JPH0152451B2 - - Google Patents

Info

Publication number
JPH0152451B2
JPH0152451B2 JP58005425A JP542583A JPH0152451B2 JP H0152451 B2 JPH0152451 B2 JP H0152451B2 JP 58005425 A JP58005425 A JP 58005425A JP 542583 A JP542583 A JP 542583A JP H0152451 B2 JPH0152451 B2 JP H0152451B2
Authority
JP
Japan
Prior art keywords
less
weight
rolling
steel
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58005425A
Other languages
Japanese (ja)
Other versions
JPS59129733A (en
Inventor
Takashi Sakata
Takashi Obara
Minoru Nishida
Hideo Kukuminato
Tomohiko Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP542583A priority Critical patent/JPS59129733A/en
Publication of JPS59129733A publication Critical patent/JPS59129733A/en
Publication of JPH0152451B2 publication Critical patent/JPH0152451B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、ストレツチヤーストレインの発生
しない硬質ぶりき用めつき原板の製造方法に関す
るものである。ここに硬質ぶりき用めつき原板
は、いわゆるテインフリースチールに供用する場
合を含むものとする。 JISG3303によると、ぶりきの調質度に関し、
目標とするロツクウエルT硬さ(HR30T)に応
じてT−1(HR30T:49±3)からT−6(HR
30T:70±3)まで、数区分され、これらにつ
き、箱焼なまし法による場合のほか、とくにT−
4CA〜T−6CA(HR30T:61±3〜70±3)と
し、連続焼なまし法による場合が規定されてい
る。 この発明は上記区分のうち、最後にのべた硬質
ぶりきおよびこれに類するテインフリースチール
に関連する。 (従来の技術) 従来、T−1〜T−4級のぶりき用めつき原板
は、C:0.01〜0.10重量%(以下、鋼成分につい
て単に%で示す)の低炭素アルミキルド鋼が、ま
たT−5,T−6については、PまたはN添加に
よる硬さ増強を狙つた、低炭素アルミキルド鋼が
主として用いられた。 これらのめつき原板に施される焼なまし法とぶ
りきの性質の関係は次のとおりである。 箱焼きなまし法:再結晶(550〜700℃)終了
後、数日かけて室温近くまで徐冷されるので、鋼
中Cは炭化物として大部分が析出する。又鋼中N
は、加熱中に窒化アルミとして析出する。 つまり鋼中C,Nが固溶状態として存在しない
ので、調質圧延と、すずめつき後のすずめつき合
金化処理(230〜250℃で数秒保持する、いわゆる
リフロー処理)を施しても、歪時効せず、降伏点
伸びは発生しない。 連続焼なまし法:10〜30℃/秒で600〜730℃に
急速加熱し、数十秒保持して再結晶を行わせた
後、5〜50℃/秒で室温まで急速冷却されるの
で、C,Nは大部分が固溶状態で存在する。それ
故調質圧延により転位が鋼内に導入され、次いで
すずめつき後のすずめつき合金化処理により、固
溶状態のC,Nが転位線上に析出し、歪時効硬化
を引き起こす。 従つてこの鋼板を缶などに加工すると降伏点伸
びに起因するすじ模様(ストレツチヤーストレイ
ンという)が発生し、著しく美観を損なう。 すなわち、従来連続焼なまし法で製造されてい
たT−4〜T−6調質度の硬質ぶりきには、スト
レツチヤーストレインが少なからず発生し、問題
を引起していたわけである。 ところで連続焼なましと調質圧延を組合せてT
−4〜T−6調質度の硬質ぶりき板を製造する技
術としては、特公昭56−3413号公報が知らされて
いる。 同号公報には、素材としてC:0.1%以下(実
施例0.04%)、Si:0.05%以下、Mn:0.05〜0.4
%、酸可溶Al:0.01〜0.1%、N:0.002〜0.01%
を含有するアルミキルド鋼を素材とし、熱延仕上
げ温度700〜900℃、冷延圧下率75〜93%、表面硬
さHR30T43〜58に連続焼なましし、表面硬さ44
〜75の範囲の所望の調質度に応じて1.5〜35%の
湿式調質をすることが開示されている。 この方法において目的の調質度を調質圧延で達
成できることは調質圧延での加工硬化を考慮ずれ
ば容易に類推できるとは云え、この先行開示には
ぶりきに要求される材料特性である硬さを満足し
得ても加工時に発生するストレツチヤーストレイ
ンの防止対策について何ら言及されていない。 ところが、上掲成分の素材を用いて連続焼なま
しを施すと、すでにのべたように多量のCが固溶
状態で鋼中に残存するため後工程の調質圧延によ
り歪みが導入され、歪時効が起こりやすい状況に
なる。 すなわち、調質圧延されためつき原板にすずめ
つきを施してのち、230〜300℃、数秒の合金化処
理を行つたり、又はクロムめつきを施して、テイ
ンフリースチールにする際の乾燥のために加熱に
より歪時効が起こり、製缶などの加工時に著しい
ストレツチヤーストレインを起こすことの不利を
来すが、この点なお未解決であつたのである。 (発明が解決しようとする問題点) 発明者らは、調質圧延とそれに続くすずめつき
後のすずめつき合金化処理においてストレツチヤ
ーストレインの発生しない硬質ぶりきを安定に得
るための検討をした結果、素材としてC:0.003
%以下の極低炭素アルミキルド鋼をとくに用い、
これに連続焼なましと調質圧延を組合せれば、こ
の発明で所期した目的が有利に達成されることを
見出した。 (問題点を解決するための手段) この発明は、C:0.0030%以下、Si:0.1%以
下、Mn:0.5%以下を含み、Al:0.010〜0.080%、
N:0.0050%以下を、またさらには0.10%以下の
Nb、0.20%以下のTiのうち少なくとも1種とを、
含有し、Mn/S比10以上で、しかも0.030%以下
に制限したSのほか、0.030%以下のPおよびそ
の他不可避的混入不純物とともに含有する組成の
鋼素材を熱間圧延し、その後冷間圧延をして極低
炭素アルミキルド鋼冷延板を得る段階と、 この冷延板を連続焼なましで再結晶温度以上に
加熱し、ついで冷却したのち、10%以上50%以下
で調質圧延する段階と の結合により、とくに有利に、ストレツチヤー
ストレインの発生のおそれなしにT−4〜T−6
級の調質度の硬質ぶりきまたはテインフリースチ
ールが得られることを究明したものである。 この発明においてめつき原板の鋼成分とくにC
の挙動は重要である。 すでに触れたように、従来はCの含有量が0.01
〜0.10%と高いため、連続焼なまし時の急速冷却
により鋼中に多量の固溶状態のCが存在し、この
固溶Cは調質圧延とめつき後めつき合金化処理に
より、転位線上に析出してストレツチヤーストレ
インの原因となつていたのである。 そこで鋼中に含まれるC量とめつき合金化処理
後のストレツチヤーストレインの関係を調べるた
め、C量の異なる真空溶解鋼を実験室的に溶製
し、以下の基礎実験を行つた。 (基礎実験) 素材の成分としてCを0.0008〜0.040%まで変
え、その他の成分は、Si:0.01〜0.02%、Mn:
0.23%、P:0.011〜0.012%、S:0.007〜0.009
%、Al:0.028〜0.030%、N:0.0023〜0.0025%
でほぼ共通である。 この鋼を鍛造で30mm厚のシートバーとし、次い
