JPH0741903A - Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture - Google Patents

Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture

Info

Publication number
JPH0741903A
JPH0741903A JP19142693A JP19142693A JPH0741903A JP H0741903 A JPH0741903 A JP H0741903A JP 19142693 A JP19142693 A JP 19142693A JP 19142693 A JP19142693 A JP 19142693A JP H0741903 A JPH0741903 A JP H0741903A
Authority
JP
Japan
Prior art keywords
hot
ppm
rolling
steel sheet
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP19142693A
Other languages
Japanese (ja)
Inventor
Junji Haji
純治 土師
Takaaki Nakamura
隆彰 中村
Junichi Wakita
淳一 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19142693A priority Critical patent/JPH0741903A/en
Publication of JPH0741903A publication Critical patent/JPH0741903A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To provide a hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy by hot-rolling a dead soft steel slab in which the content of impurity components is controlled under a specified condition. CONSTITUTION:After hot-rolling the dead soft steel slab having a composition which contains, by wt.%, <=0.0025% C, <=0.005% P, <=0.003% N, <=0.004% S, in which the total amount of them is controlled in the range of 30-900ppm and which contains 0.05-0.20%, Mn, 0.005-0.07% Al and <=0.03% Si at a finishing temp. of >=910 deg.C and the total finishing draft of >=90%, cooling is started within 1sec and the slab is cooled to <=750 deg.C at a cooling rate of >=30 deg.C/sec and successively coiled at 650-750 deg.C. The hot-rolled steel sheet whose grain size of ferrite is >= No. 6.0 of GSNO (grain size number), which has excellent workability and deep drawability, small anisotropy and properties better than that of a cold-rolled steel sheet can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンプレッサー容器な
ど成形時に絞り性を要求され、また異方性が小さい材料
であり、さらに冷延鋼板の代替としても使用可能な熱延
鋼板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-rolled steel sheet, which is a material having a small anisotropy and is required to have a drawability at the time of molding such as a compressor container, and can be used as a substitute for a cold-rolled steel sheet, and a method for producing the hot-rolled steel sheet. It is about.

【0002】[0002]

【従来の技術】従来、熱延鋼板の深絞り性は冷延鋼板と
比べると劣るが、板厚が厚い材料は冷延で加工性を造り
込むことが難しいために絞り性を補うため高延性を有す
る熱延鋼板が用いられていた。しかし、従来の方法にお
いて熱延鋼板の絞り性を向上させるには限度があるた
め、高加工用製品には使用できなかった。また、延性の
高い熱延鋼板を補う場合でも、結晶粒径が大きい場合に
は、加工後に肌荒れを生じ、問題になっていた。さら
に、成形を行う際には、2次加工割れが生じるおそれが
あるために、Bを添加して粒界を強化し、割れを防止し
ていた。
2. Description of the Related Art Conventionally, hot-rolled steel sheets are inferior in deep drawability to cold-rolled steel sheets, but it is difficult to build workability in cold-rolled steel sheets because it is difficult to build workability in cold-rolled steel sheets. Was used. However, there is a limit to improving the drawability of the hot-rolled steel sheet by the conventional method, so that it cannot be used for high working products. Further, even in the case of supplementing a hot-rolled steel sheet having a high ductility, when the crystal grain size is large, roughening occurs after working, which is a problem. Furthermore, since secondary processing cracks may occur during molding, B was added to strengthen the grain boundaries and prevent cracking.

【0003】成形が可能になった後の課題は、成形によ
って発生する無駄を減らし歩留まりを向上させることで
ある。すなわち、コンプレッサーカバー等を成形する際
に、異方性が大きい材料を用いると、イヤリングが発生
し、切断切り捨ての量が多くなり、これを見込んでブラ
ンクするために広幅の鋼板が必要となり、大きな無駄が
生じていた。しかし、Bを添加した材料は、基本的にイ
ヤリングを高くするために、2次加工割れ防止と小さい
異方性を両立することは難しい。
A problem after the molding becomes possible is to reduce the waste caused by the molding and improve the yield. That is, when a material with large anisotropy is used when molding a compressor cover or the like, earrings occur, the amount of cutting and cutting increases, and a wide steel plate is required to allow for blanking. There was waste. However, since the material to which B is added basically raises the earring, it is difficult to achieve both secondary processing crack prevention and small anisotropy.

