術及び解決しようとする問題点) 従来から、鋼材の冷間加工性を向上させるに
は、鋼材の内部組織を熱処理によつて調整する
他、鋼中の非金属介在物を減少させる方法が採用
されている。特に熱間圧延材に多く認められる細
長く延伸した硫化物系介在物(JIS G0555に規定
されるA1系介在物)は、冷間加工時の割れを助
長するものとして、各種の脱硫方法によつて鋼中
のS含有量を極力抑えるようにしている。しか
し、この方法は冷間加工性や機械的性質、特に靭
性、延性値の異方性の改善には有効であるが、そ
の反面、被削性はS含有量の減少に伴い著しく低
下する。 そのため、冷間加工性と被削性の両特性を満足
させるべく、CaやZrを添加してMnS介在物を
CaS、Ca−Mn−S、Zr−Mn−S等の組成に変
化させ、非金属介在物が熱間圧延時に延伸し難く
させることが提案されている(特公昭59−47024、
特公昭56−21345参照)。しかし、これらの非金属
介在物組成をかなりの比率で調整すること難し
く、棒鋼、バーインコイル等の鋼材の冷間鍛造性
を安定して確保し難いという問題点を有してい
る。 本発明は、上記従来技術の欠点を解消し、優れ
た冷間鍛造性を良好な被削性のもとで付与し得る
熱間圧延棒鋼及びバーインコイルの製造方法を提
供することを目的とするものである。 (問題点を解決するための手段) 上記目的を達成するため、本発明者は、被削性
に大きな影響を与えるS含有量を低下させずに冷
間鍛造性を向上し得る方法を見い出すべく鋭意研
究を重ねた結果、鋼中酸素量を同時に規制した鋳
片及び/又は鋼片を高圧下率のもとで高温圧延す
ることにより可能であることを知見し、本発明を
なしたものである。 すなわち、本発明は、要するに、S:0.010〜
0.030%、0≦0.0025%及び必要に応じてCa≦
0.01%を含有せしめた溶鋼から連続鋳造法又は鋼
塊法により鋳片又は鋼塊を製造し、これら鋳片又
は鋼塊を鋼片に圧延し、次いで該鋼片を熱間圧延
するに際して、圧延開始温度を1100℃未満とし、
かつ、圧延温度が950℃以上での総断面積減少率
が80%以上となるように熱間圧延することを特徴
とする冷間鍛造性の優れた熱間圧延棒鋼及びバー
インコイルの製造方法を要旨とするものである。 以下に本発明を実施例に基づいて詳細に説明す
る。 本発明は、いわゆる棒鋼材として各種炭素鋼、
低合金鋼等につき、熱延後定寸に切断される棒鋼
並びに熱延後巻取られるバーインコイルを対象と
するものであり、そのための溶鋼の化学成分の限
定理由は次のとうりである。 Sは冷間鍛造において鍛造割れを助長すること
が一般的に知られており、変形能の点からはでき
るだけ少ない方が良いが、少な過ぎると冷間鍛造
後の被削性を阻害するようになるので、含有量の
下限は0.010%とする。また0.030%を超えて含有
させると、高温圧延(後述)による硫化物の伸長
抑制効果による冷間鍛造割れの軽減が充分に行わ
れない。したがつて、S含有量は0.010〜0.030%
とする。 Oは硫化物系介在物に次いで冷間鍛造時の変形
能を劣化させる酸化物系介在物を生成させるので
少ない方が良く、0.0025%を超えて含有させると
冷間鍛造割れ発生率が増大する。したがつて、O
含有量は0.0025%以下とする。 本発明の対象とする溶鋼では、少なくとも上記
S及びOの含有量を規制すれば足りるが、必要に
応じてCaを添加してもよい。 Caは硫化物系介在物若しくは酸化物系介在物
の組成を変え、熱間圧延によつて伸長し難い介在
物を生成し、冷間鍛造時の変形能を向上させる元
素である。Caは添加の初期には脱酸或いは脱硫
剤として作用し、介在物となつて浮上してスラグ
に捕捉されるため、MnS介在物をCaS或いはMn
−Ca−Sの組成を有する介在物にかなりの比率
に調整するにはCaを多量に連続して添加する必
要があるが、Ca含有量が0.01%を超えると、クラ
スターの巨大介在物が発生し易くなり、冷間鍛造
時の変形能を安定して向上させることが困難にな
る。したがつて、Ca含有量は0.01%以下とする。
なお、Ca添加法については特に規定するもので
はない。 なお、上記成分のほか、鋼材の所望特性に鑑
み、必要に応じて以下の元素の含有量を規制して
もよい。 Cは機械構造用鋼材として必要な強度を付与す
るために必要な元素であり、0.10%未満ではその
効果が少なく、しかし0.75%を超えると脆くなる
ので、0.10〜0.75%とするのが望ましい。 Siは脱酸元素として、更には固溶強化に有効な
元素であり、そのためには0.40%まで含有させる
ことができる。 Mnは特に焼入性を増して機械構造用鋼材とし
ての必要な強度を付与したいときに0.40〜1.20%
の範囲で含有せしめることができる。この場合、
0.40%未満では焼入性が不足し、1.20%を超える
と偏析が生じ易くなり、延性及び靭性を損なうこ
とになる。 Crは焼入性を増し、高強度、高靭性を付与す
るときに添加できるが、1.5%を超えると高温に
おける軟化抵抗を高めるので、1.5%以下とする。 MoはCrと同様に焼入性を増し、高強度、高靭
性を付与するときに添加でき、Crよりも効果が
大きいが、0.50%を超えても効果が飽和し、且つ
不経済であるので、0.50%以下とする。 その他、Ni、V等々の合金元素を要求特性に
応じて適宜含有させることができ、いずれも上記
任意成分と共に硫化物の伸長抑制効果を阻害する
ものではない。 上記化学成分を有する溶鋼は、従来と同様、連
続鍛造法により鋳片とし、又は鋼塊法により鋼塊
にする。次いで、これらの鋳片又は鋼塊は鋼片ま
で圧延され、更に熱間圧延される。 特に、後者の熱間圧延、すなわち、鋼片につい
ての熱間圧延においては、圧延開始温度と、特定
の圧延温度域における総断面積減少率を以下の如
く規制する必要がある。 まず、鋼片についての熱間圧延における圧延開
始温度が1100℃未満に規制する。この圧延開始温
度が1100℃以上ではオーステナイト結晶粒度の粗
大化を招き、冷間鍛造性が低下するので好ましく
ない。 次に、特定の圧延温度域における圧延温度が
950℃未満では硫化物の伸長抑制効果が小さく、
硫化物が必要以上に伸長してしまい、冷間鍛造時
の変形能向上効果が極めて不充分になる。したが
つて、特定の圧延温度域は950℃以上とし、1050
℃以上が好ましい。 更に、この熱間圧延温度のもとで圧延時の総断
面積減少率を規制する必要がある。総断面積減少
率が80%未満では、硫化物が分断され難く、最終
的に硫化物が幅、長さ共に大きいものが残存して
冷間鍛造変形能に対して悪影響を及ぼすことにな
るので、総断面積減少率は80%以上とし、95%以