で熱間圧延する際、シートバーを1150℃に加熱
し、仕上げ温度860℃で2.6mmの熱延鋼板とした
後、ただちに560℃の炉中に装入し、30分徐冷す
るコイル巻取り温度560℃相当処理を行つた。 この鋼板を酸洗後小型圧延機で0.32mmまで冷間
圧延し、さらに連続焼なましサイクルで再結晶焼
鈍した。 すなわち冷延鋼板を、熱処理シミユレーターで
15℃/秒で710℃まで急速加熱し該温度に30秒保
持した後10℃/秒で室温まで急速冷却した。 この後、12%の調質圧延を施した後、めつき及
びめつき後の合金化処理を実験室的に再現するた
め、250℃のオイルバス中に3秒保持した後水冷
する処理を行つた。 この試料をJIS5号引張試験片に加工し、引張試
験を行い、一部は硬さも測定した。また1%引張
時のストレツチヤーストレインの発生状況の観察
とともに、鋼板表面の中心線平均粗さ(Ra;カ
ツトオフ値0.8mm)の測定を行つた。第1図に引
張り試験による降伏点伸び、硬さ、ストレツチヤ
ーストレインの発生挙動及び鋼板表面粗さに及ぼ
すC量の効果を示す。 第1図のように降伏点伸びは、0.003%C以下
のとき10%以下に抑制されてストレツチヤースト
レインの発生は殆どなく、このことは鋼板表面粗
さが0.4μmRaで、ストレツチヤーストレインに
よる肌荒れ現象の非常に小さいことからも明らか
である。 (作用) 上に述べた基礎実験の結果に従い、この発明に
おいて鋼中C量は0.003%以下でなければならな
い。 次にこの発明の鋼中成分Si,MnさらにSおよ
びPについては、これらの元素を多量に添加する
と、連続焼なまし時の粒成長を抑えて、硬質化
し、後の調質圧延で圧延負荷の上昇を引起すばか
りでなく、ぶりきの耐食性を阻害する要因にもな
るので少ないほうがよく、Si:0.1%以下、Mn:
0.5%以下、S:0.030%以下、P:0.030%以下に
する必要がある。 ただしMnは、熱間圧延時の脆化の原因となる
SをMnSとして固定する必要があるのでMn/S
10が必要である。 AlはNを窒化アルミとして固定するのに必要
であり最低で0.010%必要である。多量の添加は
コストアツプになるのでその上限を0.080%とす
る。 またNはCと同様連続焼なまし後に固溶状態で
存在すると、製品加工時にストレツチヤーストレ
インの原因となるので少ないほどよいが、その上
限を0.0050%として上記Alによる固定を成就する
ことができる。 以上のべたところに加えてNbおよびTiはそれ
ぞれ0.10%以下、0.20%以下にて固溶状態のCを
NbC,TiCとして固定する役割を果たす。 再び第1図において☆および★は、上述実験で
それぞれC=0.0023%のときNb=0.01%、またC
=0.0026%のときTi=0.028%添加含有させた他
は同じ条件とした場合に場合に得られた成績であ
つて、いずれの鋼でも降伏点伸びは0となり、ス
トレツチヤーストレインの問題は全く生じないこ
と、つまりNb,Tiはこの発明の目的とするスト
レツチヤーストレインの防止に関して同効であ
る。なおこれらの含有量の上限は、添加によるコ
ストアツプを考慮して、Nb:0.10%、Ti:0.20
%とすべきである。ここにNbおよびTiによる効
果をとくに期待するためには、Nb:0.005%、
Ti:0.01%から有用である。 上記のように成分調整をした溶鋼はこの発明の
工程段階に至る間に、適宜造塊法による分塊圧延
を経たスラブまたより好ましくは連続鋳造による
スラブにつき、熱間圧延および冷間圧延を施す
が、それらの熱間圧延条件、冷間圧延条件につい
てはとくに制限する必要はなく従来通りの常法に
従えばよい。 この冷間圧延を経たのちの連続焼なまし条件に
ついてもストリツプの長手方向及び幅方向に均一
な材質を得るためにも、箱焼なまし法よりすぐれ
る連続焼なまし法において、とくにこの発明の目
的に適合するが、連続焼なましの条件自体につい
ては、とくに限定する必要はなく、焼なまし温度
が再結晶温度以上であればよい。 また室温近くへの冷却速度についてもとくに限
定されない。 これに反して調質圧延は、ぶりきの硬さを決定
する上で最も重要な構成因子である。 この発明は、素材としてC:0.0030%以下の極
低炭素アルミキルド鋼を素材とし、連続焼なまし
後調質圧延を10%以上施した後、すずめつき及び
すずめつき合金化処理またはテインフリースチー
ルにおける対応した処理を経て、降伏点伸びに起
因するストレツチヤーストレインの発生しないと
ころに特異性をもつ、調質度T−4〜T−6の硬
質ぶりきまたはテインフリースチールが製造する
ことを新たに提案するものである。 ここに連続焼なましのままの鋼板は、素材が極
低炭素Alキルド鋼であるため非常に軟質であり、
調質圧延機で10%以上の圧下を容易に行うことが
できる。 すなわちこの調質圧延の圧下率の効果につき次
の確認実験を行つた。 素材はC=0.0018%、Si=0.01%、Mn=0.23
%、Al=0.031%、N=0.0023%、P=0.011%、
S=0.007%を含有する鋼を、真空溶解で実験室
的に製造し、連続焼なましまでの工程は、基礎実
験でのべたところと同じとした。 連続焼なまし後の鋼板に8〜50%の調質圧延を
施し、次いでオイルバス中で250℃、3秒保持す
る処理を施した後、JIS5号試験片に加工して引張
試験を行い、降伏点伸びの測定及び硬さを測定し
た。第2図にその結果を示す。 いずれの調質圧延圧下率でも降伏点伸びは0.5
%以下であり、ストレツチヤーストレインは全く
問題ない。また調質圧延圧下率10〜20%未満でほ
ぼT−4調質度、また20〜30%でT−5調質度、
さらに40〜50%でT−6調質度の各硬質ぶりきが
得られることが分かる。 以上の実験結果より、本発明での調質圧延圧下
率を限定した。圧下率10%未満では、T−4以上
の調質度を確保するのは困難であることから下限
を10%とした。また、50%を越える圧下を施して
も、材質的には、大きな変化はなく、いたずらに
圧延機の負荷を大きくするだけであり、圧延中に
鋼板の破断等の操業上のトラブルを招きやすくな
ることから上限を50%とした。 以上のようにこの発明はC:0.0030%以下の極
低炭素Alキルド鋼を素材とし、これに調質圧延
を組合せるという全く新しい発想のもとに、スト
レツチヤーストレインの発生しない硬質ぶりきま
たはテインフリースチールの有利な調質法を確立
したものである。なお、調質圧延に使用する圧延
機は、従来一般的に使用されている、1スタン
ド、又は2スタンドの調質圧延機ばかりでなく、
10%以上の圧延が可能な圧延機ならいかなる種類
のものであつてもよい。 (実施例) 表1に示す成分の鋼を転炉で溶製し、連続鋳造
でスラブとした。該スラブを表1に示す熱間圧延
条件で2.3mmに仕上げた。
(Industrial Application Field) The present invention relates to a method for manufacturing a plated original plate for hard tin plate that does not generate stretcher strain. Here, the plated original plate for hard tinplate includes the case where it is used for so-called stain-free steel. According to JISG3303, regarding the tempering degree of tinplate,
Depending on the target Rockwell T hardness (HR30T), T-1 (H R 30T: 49±3) to T-6 (H R
30T: up to 70±3), and for these, in addition to the case using the box annealing method, especially T-