【0004】これらを解決するために、特開平2−20
9424号公報では、極低Pにすることで両立を計り、
巻取り温度を550〜650℃にすることで結晶粒径の
制御を行っている。しかし、現在、材料への要求はさら
に厳しくなっており、高延性でかつ深絞り性を持ち、肌
荒れ等の表面欠陥が発生しないものを求めており現状で
はすべてを満足する鋼材について提示したものはない。
To solve these problems, Japanese Unexamined Patent Publication No. 2-20
In Japanese Patent No. 9424, compatibility is achieved by setting extremely low P,
The crystal grain size is controlled by setting the winding temperature to 550 to 650 ° C. However, at present, the requirements for materials are becoming more stringent, and we are looking for materials that have high ductility and deep drawability, and that do not cause surface defects such as rough skin. Absent.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記の欠点
を補って2次加工性に優れ、異方性が小さく、肌荒れが
生じず、かつ深絞り性に優れた熱延鋼板を提供すると共
に、該鋼板を大掛かりな設備改造を行うことなく、現状
の設備で製造する方法を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION The present invention provides a hot-rolled steel sheet that compensates for the above drawbacks, is excellent in secondary workability, has small anisotropy, does not cause rough skin, and has excellent deep drawability. At the same time, it is an object of the present invention to provide a method for manufacturing the steel sheet with the current equipment without major equipment modification.

【0006】[0006]

【課題を解決するための手段】本発明において、上記目
的を達成するための鋼板は、(1)重量%で、C≦0.
0025%、P≦0.005%、N≦0.003%、S
≦0.004%、Mn:0.05〜0.20%、Al:
0.005〜0.07%、Si≦0.03%で、その他
不可避的元素を含み、40ppm≦C+N+P+S≦1
10ppmを満足し、かつフェライトの結晶粒径がGS
NO(結晶粒度番号)で6.0番以上である、加工性に
優れ、異方性の小さい深絞り用熱延鋼板であり、その製
造方法は、上記成分の鋼片を、(2)仕上げ温度≧91
0℃で熱間圧延し、650〜750℃で巻取ることを特
徴とする加工性に優れ、異方性の小さい深絞り用熱間圧
延鋼板の製造方法を基本発明とし、(3)仕上げ温度≧
910℃で、仕上げ合計圧下率≧90%で熱間圧延し、
その後650〜750℃で巻取ること、(4)仕上げ温
度≧910℃で熱間圧延し、圧延終了後1秒以内に冷却
を開始し、650〜750℃で巻取ること、(5)仕上
げ温度≧910℃、仕上げ合計圧下率≧90%で熱間圧
延し、圧延終了後1秒以内に冷却を開始し、650〜7
50℃で巻取ること、(6)仕上げ温度≧910℃で熱
間圧延した後、30℃/S以上の冷速で750℃以下ま
で冷却し、その後650〜750℃で巻取ること、
(7)仕上げ温度≧910℃、仕上げ合計圧下率≧90
%で熱間圧延し、30℃/S以上の冷速で750℃以下
まで冷却し、その後650〜750℃で巻取ること、
(8)仕上げ温度≧910℃で熱間圧延し、圧延終了後
1秒以内に冷却を開始し、30℃/S以上の冷速で75
0℃以下まで冷却し、その後650〜750℃で巻取る
こと、(9)仕上げ温度≧910℃、仕上げ合計圧下率
≧90%で熱間圧延し、圧延終了後1秒以内に冷却を開
始し、30℃/S以上の冷速で750℃以下まで冷却
し、その後650〜750℃で巻取ることを特徴とする
加工性に優れ、異方性の小さい深絞り用熱間圧延鋼板の
製造方法である。
In the present invention, a steel sheet for achieving the above object is (1) wt%, C ≦ 0.
0025%, P ≦ 0.005%, N ≦ 0.003%, S
≦ 0.004%, Mn: 0.05 to 0.20%, Al:
0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 40 ppm ≦ C + N + P + S ≦ 1
Satisfies 10 ppm and the ferrite grain size is GS
It is a hot-rolled steel sheet for deep drawing having NO (grain size number) of 6.0 or more, excellent workability and small anisotropy, and its manufacturing method is as follows: Temperature ≧ 91
The method of manufacturing a hot-rolled steel sheet for deep drawing, which is excellent in workability and has small anisotropy, which is characterized in that hot rolling is performed at 0 ° C. and winding is performed at 650 to 750 ° C., and (3) finishing temperature ≧
Hot rolling at 910 ° C with a total reduction of ≧ 90%,
Then, winding at 650 to 750 ° C, (4) hot rolling at a finishing temperature ≧ 910 ° C, starting cooling within 1 second after completion of rolling, and winding at 650 to 750 ° C, (5) finishing temperature Hot rolling is performed at ≧ 910 ° C. and a finishing reduction ratio of ≧ 90%, cooling is started within 1 second after the completion of rolling, and 650 to 7
Winding at 50 ° C., (6) hot rolling at a finishing temperature ≧ 910 ° C., then cooling to 750 ° C. or less at a cooling rate of 30 ° C./S or more, and then winding at 650 to 750 ° C.,
(7) Finishing temperature ≧ 910 ° C., finishing total rolling reduction ≧ 90
%, Hot rolling at a cooling rate of 30 ° C./S or more to 750 ° C. or less, and then winding at 650 to 750 ° C.,
(8) Hot rolling is performed at a finishing temperature ≧ 910 ° C., cooling is started within 1 second after the completion of rolling, and 75% at a cooling rate of 30 ° C./S or more.
Cool to 0 ° C. or lower, then wind at 650 to 750 ° C., (9) finish rolling ≧ 910 ° C., finish rolling reduction ≧ 90% hot rolling, and start cooling within 1 second after rolling. , A method of manufacturing a hot-rolled steel sheet for deep drawing with excellent processability and having small anisotropy, characterized by cooling to 750 ° C. or lower at a cooling rate of 30 ° C./S or more and then winding at 650 to 750 ° C. Is.