上が好ましい。 したがつて、後者の鋼片の熱間圧延に際して
は、950℃以上の圧延温度での総断面積減少率が
80%以上となるように熱間圧延する態様として、
熱間圧延終了温度を950℃以上にして総断面積減
少率を80%以上にする。或いは熱間圧延終了温度
が950℃未満であつても、熱間圧延終了前の任意
の段階での圧延温度が950℃以上で且つその温度
での総断面積減少率を80%以上にする、等の方法
がある。 なお、鋼片についての上記高温圧延に際し、こ
の鋼片を鋳片又は鋼塊から圧延して製造する工程
において、必要に応じて圧延条件を規制すると冷
間鍛造性を更に改善することができる。 すなわち、鋳片又は鋼塊から鋼片まで圧延する
ときの圧延温度(圧延終了温度又は圧延終了前の
任意の段階での圧延温度)を950℃以上とするこ
とにより、鋼片圧延に伴う硫化物の伸長を抑制す
るのに効果がある。但し、その効果の程度は副次
的であつて、次工程の鋼片の熱間圧延を上記条件
で行うことにより得られるほどの大きな効果は期
待できないので、併用して実施するのが好まし
い。 (実施例) 次に本発明の実施例を示す。 第1表に示す化学成分を有する溶鋼から連続鋳
造法により鋼片を製造し或いは鋼塊法により鋼塊
を製造し、これらの鋳片及び鋼塊を熱間圧延によ
り鋼片とし、該鋼片を同表に示す条件にて熱間圧
延した。その際、鋳片から圧延した鋼片の熱間圧
延開始温度は1030℃(この場合の圧延終了温度は
975℃)、980℃(この場合の圧延終了温度は900
℃)とし、鋼塊から圧延した鋼片の熱間圧延開始
温度は1080℃(この場合の圧延終了温度は1050
℃)、970℃(この場合の圧延終了温度は900℃)
とした。熱間圧延後、冷間据込試験を行い、その
結果を併せて第1表に示す。なお、据込試験は次
の要領で行つた。 機械加工により試験片の高さが圧延方向と平行
となるうに採取した円柱試験片を、V溝付の端面
拘束型工具を使用し、冷間にて据込加工を行い、
目視による割れ判定によつて鋼材の変形能を調べ
た(試験法A)。この試験法Aにおいて、割れが
発生しない圧下率を割れ発生限界圧下率とした。 また20φに圧延したバーインコイル材から試験
法Aと同様の試験片を作成し、平板型工具にて据
込試験とする方法(試験法B)にて、圧下率70%
にて、3000ケの据込試験を行い、割れを渦流探傷
機にて調べた。 更に、得られた鋼材について切削による切屑形
状判定を行つた。その結果を第2表に示す。な
お、同表に示す切屑形状a、bは第1図に示す形
状a、bにそれぞれ対応するものである。 第1表から明らかなように、本発明例により得
られた棒鋼及びバーインコイルは、いずれも冷間
鍛造性が優れていると共に被削性(切屑処理性)
も良好であり、特に鋼片から鋼片まで圧延する条
件を併せて規制した場合(B、H、M)、冷間鍛
造性の向上効果が更に大きい。 もつとも、圧延条件が本発明範囲内であつても
S量が低い比較例Lも冷間鍛造性が優れている
が、切削性が劣つている。更に、本発明範囲外で
S量が多い比較例D、K、O量が多い比較例J、
鋼片の圧延温度が低い比較例C、N、Q、圧延時
の総断面積減少率が低い比較例F、Iは、いずれ
も被削性は良好であつても冷間鍛造性が劣つてい
る。
(Industrial Application Field) The present invention relates to a method for manufacturing steel materials for cold working, and more particularly, to a method for producing steel materials for cold working, in particular, a method that prevents forging cracks from occurring during cold forging of mechanical structural parts and has excellent machinability after forging. The present invention relates to a method for producing hot rolled steel bars and bar-in coils. (Conventional technology and problems to be solved) Conventionally, in order to improve the cold workability of steel materials, in addition to adjusting the internal structure of the steel material through heat treatment, it has also been necessary to reduce nonmetallic inclusions in the steel. method has been adopted. In particular, elongated sulfide-based inclusions (A 1 -based inclusions specified in JIS G0555), which are often found in hot-rolled materials, are considered to promote cracking during cold working and are treated with various desulfurization methods. Therefore, the S content in the steel is kept as low as possible. However, although this method is effective in improving cold workability and mechanical properties, particularly anisotropy of toughness and ductility values, on the other hand, machinability significantly decreases as the S content decreases. Therefore, in order to satisfy both cold workability and machinability, Ca and Zr were added to remove MnS inclusions.