4CA to T-6CA (H R 30T: 61±3 to 70±3), and the continuous annealing method is specified. The present invention relates to the last of the above categories, hard tin tin and similar stain-free steels. (Prior art) Conventionally, T-1 to T-4 grade tin plates are made of low carbon aluminum killed steel containing C: 0.01 to 0.10% by weight (hereinafter, the steel composition is simply expressed in percentage). For T-5 and T-6, low carbon aluminum killed steel was mainly used, aiming at increasing hardness by adding P or N. The relationship between the annealing method applied to these plated original plates and the properties of tinplate is as follows. Box annealing method: After completion of recrystallization (550 to 700°C), the steel is slowly cooled to near room temperature over several days, so that most of the C in the steel precipitates as carbides. Mata Hagane N
precipitates as aluminum nitride during heating. In other words, since C and N in steel do not exist in a solid solution state, strain aging does not occur even after temper rolling and tin alloying treatment after tin tinting (so-called reflow treatment, held at 230 to 250 degrees Celsius for several seconds). No elongation at yield point occurs. Continuous annealing method: The material is rapidly heated to 600-730°C at a rate of 10-30°C/second, held for several tens of seconds to allow recrystallization, and then rapidly cooled to room temperature at a rate of 5-50°C/second. , C, and N are mostly present in a solid solution state. Therefore, dislocations are introduced into the steel by temper rolling, and then by the tin alloying treatment after tin-plating, solid solution C and N precipitate on the dislocation lines, causing strain age hardening. Therefore, when this steel sheet is processed into cans, etc., a streak pattern (called stretcher strain) occurs due to elongation at the yield point, which significantly impairs the aesthetic appearance. That is, hard tinplates with a tempering degree of T-4 to T-6, which were conventionally manufactured by the continuous annealing method, had a considerable amount of stretcher strain, which caused problems. By the way, by combining continuous annealing and temper rolling, T
Japanese Patent Publication No. 56-3413 is known as a technique for producing hard tin plate having a heat treatment degree of -4 to T-6. The same publication describes the materials as C: 0.1% or less (example 0.04%), Si: 0.05% or less, Mn: 0.05 to 0.4
%, acid soluble Al: 0.01-0.1%, N: 0.002-0.01%
The material is aluminum killed steel, hot rolling finish temperature 700~900℃, cold rolling reduction rate 75~93%, surface hardness H R 30T43~58, surface hardness 44.
A wet tempering of 1.5% to 35% is disclosed depending on the desired degree of tempering ranging from ~75%. Although it can be easily inferred that the desired degree of tempering can be achieved by temper rolling in this method by considering work hardening in temper rolling, the material properties required for the first time in this prior disclosure are Even if the hardness is satisfied, there is no mention of measures to prevent stretcher strain that occurs during processing. However, when continuous annealing is performed using a material with the above-mentioned components, as mentioned above, a large amount of C remains in the steel in a solid solution state, so strain is introduced in the subsequent temper rolling process, causing strain. This creates a situation where the statute of limitations is likely to run out. In other