【0007】[0007]

【作用】本発明において、発明者等は、高加工性を得る
ため特性値として、全伸び58%以上を、平均r値1.
0以上、Δr値が0.1以下であり、肌荒れを発生させ
ないためのフェライトの結晶粒度番号としてのGSNO
を6.0番以上とし、かつ2次加工割れを発生させない
ことを目標として実験を開始した。肌荒れを生じないた
めの結晶粒度番号は、通常の熱延鋼板においては、好ま
しくは7.0以上が必要であるが、平均r値、異方性、
延性とも良好な上記のような材料では、GSNOが6.
0番でも十分な製品価値を有す。
In the present invention, the inventors have set a total elongation of 58% or more and an average r value of 1.
GSNO as a ferrite grain size number that is 0 or more and the Δr value is 0.1 or less and does not cause rough skin
Was set to 6.0 or more, and the experiment was started with the goal of not causing secondary work cracks. The grain size number for preventing rough skin is preferably 7.0 or more in a normal hot rolled steel sheet, but the average r value, anisotropy,
In the above materials having good ductility, GSNO is 6.
No. 0 has sufficient product value.

【0008】まず第1の実験として、高延性を得るため
に様々な実験を繰り返して、それぞれの元素の影響につ
いて調査を行った。それによると、何れの元素も低減す
るほど延性が向上することが判明した。この中でも特に
C,N,P,Sの影響が大きく、同時に結晶粒径への影
響が大きいことが判明した(図1参照)。しかし、含ま
れる成分が極めて低い鋼材では、通常の熱延条件下では
全伸びが58%以上でフェライトのGSNOが6.0番
以上を共に満足することはできないことが判明した。
As a first experiment, various experiments were repeated in order to obtain high ductility, and the influence of each element was investigated. According to it, it was found that the ductility was improved as the content of each element was reduced. Among these, it was found that the effects of C, N, P, and S were particularly large, and at the same time, the crystal grain size was also greatly affected (see FIG. 1). However, it has been found that, in a steel material containing extremely low components, the total elongation cannot exceed 58% and the GSNO of ferrite cannot exceed 6.0 or more under ordinary hot rolling conditions.

【0009】そこで、第2の実験として第1の実験条件
に大圧下圧延、圧延直後急冷の条件を加えて結晶粒径
と、伸びの関係を調査した。その結果、この2つの条件
を付加することによって、延性をほぼ確保しながら肌荒
れを発生させない程度の結晶粒径が得られることを確認
した。
Therefore, as a second experiment, the relationship between the crystal grain size and the elongation was investigated by adding the conditions of large reduction rolling and quenching immediately after rolling to the first experimental condition. As a result, it was confirmed that by adding these two conditions, it is possible to obtain a crystal grain size that does not cause rough skin while substantially ensuring ductility.

【0010】さらに、高純鋼になると、固溶するC,N
の量が少なくなり、粒界強化の役割を果たさなくなるた
め、2次加工割れが発生し易くなる。しかし、多くの実
験結果を整理し直してみると、Pを低下させた鋼材は、
2次加工割れの発生が少ないことが判明した。また、図
2に示すように、異方性への影響は、Sの影響が大き
く、高純鋼をベースとして0.1以下のΔr値を得るた
めには、鋼中のS量を規制する必要があることがわかっ
た。
Further, in the case of high-purity steel, it forms a solid solution with C and N.
Is lessened, and the role of strengthening the grain boundary is lost, so that secondary work cracking is likely to occur. However, when rearranging many experimental results, the steel materials with reduced P are
It was found that the occurrence of secondary processing cracks was small. Further, as shown in FIG. 2, the influence on S has a great influence on the anisotropy, and it is necessary to regulate the amount of S in the steel in order to obtain a Δr value of 0.1 or less based on high-purity steel. I knew it was.