It has been proposed to change the composition to CaS, Ca-Mn-S, Zr-Mn-S, etc. to make nonmetallic inclusions difficult to stretch during hot rolling (Japanese Patent Publication No. 59-47024,
(See Special Publication No. 56-21345). However, it is difficult to adjust the composition of these nonmetallic inclusions in a considerable ratio, and there is a problem in that it is difficult to stably ensure cold forgeability of steel materials such as steel bars and bar-in coils. An object of the present invention is to provide a method for manufacturing hot rolled steel bars and bar-in coils that can eliminate the drawbacks of the above-mentioned conventional techniques and provide excellent cold forgeability with good machinability. It is something. (Means for Solving the Problems) In order to achieve the above object, the present inventor aimed to find a method that can improve cold forgeability without reducing the S content, which has a large effect on machinability. As a result of extensive research, it was discovered that this is possible by high temperature rolling of slabs and/or steel slabs with a controlled oxygen content in the steel at a high reduction rate, and the present invention was made based on this finding. be. That is, the present invention can be summarized as follows: S: 0.010~
0.030%, 0≦0.0025% and Ca≦ as necessary
When manufacturing slabs or steel ingots from molten steel containing 0.01% by continuous casting method or steel ingot method, rolling these slabs or steel ingots into steel slabs, and then hot rolling the steel slabs, rolling The starting temperature is less than 1100℃,
and a method for producing hot rolled steel bars and bar-in coils with excellent cold forgeability, characterized by hot rolling such that the total cross-sectional area reduction rate is 80% or more at a rolling temperature of 950°C or higher. This is a summary. The present invention will be explained in detail below based on examples. The present invention provides various carbon steels as so-called steel bars,
Regarding low-alloy steel, etc., the targets are steel bars that are cut to size after hot rolling, and bar-in coils that are coiled after hot rolling, and the reason for limiting the chemical composition of molten steel for this purpose is as follows. It is generally known that S promotes forging cracks during cold forging, and from the viewpoint of deformability it is better to have as little S as possible, but if it is too small, it may impede machinability after cold forging. Therefore, the lower limit of the content is set to 0.010%. Furthermore, if the content exceeds 0.030%, cold forging cracking will not be sufficiently reduced due to the elongation suppressing effect of sulfides caused by high-temperature rolling (described later). Therefore, the S content is 0.010-0.030%