words, after applying tinting to a temper-rolled plate, it is then subjected to alloying treatment at 230 to 300°C for a few seconds, or for drying when chromium plating is applied to make stain-free steel. However, this problem was still unsolved, as strain aging occurs due to heating, resulting in significant stretcher strain during processing such as can manufacturing. (Problems to be Solved by the Invention) The inventors have conducted studies to stably obtain a hard tin plate that does not cause stretcher strain during temper rolling and subsequent tin alloying treatment after tin plating. As a result, C as material: 0.003
Especially using ultra-low carbon aluminum killed steel of less than %,
It has been found that by combining this with continuous annealing and temper rolling, the object intended by the present invention can be advantageously achieved. (Means for Solving the Problems) This invention contains C: 0.0030% or less, Si: 0.1% or less, Mn: 0.5% or less, Al: 0.010 to 0.080%,
N: 0.0050% or less, or even 0.10% or less
at least one of Nb and 0.20% or less of Ti,
In addition to S with a Mn/S ratio of 10 or more and limited to 0.030% or less, a steel material with a composition containing 0.030% or less of P and other unavoidable impurities is hot rolled and then cold rolled. to obtain an ultra-low carbon cold-rolled aluminum-killed steel sheet; and heating this cold-rolled sheet to a temperature higher than the recrystallization temperature through continuous annealing, cooling it, and then temper rolling at a rate of 10% to 50%. Particularly advantageously, the combination with the stage T-4 to T-6 can be carried out without the risk of stretcher strains.
It was discovered that hard tinplate or stain-free steel with a heat treatment level of 100% can be obtained. In this invention, the steel composition of the plated original plate is particularly C.
The behavior of is important. As already mentioned, conventionally the C content was 0.01
Due to the high content of ~0.10%, a large amount of solid solution C exists in the steel due to rapid cooling during continuous annealing, and this solid solution C is removed on dislocation lines by skin pass rolling and plating alloying treatment after plating. This causes stretcher strain. Therefore, in order to investigate the relationship between the amount of C contained in the steel and the stretcher strain after plating and alloying treatment, vacuum melted steels with different amounts of C were melted in the laboratory and the following basic experiments were conducted. (Basic experiment) C was varied as a component of the material from 0.0008% to 0.040%, and other components were Si: 0.01% to 0.02%, Mn:
0.23%, P: 0.011-0.012%, S: 0.007-0.009
%, Al: 0.028-0.030%, N: 0.0023-0.0025%
It is almost common. This steel is forged into a 30mm thick sheet bar, then hot rolled by heating the sheet bar to 1150℃, finishing at a finishing temperature of 860℃ to form a 2.6mm hot rolled steel plate, and then immediately placed in a 560℃ furnace. A process equivalent to a coil winding temperature of 560°C was performed by charging and slowly cooling for 30 minutes. After pickling, this steel plate was cold rolled to 0.32 mm using a small rolling mill, and further recrystallized annealed using a continuous annealing cycle. In other words, cold-rolled steel sheets are processed using a heat treatment simulator.