【0011】以上の実験結果をもとに、本発明の構成範
囲を決定した。その詳細な構成条件は、次の通りであ
る。Cは、延性に大きな影響を及ぼす。生成する、セメ
ンタイト、フェライト結晶粒中の固溶Cなど、何れも延
性を低下させる。従って本発明において、C量は、25
ppm以下とした。これは、できる限り延性を向上させ
るためで、これ以上のC量では目標とした高い伸び、5
8%以上が安定に得られないためである。Nも延性への
影響は大きく、Cと同様に生成する窒化物、固溶Nなど
は延性を劣化させる。そこでN量は30ppm以下に規
制した。Pについては、延性の向上と、2次加工割れ発
生の低減の理由がある。特に、2次加工割れ防止のため
には、50ppm以下にする必要がある。
Based on the above experimental results, the constitution range of the present invention was determined. The detailed configuration conditions are as follows. C has a great influence on the ductility. Any of the generated cementite, solid solution C in ferrite crystal grains, etc. reduces ductility. Therefore, in the present invention, the amount of C is 25
It was set to ppm or less. This is to improve the ductility as much as possible, and if the C content is higher than this, the target high elongation, 5
This is because 8% or more cannot be stably obtained. N also has a great influence on the ductility, and nitrides, solute N, etc., which are generated similarly to C, deteriorate the ductility. Therefore, the amount of N is regulated to 30 ppm or less. Regarding P, there are reasons for improving the ductility and reducing the occurrence of secondary work cracks. Particularly, in order to prevent secondary work cracking, it is necessary to set the content to 50 ppm or less.

【0012】Sについては、本発明において最も重要な
要件の1つであり、図3で示すように上記範囲内の極低
C,N,P中においては、S量が高いと、異方性が高く
なり、Δr値0.1以下にするためには、40ppm以
下にする必要がある。また、本発明においてもう1つ重
要な成分は、Mnである。本発明者等は、C,N,Pが
材質に及ぼす影響を詳細に調査した結果、これらの元素
が上記に示した範囲内にあるとき、図3に示すように、
ある特定のMn添加範囲内で、平均r値が高くなること
を発見した。その範囲は、Mn:0.05〜0.20%
である。本発明の大きな特徴はこの点にある。すなわ
ち、C,N,Pを極微量成分としたときに、あるMn範
囲内において、平均r値が向上し、熱延鋼板でも平均r
値1.0以上が得られるようになる点である。
S is one of the most important requirements in the present invention. As shown in FIG. 3, in the extremely low C, N, P within the above range, if the amount of S is high, the anisotropy is increased. Becomes higher and the Δr value needs to be 40 ppm or less in order to be 0.1 or less. Further, Mn is another important component in the present invention. As a result of detailed investigation of the influence of C, N, and P on the material, the inventors of the present invention, when these elements are within the ranges shown above, as shown in FIG.
It has been discovered that the average r-value increases within a certain Mn addition range. The range is Mn: 0.05 to 0.20%
Is. This is a major feature of the present invention. That is, when C, N, and P are used as trace components, the average r value is improved within a certain Mn range, and even in the hot-rolled steel sheet, the average r value is increased.
This is a point where a value of 1.0 or more can be obtained.

【0013】Siは、多量に加えると延性を劣化させる
ばかりでなく、Si−Mn系の介在物の起因となり、有
害になる。このため、本発明では、延性への影響がな
く、有害介在物を生成しない条件としてSi≦0.03
%とした。また、Alは脱酸元素として重要であり、鋼
中の介在物を減少させるために必要である。特に、0.
005%以下では不十分な脱酸のために介在物が多量に
発生する。しかし、投入しすぎると、コストアップさら
に圧延工程で生成する析出物の悪影響が心配される。従
って、その範囲はAl:0.005〜0.07%とし
た。
When Si is added in a large amount, it not only deteriorates the ductility, but also causes Si-Mn-based inclusions to be harmful. Therefore, in the present invention, Si ≦ 0.03 is set as the condition that the ductility is not affected and no harmful inclusion is generated.
%. Further, Al is important as a deoxidizing element and is necessary for reducing inclusions in steel. In particular, 0.
If it is less than 005%, a large amount of inclusions are generated due to insufficient deoxidation. However, if the amount is too much, there is a concern that the cost may increase and the precipitates generated in the rolling process may be adversely affected. Therefore, the range was made into Al: 0.005-0.07%.

【0014】本発明のように、高い延性を得る材料を造
り込むためには、微量で影響の大きい元素を総合的に規
制する必要がある。本発明では図1で示すように、微量
4元素の規制で延性に大きな効果を及ぼすことを確認し
た。すなわち、延性向上のための条件として、30ppm
≦C+N+P+S≦90ppm が必要である。このとき、
30ppm 以上としたのは、図2に示すように、これ未満
では大圧下、直後急冷を行っても、GSNOで6.0番
以上の粒径が得られないためであり、また製鋼コストが
高くなるためである。上限を90ppm 以下としたのは、
図1で明らかなようにこれ以上では、目標とする全伸び
58%以上が得られないためである。
In order to build a material having high ductility as in the present invention, it is necessary to comprehensively regulate a small amount of elements that have a great influence. In the present invention, as shown in FIG. 1, it was confirmed that regulation of a trace amount of 4 elements exerts a great effect on ductility. That is, as a condition for improving ductility, 30 ppm
≦ C + N + P + S ≦ 90 ppm is required. At this time,
As shown in FIG. 2, the reason for setting the content to 30 ppm or more is that if it is less than this, even if a large pressure reduction and a rapid cooling are not performed, a grain size of 6.0 or more cannot be obtained with GSNO, and the steelmaking cost is high. This is because The upper limit is 90ppm or less,
This is because, as is clear from FIG. 1, the target total elongation of 58% or more cannot be obtained above this range.