shall be. O generates oxide inclusions that deteriorate the deformability during cold forging next to sulfide inclusions, so it is better to have less O, and if it is included in excess of 0.0025%, the cold forging cracking incidence will increase. . Therefore, O
The content shall be 0.0025% or less. In the molten steel targeted by the present invention, it is sufficient to restrict at least the contents of S and O, but Ca may be added as necessary. Ca is an element that changes the composition of sulfide-based inclusions or oxide-based inclusions, produces inclusions that are difficult to elongate during hot rolling, and improves deformability during cold forging. At the initial stage of addition, Ca acts as a deoxidizing or desulfurizing agent, floats up as inclusions, and is captured in the slag.
-It is necessary to continuously add a large amount of Ca to adjust the inclusion ratio to a considerable proportion with the composition of Ca-S, but when the Ca content exceeds 0.01%, giant inclusions of clusters occur. This makes it difficult to stably improve the deformability during cold forging. Therefore, the Ca content should be 0.01% or less.
Note that the Ca addition method is not particularly stipulated. In addition to the above-mentioned components, the content of the following elements may be regulated as necessary in view of the desired properties of the steel material. C is an element necessary for imparting the strength required for mechanical structural steel materials, and if it is less than 0.10%, its effect will be small, but if it exceeds 0.75%, it will become brittle, so it is preferably 0.10 to 0.75%. Si is an effective element for solid solution strengthening as well as a deoxidizing element, and for this purpose it can be contained up to 0.40%. Mn is 0.40 to 1.20%, especially when you want to increase hardenability and provide the necessary strength as a mechanical structural steel material.
It can be contained within the range of. in this case,
If it is less than 0.40%, hardenability is insufficient, and if it exceeds 1.20%, segregation tends to occur, impairing ductility and toughness. Cr can be added to increase hardenability and provide high strength and toughness, but if it exceeds 1.5%, it increases the softening resistance at high temperatures, so it should be kept at 1.5% or less. Like Cr, Mo can be added to increase hardenability and provide high strength and toughness, and has a greater effect than Cr, but even if it exceeds 0.50%, the effect is saturated and it is uneconomical. , 0.50% or less. In addition, alloying elements such as Ni and V can be included as appropriate depending on the required properties, and neither of them will inhibit the elongation-suppressing effect of the sulfide together with the above-mentioned optional components. Molten steel having the above chemical components is made into slabs by continuous forging or into steel ingots by steel ingot method, as in the past. These slabs or