It was rapidly heated to 710°C at a rate of 15°C/second, held at this temperature for 30 seconds, and then rapidly cooled to room temperature at a rate of 10°C/second. After this, after 12% temper rolling, in order to reproduce the plating and post-plating alloying treatment in the laboratory, it was held in an oil bath at 250℃ for 3 seconds and then water-cooled. Ivy. This sample was processed into a JIS No. 5 tensile test piece, a tensile test was conducted, and the hardness of some of the samples was also measured. In addition to observing the occurrence of stretcher strain at 1% tension, the center line average roughness (Ra; cutoff value: 0.8 mm) of the steel plate surface was measured. Figure 1 shows the effect of C content on yield point elongation, hardness, stretcher strain generation behavior, and steel sheet surface roughness in a tensile test. As shown in Figure 1, when the yield point elongation is 0.003%C or less, the elongation at yield is suppressed to 10% or less, and there is almost no stretcher strain. This is also clear from the fact that the skin roughness caused by this phenomenon is extremely small. (Function) According to the results of the basic experiment described above, in this invention, the amount of C in the steel must be 0.003% or less. Next, regarding the components Si, Mn, S and P in the steel of this invention, adding large amounts of these elements suppresses grain growth during continuous annealing, hardens the steel, and reduces the rolling load during subsequent temper rolling. Not only does this cause an increase in the corrosion resistance of the tin plate, but it can also be a factor that inhibits the corrosion resistance of tinplate, so the lower the content, the better; Si: 0.1% or less, Mn:
Must be 0.5% or less, S: 0.030% or less, P: 0.030% or less. However, since Mn needs to fix S, which causes embrittlement during hot rolling, as MnS, Mn/S
10 is required. Al is necessary to fix N as aluminum nitride, and is required at a minimum of 0.010%. Adding a large amount increases costs, so the upper limit is set at 0.080%. Also, like C, if N exists in a solid solution state after continuous annealing, it will cause stretcher strain during product processing, so the less it is, the better. can. In addition to the above, Nb and Ti contain C in solid solution at 0.10% or less and 0.20% or less, respectively.
It plays the role of fixing NbC and TiC. Again in Figure 1, ☆ and ★ indicate Nb = 0.01% when C = 0.0023% and C
= 0.0026%, Ti = 0.028% was added under the same conditions, but the yield point elongation was 0 for all steels, and there was no problem of stretcher strain. In other words, Nb and Ti have the same effect on preventing stretcher strain, which is the object of this invention. Note that the upper limits of these contents are Nb: 0.10%, Ti: 0.20%, taking into account the cost increase due to addition.
It should be %. In order to particularly expect the effects of Nb and Ti, Nb: 0.005%,
Ti: Useful from 0.01%. Before the molten steel whose composition has been adjusted as described above reaches the process step of the present invention, it is suitably subjected to hot rolling and cold rolling to form a slab that has been subjected to blooming rolling using an agglomeration method, or more preferably a slab that has been continuously cast. However, there is no need to particularly limit the hot rolling conditions and cold rolling conditions, and conventional methods may be followed. Regarding continuous annealing conditions after this cold rolling, in order to obtain uniform material properties in the longitudinal and width directions