【0015】本発明における成分系で平均r値が向上す
るメカニズムについては不明であるが、本発見において
は、粒界に存在すると影響が大きいC,N,Pを共に低
減した状態で起こっている現象である。集合組織を形成
する結晶粒は、変態の場合も、再結晶の場合も結晶粒界
の状態の影響が大きい。本発明の構成要因になっている
C,N,Pの粒界への影響については、次のことがよく
知られている。まず、C,Nについて、α域の圧延で
は、高純鋼の粒界から生成する再結晶フェライトは絞り
性に良好な集合組織を有していることが知られており、
固溶C,Nの存在は、集合組織に悪影響を及ぼすとされ
ている。
Although the mechanism by which the average r value is improved in the component system of the present invention is unknown, in the present discovery, it occurs in a state where C, N and P, which have a great influence when they exist at the grain boundaries, are reduced. It is a phenomenon. The crystal grains forming the texture are greatly affected by the state of crystal grain boundaries in both transformation and recrystallization. It is well known that the influence of C, N, and P, which is a constituent factor of the present invention, on the grain boundary is as follows. First, regarding C and N, it is known that in rolling in the α region, the recrystallized ferrite generated from the grain boundaries of the high-purity steel has a texture excellent in drawability,
The presence of solute C and N is said to adversely affect the texture.

【0016】また、Pについての2次加工割れへの影響
について、Pは粒界に偏析しやすく、加工割れの一因に
なることが知られている。また、発明鋼板の集合組織を
調査すると、中心部はほぼランダムで表層部には平均r
値の向上に有利な集合組織が見られる。これらのことか
ら、純化された結晶粒界の中に、存在する析出物等が、
従来考えられなかったような結晶の方位制御を行って、
平均r値の向上に寄与した可能性がある。
Regarding the effect of P on secondary work cracking, it is known that P tends to segregate at grain boundaries, which contributes to work cracking. In addition, when the texture of the invention steel sheet was investigated, the center part was almost random and the surface layer part had an average r.
There is a texture that is advantageous for improving the value. From these things, the precipitates present in the purified crystal grain boundaries are
By controlling the crystal orientation that could not be considered before,
It may have contributed to the improvement of the average r value.

【0017】仕上げ圧延における仕上げ温度を910℃
以上にするのは、Ar3 変態点以上で圧延を終了させ、
その後生成する変態フェライト粒を整粒の状態に保つた
めである。また、巻き取り温度を650〜750℃に規
制したのは、表層部の歪を回復または再結晶によってと
り除くことにより58%以上の伸びを安定して得るとと
もに、GSNO6.0番よりも粗大化させないためであ
る。
The finishing temperature in finish rolling is 910 ° C.
What is done is to finish rolling at the Ar 3 transformation point or higher,
This is to keep the transformed ferrite grains generated thereafter in a sized state. Further, the reason why the winding temperature is regulated to 650 to 750 ° C. is that the strain of the surface layer portion is recovered or removed by recrystallization to stably obtain an elongation of 58% or more, and it does not coarsen more than GSNO 6.0. This is because.

【0018】しかし、本発明のように、高純鋼に近い成
分系においては、変態点は非常に高く、結晶粒の成長も
非常に早い。これでは巻取り条件の規制だけでは安定し
てGSNOで6.0番以上の微細粒を得ることはできな
い場合がある。そのような場合には、圧延、冷却を利用
し、条件を組み合わせることによって粗大化を防止する
ことが好ましい。その条件を詳細に調査した結果、仕上
げ圧延の合計圧下率を90%以上、圧延直後1秒以内の
冷却開始、冷速30℃/S以上で750℃以下まで冷却
することが効果的で、全てを同時に使った場合が最も有
効であることはいうまでもない。以上の本発明条件の鋼
板は、高平均r値で、異方性が少なく、高加工性、かつ
2次加工割れの発生しない極めて高品質な熱延鋼板であ
った。
However, in the composition system close to that of high-purity steel as in the present invention, the transformation point is very high and the growth of crystal grains is also very fast. In this case, it may not be possible to stably obtain fine particles of 6.0 or more by GSNO only by controlling the winding condition. In such a case, it is preferable to prevent coarsening by utilizing rolling and cooling and combining conditions. As a result of detailed investigation of the conditions, it is effective to finish rolling with a total rolling reduction of 90% or more, to start cooling within 1 second immediately after rolling, and to cool to 750 ° C or less at a cooling rate of 30 ° C / S or more. Needless to say, it is most effective to use both at the same time. The steel sheets under the conditions of the present invention described above were hot-rolled steel sheets with a high average r value, little anisotropy, high workability, and no secondary work cracks.