steel ingots are then rolled into billets and further hot rolled. In particular, in the latter hot rolling, ie, hot rolling of steel slabs, it is necessary to regulate the rolling start temperature and the total cross-sectional area reduction rate in a specific rolling temperature range as follows. First, the rolling start temperature during hot rolling of steel slabs is regulated to be less than 1100°C. If the rolling start temperature is 1100° C. or higher, the austenite crystal grain size becomes coarser and cold forgeability deteriorates, which is not preferable. Next, the rolling temperature in a specific rolling temperature range is
Below 950℃, the elongation suppressing effect of sulfide is small;
The sulfide elongates more than necessary, and the effect of improving deformability during cold forging becomes extremely insufficient. Therefore, the specific rolling temperature range is 950℃ or higher, and 1050℃
℃ or higher is preferable. Furthermore, it is necessary to control the total cross-sectional area reduction rate during rolling at this hot rolling temperature. If the total cross-sectional area reduction rate is less than 80%, the sulfides will be difficult to separate, and in the end, sulfides with large widths and lengths will remain, which will have a negative effect on cold forging deformability. , the total cross-sectional area reduction rate is 80% or more, preferably 95% or more. Therefore, when hot rolling the latter steel billet, the total cross-sectional area reduction rate at a rolling temperature of 950℃ or higher is
As a mode of hot rolling to achieve 80% or more,
The hot rolling end temperature is set at 950°C or higher, and the total cross-sectional area reduction rate is set at 80% or higher. Alternatively, even if the hot rolling end temperature is less than 950°C, the rolling temperature at any stage before the end of hot rolling is 950°C or more, and the total cross-sectional area reduction rate at that temperature is 80% or more. There are other methods. In addition, during the above-mentioned high-temperature rolling of the steel billet, cold forgeability can be further improved if the rolling conditions are regulated as necessary in the step of manufacturing the steel billet by rolling it from a slab or steel ingot. In other words, by setting the rolling temperature (rolling end temperature or rolling temperature at any stage before the end of rolling) at 950°C or higher when rolling a slab or steel ingot to a steel slab, sulfides accompanying steel billet rolling can be reduced. It is effective in suppressing the elongation of. However, the degree of the effect is secondary, and it is not expected that the effect will be as great as that obtained by hot rolling the steel slab in the next step under the above conditions, so it is preferable to carry out the combined use. (Example) Next, an example of the present