of the strip, the present invention is particularly effective in continuous annealing, which is superior to box annealing. However, the continuous annealing conditions themselves do not need to be particularly limited as long as the annealing temperature is equal to or higher than the recrystallization temperature. Furthermore, there are no particular limitations on the cooling rate to near room temperature. On the other hand, temper rolling is the most important component in determining the hardness of tinplate. This invention uses ultra-low carbon aluminum killed steel with C: 0.0030% or less as a material, and after continuous annealing and temper rolling of 10% or more, tin-plating and tin-alloying treatment or stain-free steel. Through corresponding processing, we have newly announced that we can manufacture hard tin or stain-free steel with a temper degree of T-4 to T-6, which has the specificity of not causing stretcher strain caused by elongation at the yield point. This is what we propose. The continuously annealed steel sheet here is extremely soft because it is made of ultra-low carbon Al-killed steel.
Reductions of 10% or more can be easily achieved with a temper rolling mill. That is, the following experiment was conducted to confirm the effect of the rolling reduction in temper rolling. Materials are C=0.0018%, Si=0.01%, Mn=0.23
%, Al=0.031%, N=0.0023%, P=0.011%,
Steel containing S = 0.007% was produced in the laboratory by vacuum melting, and the steps up to continuous annealing were the same as those described in the basic experiment. After continuous annealing, the steel plate was subjected to 8-50% temper rolling, then held at 250℃ for 3 seconds in an oil bath, and then processed into JIS No. 5 test pieces and subjected to a tensile test. The yield point elongation and hardness were measured. Figure 2 shows the results. The yield point elongation is 0.5 at any temper rolling reduction rate.
% or less, and there is no problem with stretcher strain. In addition, when the temper rolling reduction is less than 10 to 20%, it is almost T-4 temper, and when it is 20 to 30%, it is T-5 temper.
Furthermore, it can be seen that various hard tinplates with a T-6 heat refining degree can be obtained at 40 to 50%. Based on the above experimental results, the skin pass rolling reduction ratio in the present invention was limited. If the reduction rate is less than 10%, it is difficult to ensure a heat treatment degree of T-4 or higher, so the lower limit was set at 10%. Furthermore, even if a reduction of more than 50% is applied, there is no major change in the material, and it only unnecessarily increases the load on the rolling mill, which can easily lead to operational troubles such as breakage of the steel plate during rolling. Therefore, the upper limit was set at 50%. As described above, this invention is based on a completely new idea of using ultra-low carbon Al killed steel with C: 0.0030% or less and combining it with temper rolling. Or, an advantageous refining method for stain-free steel has been established. The rolling mill used for temper rolling is not limited to the one-stand or two-stand temper rolling mill that has been commonly used in the past.
Any type of rolling mill may be used as long as it is capable of rolling by 10% or more. (Example) Steel having the components shown in Table 1 was melted in a converter and made into a slab by continuous casting. The slab was finished to 2.3 mm under the hot rolling conditions shown in Table 1.