【0019】[0019]

【実施例】表1に出鋼成分、表2に圧延条件とその材質
結果の実施例を示す。本発明条件内で製造したNo.1
からNo.9までのテスト材のうち、本発明成分範囲内
のA,B,C,Dは、圧延後の鋼板の材質は、目標の結
晶粒度番号、伸び、平均r値、Δr値を保っており、2
次加工割れも発生しなかった。しかし、Mn量が多いF
材、C+N+P+S量が多いI材は、伸びが目標に達し
なかった。また、P量が多いG材は、2次加工割れが発
生した。C+N+P+Sが少な過ぎるH材は、伸びは高
いものの結晶粒が大きくなり過ぎて、加工後に肌荒れが
発生した。また、S量、P量が多いE,G,I材はΔr
値が目標に達しなかった。さらに、Mn量が適量でなか
ったF,H材、P量が多いG材、C,N量が多いI材は
平均r値は低く、目標の1.0に達しなかった。
[Examples] Table 1 shows examples of steel composition, and Table 2 shows examples of rolling conditions and material results. No. manufactured under the conditions of the present invention. 1
To No. Among the test materials up to 9, A, B, C and D in the composition range of the present invention, the material of the steel sheet after rolling keeps the target grain size number, elongation, average r value and Δr value, Two
Subsequent processing cracks did not occur either. However, F containing a large amount of Mn
For the material I and the material with a large amount of C + N + P + S, the elongation did not reach the target. Further, in the G material having a large amount of P, secondary work cracking occurred. In the H material in which the amount of C + N + P + S was too small, the elongation was high, but the crystal grains were too large, and roughening occurred after processing. In addition, E, G, and I materials with large amounts of S and P have Δr
The value did not reach the target. Further, the average r value was low for the F and H materials in which the Mn content was not appropriate, the G material with a large P content, and the I material with a large C and N content, and did not reach the target of 1.0.

【0020】次に、同じA材を用いて、製造条件につい
て調べたNo.10からNo.15では、重要な要件で
ある仕上げ温度が本発明条件を満たさなかったNo.1
0、巻取温度が高すぎたNo.14は、結晶粒が大き過
ぎて肌荒れを発生させた。巻取温度が低すぎたNo.1
6は伸びが満足しなかった。No.11,12,13
は、仕上げ終了温度、巻取温度を満足したため、圧下
率、冷却開始時間、冷速が満足しなくても、何とか結晶
粒度番号6.0番を確保し、目標を達成できた。全ての
条件を満たしたNo.15、およびNo.1は、非常に
良好な材料が得られた。
Next, using the same A material, No. No. 10 to No. In No. 15, the finishing temperature, which is an important requirement, did not satisfy the conditions of the present invention. 1
0, the winding temperature was too high. In No. 14, the crystal grains were too large and rough skin was generated. The winding temperature was too low. 1
No. 6 was not satisfied with the growth. No. 11, 12, 13
Since the finishing finish temperature and the winding temperature were satisfied, the grain size number 6.0 was managed to be managed and the target could be achieved even if the reduction ratio, the cooling start time, and the cooling rate were not satisfied. No. which satisfied all the conditions. 15, and No. 15 In No. 1, a very good material was obtained.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】[0023]

【発明の効果】本発明による鋼板は、熱延鋼板で高い伸
びと深絞り性を有し、しかも異方性は小さく、冷延鋼板
以上の特性を安価に製造することが可能である。また、
主として成分規制で製造するため、熱延への負荷は小さ
く、トラブルなく製造することが可能である。
The steel sheet according to the present invention is a hot-rolled steel sheet having high elongation and deep drawability, small anisotropy, and can be manufactured at a low cost with properties superior to those of the cold-rolled steel sheet. Also,
Since the composition is mainly regulated, the load on hot rolling is small, and it is possible to manufacture without trouble.

【図面の簡単な説明】[Brief description of drawings]

【図1】鋼中のC+N+S+P含有量と全伸びとの関係
を示す図。
FIG. 1 is a diagram showing the relationship between the C + N + S + P content in steel and the total elongation.

【図2】鋼中のS含有量とΔr値との関係を示す図。FIG. 2 is a diagram showing the relationship between the S content in steel and the Δr value.