invention will be shown. Manufacture steel slabs from molten steel having the chemical components shown in Table 1 by a continuous casting method, or manufacture steel ingots by a steel ingot method, hot-roll these slabs and steel ingots, and turn the steel slabs into steel slabs. was hot rolled under the conditions shown in the same table. At that time, the hot rolling start temperature of the steel billet rolled from the slab is 1030℃ (the rolling end temperature in this case is
975℃), 980℃ (in this case, the rolling end temperature is 900℃)
°C), and the hot rolling start temperature of the steel billet rolled from the steel ingot is 1080 °C (in this case, the rolling end temperature is 1050 °C).
℃), 970℃ (rolling end temperature in this case is 900℃)
And so. After hot rolling, a cold upsetting test was conducted, and the results are also shown in Table 1. The upsetting test was conducted in the following manner. A cylindrical test piece was taken by machining so that the height of the test piece was parallel to the rolling direction, and was then cold-upset using a V-grooved end face restraint type tool.
The deformability of the steel material was examined by visually determining cracks (Test Method A). In this test method A, the rolling reduction at which cracking did not occur was defined as the critical rolling reduction for cracking. In addition, a test piece similar to Test Method A was prepared from a bar-in-coil material rolled to 20φ, and an upsetting test was performed using a flat plate tool (Test Method B), at a reduction rate of 70%.
An upsetting test was conducted on 3,000 pieces, and cracks were investigated using an eddy current flaw detector. Furthermore, the shape of chips was determined by cutting the obtained steel material. The results are shown in Table 2. Note that chip shapes a and b shown in the table correspond to shapes a and b shown in FIG. 1, respectively. As is clear from Table 1, the steel bars and bar-in coils obtained according to the examples of the present invention both have excellent cold forgeability and machinability (chip disposability).
In particular, when the conditions for rolling from billet to billet are also regulated (B, H, M), the effect of improving cold forgeability is even greater. However, even when the rolling conditions are within the range of the present invention, Comparative Example L, which has a low amount of S, also has excellent cold forgeability but poor machinability. Furthermore, Comparative Example D with a large amount of S outside the scope of the present invention, Comparative Example J with a large amount of K and O,
Comparative Examples C, N, and Q, in which the rolling temperature of the steel billet is low, and Comparative Examples F, I, in which the total cross-sectional area reduction rate during rolling is low, all have good machinability but poor cold forgeability. There is.