【表】 酸洗後タンデム圧延機で0.3mmまで冷間圧延し
た。 次に連続焼なまし炉で第3図に示すヒートサイ
クルで連続焼なましを施した。この鋼板に調質圧
延機で15,25,45%の調質圧延を施したのち、電
気めつきラインで25番のすずめつきを施したの
ち、めつき合金化処理を施した。 これらの鋼板をJIS5号試験片に加工し、引張試
験を行つた時の降伏点伸び及び硬さ(HR30T)
を表2に示す。
[Table] After pickling, it was cold rolled to 0.3mm using a tandem rolling mill. Next, continuous annealing was performed in a continuous annealing furnace using the heat cycle shown in FIG. This steel plate was subjected to 15, 25, and 45% temper rolling in a temper rolling mill, then No. 25 tin plated in an electroplating line, and then plated and alloyed. These steel plates were processed into JIS No. 5 test pieces and the yield point elongation and hardness (H R 30T) were determined when a tensile test was performed.
are shown in Table 2.

【表】【table】

【表】 この発明による供試材(A)〜(G)は、C含有量が何
れも0.003%以下で降伏点伸びは1%以下と小さ
く、ストレツチヤーストレインの発生は認められ
ない。しかし供試材(H)〜(J)はC含有量が0.003%
をこえているので、降伏点伸びは1.0%をこえ、
鋼板表面の肌荒れが強くあらわされてSnめつき
板表面の美観を著しく損なう。 (発明の効果) 以上のようにこの発明は、ぶりきまたは類似物
製品の加工時に発生する降伏点伸びに起因したス
トレツチヤーストレインの発生しない硬質ぶりき
または類似物を得ることができ、ここに降伏点伸
びに起因した加工時の腰折れ欠陥も発生しないこ
とは云うまでもない。
[Table] The sample materials (A) to (G) according to the present invention all have a C content of 0.003% or less, a yield point elongation as small as 1% or less, and no stretcher strain is observed. However, the C content of sample materials (H) to (J) was 0.003%.
Since the yield point elongation exceeds 1.0%,
The roughness of the surface of the steel plate is strongly manifested, and the beauty of the surface of the Sn-plated plate is significantly impaired. (Effects of the Invention) As described above, the present invention makes it possible to obtain hard tin or similar products that do not suffer from stretcher strain caused by yield point elongation that occurs during processing of tin or similar products. Needless to say, bending defects during processing due to elongation at yield point do not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、降伏点伸び及び硬さ
(HR30T)に及ぼすそれぞれC量、調質圧延・圧
下率の各影響を示すグラフであり、第3図は実施
例に使用した連続焼なまし炉のヒートサイクルで
ある。
Figures 1 and 2 are graphs showing the effects of C content and skin pass rolling/reduction ratio on yield point elongation and hardness (H R 30T), respectively, and Figure 3 is a graph showing the effects of C content and skin pass rolling/reduction ratio on yield point elongation and hardness (H R 30T), and Figure 3 is a This is the heat cycle of a continuous annealing furnace.

Claims (1)

【特許請求の範囲】 1 C:0.0030重量%以下、 Si:0.1重量%以下、 Mn:0.5重量%以下、 Al:0.010〜0.080重量%、 N:0.0050重量%以下、 をMn/S比10以上で、しかも0.030重量%以下に
制限したS、0.030重量%以下のPおよびその他
不可避的混入不純物とともに含有する組成の鋼素
材を熱間圧延し、その後冷間圧延して極低炭素ア
ルミキルド鋼冷延板を得る段階と、 この冷延板を連続焼なましで再結晶温度以上に
加熱し、ついで冷却したのち、10%以上50%以下
で調質圧延する段階と の結合に成るストレツチヤーストレインの発生し
ない硬質ぶりき用めつき原板の製造方法。 2 C:0.0030重量%以下、 Si:0.1重量%以下、 Mn:0.5重量%以下、 Al:0.010〜0.080重量%、 N:0.0050重量%以下、 と、さらに 0.10重量%以下のNb、0.20%以下のTiのうち
少なくとも1種 とを、Mn/S比10以上で、しかも0.030重量%以
下に制限したSのほか、0.030重量%以下のPお
よびその他不可避的混入不純物とともに含有する
組成の鋼素材を熱間圧延し、その後冷間圧延して
極低炭素アルミキルド鋼冷延板を得る段階と、 この冷延板を連続焼なましで再結晶温度以上に
加熱し、ついで冷却したのち、10%以上50%以下
の調質圧延を施す段階と の結合に成るストレツチヤーストレインの発生し
ない硬質ぶりき用めつき原板の製造方法。
[Claims] 1 C: 0.0030% by weight or less, Si: 0.1% by weight or less, Mn: 0.5% by weight or less, Al: 0.010 to 0.080% by weight, N: 0.0050% by weight or less, Mn/S ratio of 10 or more. A steel material having a composition containing S limited to 0.030% by weight or less, 0.030% by weight or less P, and other unavoidable impurities is hot rolled, and then cold rolled to produce ultra-low carbon aluminum killed steel. A stretcher strain that combines the step of obtaining a sheet and the step of continuously annealing the cold-rolled sheet to a temperature higher than the recrystallization temperature, cooling it, and then temper-rolling it at a rate of 10% or more and 50% or less. A method for manufacturing a plated original plate for hard tinplate that does not generate. 2 C: 0.0030 weight% or less, Si: 0.1 weight% or less, Mn: 0.5 weight% or less, Al: 0.010 to 0.080 weight%, N: 0.0050 weight% or less, and further 0.10 weight% or less Nb, 0.20% or less A steel material having a composition containing at least one type of Ti at a Mn/S ratio of 10 or more and S limited to 0.030% by weight or less, as well as 0.030% by weight or less of P and other unavoidable impurities. A step of hot rolling and then cold rolling to obtain an ultra-low carbon aluminum killed steel cold rolled sheet; heating this cold rolled sheet by continuous annealing to a temperature higher than the recrystallization temperature, and then cooling it; A method for producing a plated original plate for hard tinplate that does not generate stretcher strain that is combined with the step of applying temper rolling of 50% or less.
JP542583A 1983-01-17 1983-01-17 Production of black plate for hard tinplate having no stretcher strain Granted JPS59129733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP542583A JPS59129733A (en) 1983-01-17 1983-01-17 Production of black plate for hard tinplate having no stretcher strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP542583A JPS59129733A (en) 1983-01-17 1983-01-17 Production of black plate for hard tinplate having no stretcher strain