【図3】鋼中のMn含有量と平均r値との関係を示す
図。
FIG. 3 is a diagram showing the relationship between the Mn content in steel and the average r value.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足し、かつフェライトの結晶粒径が
GSNO(結晶粒度番号)で6.0番以上である、加工
性に優れ、異方性の小さい深絞り用熱延鋼板。
1. By weight%, C ≦ 0.0025%, P ≦ 0.005%, N ≦ 0.003%, S ≦ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A hot-rolled steel sheet for deep drawing, which satisfies S ≦ 90 ppm and has a ferrite grain size of 6.0 or more in GSNO (grain size number), excellent workability and small anisotropy.
【請求項2】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃で熱間圧延し、その後650〜750℃で巻取ること
を特徴とする加工性に優れ、異方性の小さい深絞り用熱
間圧延鋼板の製造方法。
2. In% by weight, C ≤ 0.0025%, P ≤ 0.005%, N ≤ 0.003%, S ≤ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
A method for producing a hot-rolled steel sheet for deep drawing, which is excellent in workability and has small anisotropy, which comprises hot rolling at ℃ and then winding at 650 to 750 ℃.
【請求項3】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃、かつ仕上げ合計圧下率≧90%で熱間圧延し、その
後650〜750℃で巻取ることを特徴とする加工性に
優れ、異方性の小さい深絞り用熱間圧延鋼板の製造方
法。
3. By weight%, C ≤ 0.0025%, P ≤ 0.005%, N ≤ 0.003%, S ≤ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
A method for producing a hot-rolled steel sheet for deep drawing, which is excellent in workability and has small anisotropy, which comprises hot-rolling at 0 ° C and a total rolling reduction ≧ 90%, and then winding at 650 to 750 ° C.
【請求項4】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃で熱間圧延し、圧延終了後1秒以内に冷却を開始し、
650〜750℃で巻取ることを特徴とする加工性に優
れ、異方性の小さい深絞り用熱間圧延鋼板の製造方法。
4. In% by weight, C ≤ 0.0025%, P ≤ 0.005%, N ≤ 0.003%, S ≤ 0.004%, Mn: 0.05-0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
Hot rolling at ℃, start cooling within 1 second after rolling,
A method for producing a hot-rolled steel sheet for deep drawing, which is excellent in workability and has small anisotropy, which comprises winding at 650 to 750 ° C.
【請求項5】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃、仕上げ合計圧下率≧90%で熱間圧延し、圧延終了
後1秒以内に冷却を開始し、650〜750℃で巻取る
ことを特徴とする加工性に優れ、異方性の小さい深絞り
用熱間圧延鋼板の製造方法。
5. By weight%, C ≦ 0.0025%, P ≦ 0.005%, N ≦ 0.003%, S ≦ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
℃, finish rolling reduction ≧ 90%, hot rolling, start cooling within 1 second after rolling, and take up at 650 to 750 ° C. Excellent workability, small depth of anisotropy Manufacturing method of hot-rolled steel sheet for drawing.
【請求項6】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃で熱間圧延した後、30℃/S以上の冷速で750℃
以下まで冷却し、その後650〜750℃で巻取ること
を特徴とする加工性に優れ、異方性の小さい深絞り用熱
間圧延鋼板の製造方法。
6. In% by weight, C ≦ 0.0025%, P ≦ 0.005%, N ≦ 0.003%, S ≦ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
After hot rolling at ℃, 750 ℃ at a cooling speed of 30 ℃ / S or more
A method for producing a hot-rolled steel sheet for deep drawing, which is excellent in workability and has small anisotropy, which comprises cooling to the following temperature and then winding at 650 to 750 ° C.
【請求項7】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃、仕上げ合計圧下率≧90%で熱間圧延した後、30
℃/S以上の冷速で750℃以下まで冷却し、その後6
50〜750℃で巻取ることを特徴とする加工性に優
れ、異方性の小さい深絞り用熱間圧延鋼板の製造方法。
7. By weight%, C ≦ 0.0025%, P ≦ 0.005%, N ≦ 0.003%, S ≦ 0.004%, Mn: 0.05-0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
30 after hot rolling at ℃, finishing total reduction ≧ 90%
Cool down to 750 ° C or lower at a cooling rate of ℃ / S or higher, then 6
A method for producing a hot-rolled steel sheet for deep drawing, which is excellent in workability and has small anisotropy, which comprises winding at 50 to 750 ° C.
【請求項8】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃で熱間圧延し、圧延終了後1秒以内に冷却を開始し
て、30℃/S以上の冷速で750℃以下まで冷却し、
その後650〜750℃で巻取ることを特徴とする加工
性に優れ、異方性の小さい深絞り用熱間圧延鋼板の製造
方法。
8. In% by weight, C ≦ 0.0025%, P ≦ 0.005%, N ≦ 0.003%, S ≦ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
Hot rolling at ℃, start cooling within 1 second after the completion of rolling, and cool to 750 ° C or less at a cooling rate of 30 ° C / S or more,
Then, the method for producing a hot-rolled steel sheet for deep drawing which is excellent in workability and has small anisotropy, which is characterized by winding at 650 to 750 ° C.
【請求項9】 重量%で、 C ≦0.0025%、 P ≦0.005%、 N ≦0.003%、 S ≦0.004%、 Mn:0.05〜0.20%、 Al:0.005〜0.07%、 Si≦0.03% その他不可避的元素を含み、30ppm≦C+N+P+
S≦90ppmを満足する鋼片を、仕上げ温度≧910
℃、仕上げ合計圧下率≧90%で熱間圧延し、圧延終了
後1秒以内に冷却を開始して、30℃/S以上の冷速で
750℃以下まで冷却し、その後650〜750℃で巻
取ることを特徴とする加工性に優れ、異方性の小さい深
絞り用熱間圧延鋼板の製造方法。
9. By weight%, C ≦ 0.0025%, P ≦ 0.005%, N ≦ 0.003%, S ≦ 0.004%, Mn: 0.05 to 0.20%, Al: 0.005-0.07%, Si ≦ 0.03%, including other unavoidable elements, 30 ppm ≦ C + N + P +
A steel piece satisfying S ≦ 90 ppm is finished at a finishing temperature ≧ 910.
℃, finish rolling reduction ≧ 90% hot rolling, start cooling within 1 second after rolling, cool to 750 ° C. or less at a cooling rate of 30 ° C./S or more, and then at 650 to 750 ° C. A method for producing a hot-rolled steel sheet for deep drawing, which has excellent workability and is small in anisotropy, which is characterized by winding.
JP19142693A 1993-08-02 1993-08-02 Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture Withdrawn JPH0741903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19142693A JPH0741903A (en) 1993-08-02 1993-08-02 Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19142693A JPH0741903A (en) 1993-08-02 1993-08-02 Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture

Publications (1)

Publication Number Publication Date
JPH0741903A true JPH0741903A (en) 1995-02-10

Family

ID=16274421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19142693A Withdrawn JPH0741903A (en) 1993-08-02 1993-08-02 Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture

Country Status (1)

Country Link
JP (1) JPH0741903A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356739A (en) * 2001-05-30 2002-12-13 Kawasaki Steel Corp Hot rolled steel sheet for deep drawing excellent in strain age hardening characteristic and production method therefor
CN100408711C (en) * 2002-06-25 2008-08-06 杰富意钢铁株式会社 High-strength cold rolled steel sheet and process for producing the same
WO2018194059A1 (en) * 2017-04-17 2018-10-25 新日鐵住金株式会社 Steel sheet and method for manufacturing same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356739A (en) * 2001-05-30 2002-12-13 Kawasaki Steel Corp Hot rolled steel sheet for deep drawing excellent in strain age hardening characteristic and production method therefor
JP4608811B2 (en) * 2001-05-30 2011-01-12 Jfeスチール株式会社 Deep drawn hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
CN100408711C (en) * 2002-06-25 2008-08-06 杰富意钢铁株式会社 High-strength cold rolled steel sheet and process for producing the same
WO2018194059A1 (en) * 2017-04-17 2018-10-25 新日鐵住金株式会社 Steel sheet and method for manufacturing same
JP6460295B1 (en) * 2017-04-17 2019-01-30 新日鐵住金株式会社 Steel sheet and manufacturing method thereof
US11098386B2 (en) 2017-04-17 2021-08-24 Nippon Steel Corporation Steel sheet and method of manufacturing same

Similar Documents

Publication Publication Date Title
US4040873A (en) Method of making low yield point cold-reduced steel sheet by continuous annealing process
JPH0741903A (en) Hot rolled steel sheet for deep drawing excellent in workability and having small anisotropy and its manufacture
JPH05112831A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in workability
JP3831137B2 (en) Manufacturing method of high-strength steel sheet with excellent ductility and stretch flangeability
JPH02141536A (en) Production of steel sheet for drawn can decreased earing
JPS6115929B2 (en)
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JPS5910414B2 (en) Method for producing cold-rolled steel sheets with excellent deep drawability
JPH05295443A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPH05171285A (en) Production of extremely soft steel sheet for vessel reduced in low anisotropy and having ageing resistance
JPH0541687B2 (en)
JPH06346147A (en) Production of grain-oriented silicon steel sheet
JP2619182B2 (en) Hot-rolled steel sheet for deep drawing excellent in secondary work cracking resistance and small in anisotropy and method for producing the same
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3362739B2 (en) Manufacturing method of hot rolled steel sheet with excellent deep drawability
JP2634543B2 (en) Hot rolled steel sheet excellent in workability and secondary work cracking resistance, and method for producing the same
JPH0369967B2 (en)
JPH05302147A (en) Hot-rolled steel strip excellent in workability and reduced in anisotropy and manufacture thereof
JP2640065B2 (en) High-strength hot-rolled steel sheet having good workability and a strength of 730 N / mm2 or more and method for producing the same
KR930002739B1 (en) Method for making aluminium-killed cold-rolled steel having a good forming property
JPH05302146A (en) Hot-rolled steel strip excellent in deep drawability and manufacture thereof
JPS6350423A (en) Manufacture of thick high-tensile steel plate excellent in toughness at low temperature
JPS621454B2 (en)
JPS6364491B2 (en)
JPH07197128A (en) Production of grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003