【表】【table】

【表】【table】

【表】 (発明の効果) 以上詳述したように、本発明によれば、冷間鍛
造用熱間圧延棒鋼及びバーインコイルの製造に際
して、化学成分を規制すると共に、鋼片について
の熱間圧延における圧延開始温度並びに特定の圧
延温度域における総断面積減少率を規制するの
で、得られた鋼材は冷間鍛造による割れ発生は極
めて少なく、しかも被削性にも優れ、これらの両
特性を兼備させることができる。
[Table] (Effects of the Invention) As detailed above, according to the present invention, in the production of hot rolled steel bars and bar-in coils for cold forging, chemical components are regulated, and hot rolling of steel slabs is Since the rolling start temperature and the total cross-sectional area reduction rate in a specific rolling temperature range are regulated, the resulting steel material has extremely few cracks due to cold forging and has excellent machinability, combining both of these properties. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bはそれぞれ切削試験における切屑
形状を示す図である。
FIGS. 1a and 1b are diagrams showing chip shapes in cutting tests, respectively.

Claims (1)

【特許請求の範囲】 1 重量%で(以下、同じ)、S:0.010〜0.030
%、0≦0.0025%に規制した溶鋼から連続鋳造法
又は鋼塊法により鋳片又は鋼塊を製造し、これら
鋳片又は鋼塊を鋼片まで圧延し、次いで該鋼片を
熱間圧延するに際して、圧延開始温度を1100℃未
満とし、かつ、圧延温度が950℃以上での総断面
積減少率が80%以上となるように熱間圧延するこ
とを特徴とする冷間鍛造性の優れた熱間圧延棒鋼
及びバーインコイルの製造方法。 2 S:0.010〜0.030%、0≦0.0025%に規制し
た溶鋼から連続鋳造法又は鋼塊法により鋳片又は
鋼塊を製造し、これら鋳片又は鋼塊を圧延温度
950℃以上で鋼片まで圧延し、次いで該鋼片を熱
間圧延するに際して、圧延開始温度を1100℃未満
とし、かつ、圧延温度が950℃以上での総断面積
減少率が80%以上となるように熱間圧延すること
を特徴とする特許請求の範囲第1項に記載の方
法。 3 S:0.010〜0.030%、0≦0.0025%に規制し、
Ca≦0.01%を含有した溶鋼から連続鋳造法又は鋼
塊法により鋳片又は鋼塊を製造し、これら鋳片又
は鋼塊を鋼片まで圧延し、次いで該鋼片を熱間圧
延するに際して、圧延開始温度を1100℃未満と
し、かつ、圧延温度が950℃以上での総断面積減
少率が80%以上となるように熱間圧延することを
特徴とする冷間鍛造性の優れた熱間圧延棒鋼及び
バーインコイルの製造方法。 4 S:0.010〜0.030%、0≦0.025%に規制し、
Ca≦0.01%を含有した溶鋼から連続鋳造法又は鋼
塊法により鋳片又は鋼塊を製造し、これら鋳片又
は鋼塊を圧延温度950℃以上で鋼片まで圧延し、
次いで該鋼片を熱間圧延するに際して、圧延開始
温度を1100℃未満とし、かつ、圧延温度が950℃
以上での総断面積減少率が80%以上となるように
熱間圧延することを特徴とする特許請求の範囲第
3項に記載の方法。
[Claims] 1% by weight (the same applies hereinafter), S: 0.010 to 0.030
%, from molten steel regulated to 0≦0.0025%, produce slabs or steel ingots by continuous casting method or steel ingot method, roll these slabs or steel ingots into steel slabs, and then hot-roll the steel slabs. In this process, hot rolling is carried out at a rolling start temperature of less than 1100°C and at a rolling temperature of 950°C or higher, the total cross-sectional area reduction rate is 80% or more. Method for manufacturing hot rolled steel bars and bar-in coils. 2 S: 0.010 to 0.030%, 0≦0.0025% regulated molten steel to produce slabs or steel ingots by continuous casting method or steel ingot method, and these slabs or steel ingots are rolled at rolling temperature.
When rolling a steel billet at 950°C or higher and then hot rolling the steel billet, the rolling start temperature is less than 1100°C, and the total cross-sectional area reduction rate is 80% or more at the rolling temperature of 950°C or higher. The method according to claim 1, characterized in that hot rolling is carried out so as to obtain the following properties. 3 S: 0.010-0.030%, regulated to 0≦0.0025%,
When producing slabs or steel ingots from molten steel containing Ca≦0.01% by a continuous casting method or a steel ingot method, rolling these slabs or steel ingots into steel slabs, and then hot rolling the steel slabs, Hot rolling with excellent cold forgeability, characterized by hot rolling with a rolling start temperature of less than 1100°C and a total cross-sectional area reduction rate of 80% or more at a rolling temperature of 950°C or higher. Method for manufacturing rolled steel bars and bar-in coils. 4 S: 0.010-0.030%, regulated to 0≦0.025%,
Producing slabs or steel ingots from molten steel containing Ca≦0.01% by a continuous casting method or a steel ingot method, and rolling these slabs or steel ingots into steel slabs at a rolling temperature of 950°C or higher,
Then, when hot rolling the steel billet, the rolling start temperature is less than 1100°C, and the rolling temperature is 950°C.
4. The method according to claim 3, wherein hot rolling is performed so that the total cross-sectional area reduction rate is 80% or more.
JP62187024A 1987-07-27 1987-07-27 Production of hot rolled bar steel and bar-in coil having excellent cold forgeability Granted JPS6431930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62187024A JPS6431930A (en) 1987-07-27 1987-07-27 Production of hot rolled bar steel and bar-in coil having excellent cold forgeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62187024A JPS6431930A (en) 1987-07-27 1987-07-27 Production of hot rolled bar steel and bar-in coil having excellent cold forgeability

Publications (2)

Publication Number Publication Date
JPS6431930A JPS6431930A (en) 1989-02-02
JPH0579733B2 true JPH0579733B2 (en) 1993-11-04

Family

ID=16198860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62187024A Granted JPS6431930A (en) 1987-07-27 1987-07-27 Production of hot rolled bar steel and bar-in coil having excellent cold forgeability

Country Status (1)

Country Link
JP (1) JPS6431930A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230960A (en) * 1984-04-27 1985-11-16 Daido Steel Co Ltd Steel for cold forging
JPS61153230A (en) * 1984-12-26 1986-07-11 Kawasaki Steel Corp Production of low-alloy steel wire rod which permits quick spheroidization
JPS61207511A (en) * 1985-03-11 1986-09-13 Nippon Steel Corp Production of wear-resistant steel product for structure purpose
JPS6223929A (en) * 1985-07-22 1987-01-31 Daido Steel Co Ltd Manufacture of steel for cold forging
JPS6247429A (en) * 1985-08-27 1987-03-02 Kobe Steel Ltd Manufacture of steel stock for warm forging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230960A (en) * 1984-04-27 1985-11-16 Daido Steel Co Ltd Steel for cold forging
JPS61153230A (en) * 1984-12-26 1986-07-11 Kawasaki Steel Corp Production of low-alloy steel wire rod which permits quick spheroidization
JPS61207511A (en) * 1985-03-11 1986-09-13 Nippon Steel Corp Production of wear-resistant steel product for structure purpose
JPS6223929A (en) * 1985-07-22 1987-01-31 Daido Steel Co Ltd Manufacture of steel for cold forging
JPS6247429A (en) * 1985-08-27 1987-03-02 Kobe Steel Ltd Manufacture of steel stock for warm forging

Also Published As

Publication number Publication date
JPS6431930A (en) 1989-02-02

Similar Documents

Publication Publication Date Title
EP3135787B1 (en) Steel plate and method of producing same
KR101838424B1 (en) High toughness and high tensile strength thick steel plate and production method therefor
JP5079793B2 (en) Steel material excellent in high temperature characteristics and toughness and method for producing the same
KR101988144B1 (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
JP5079794B2 (en) Steel material excellent in high-temperature strength and toughness and manufacturing method thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2004515653A (en) Steel plate having deposited TiN + ZrN for welded structure, method for producing the same, and welded structure using the same
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JP2005290554A (en) Steel plate excellent in machinability, toughness and weldability, and method for production thereof
JP2008088547A (en) Fire-resistant steel having excellent high-temperature strength, toughness and reheat embrittlement resistance and process for production of the same
CN114231834B (en) High-strength and good low-temperature toughness ultra-thick structural steel and production method thereof
JP2809677B2 (en) Rolling die steel
JP2008013812A (en) High toughness and high tensile strength thick steel plate and its production method
JPS6137334B2 (en)
JPH01176055A (en) Non-heat treated steel for hot forging having excellent machinability
JPH0250916A (en) Production of low alloy high tension seamless steel pipe having fine grained structure
US4851054A (en) Method of producing rolled steel having excellent resistance to sulfide stress corrosion cracking
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JP6295632B2 (en) High strength H-section steel with excellent toughness
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
JP2008121121A (en) Fire-resistant steel excellent in high-temperature strength, toughness and reheat embrittlement resistance and production process for the same
JPH0579733B2 (en)
JP2007246985A (en) Manufacturing method of high-toughness and high-tensile thick steel plate
JP2543282B2 (en) Method for producing controlled rolled steel with excellent toughness
JP2564425B2 (en) Manufacturing method of high toughness 40kg class steel pipe with excellent SSC resistance