Publications (2)

Publication Number Publication Date
JPS59129733A JPS59129733A (en) 1984-07-26
JPH0152451B2 true JPH0152451B2 (en) 1989-11-08

Family

ID=11610814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP542583A Granted JPS59129733A (en) 1983-01-17 1983-01-17 Production of black plate for hard tinplate having no stretcher strain

Country Status (1)

Country Link
JP (1) JPS59129733A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262918A (en) * 1984-06-08 1985-12-26 Kawasaki Steel Corp Manufacture of surface treating raw sheet without causing stretcher strain
JPS6169928A (en) * 1984-09-12 1986-04-10 Kawasaki Steel Corp Manufacture of steel plate for ironing by continuous annealing
JPS61110749A (en) * 1984-11-05 1986-05-29 Nippon Kokan Kk <Nkk> Soft hot rolled steel plate having superior workability
JPS61207520A (en) * 1985-03-13 1986-09-13 Kawasaki Steel Corp Production of soft blank plate for surface treatment
JPS63230848A (en) * 1987-03-20 1988-09-27 Sumitomo Metal Ind Ltd Cold-rolled steel sheet excellent in workability and its production
JPH02118026A (en) * 1988-10-28 1990-05-02 Kawasaki Steel Corp Manufacture of steel sheet for can
JP2733423B2 (en) * 1993-01-18 1998-03-30 川崎製鉄株式会社 Plated sheet excellent in secondary workability and weldability and method for producing the same
JP5162924B2 (en) * 2007-02-28 2013-03-13 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5321599B2 (en) * 2008-12-19 2013-10-23 Nok株式会社 Manufacturing method of gasket steel plate and gasket
JP6176225B2 (en) * 2014-11-28 2017-08-09 Jfeスチール株式会社 Crown steel plate, method for producing the same, and crown

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121118A (en) * 1974-03-12 1975-09-22
JPS51131413A (en) * 1975-05-12 1976-11-15 Nippon Kokan Kk <Nkk> Process for producing original sheet for hard plating by using alumini um-killed steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121118A (en) * 1974-03-12 1975-09-22
JPS51131413A (en) * 1975-05-12 1976-11-15 Nippon Kokan Kk <Nkk> Process for producing original sheet for hard plating by using alumini um-killed steel

Also Published As

Publication number Publication date
JPS59129733A (en) 1984-07-26

Similar Documents

Publication Publication Date Title
EP1195447B1 (en) Hot rolled steel plate, cold rolled steel plate and hot dip galvanized steel plate being excellent in strain aging hardening characteristics, and method for their production
JPS6330368B2 (en)
JPS6116323B2 (en)
JPH0123530B2 (en)
JPH0152451B2 (en)
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP3777049B2 (en) Manufacturing method of BH cold-rolled steel sheet for deep drawing excellent in dent resistance and surface strain resistance
JP3336079B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and chemical conversion property and method for producing the same
JPS6048571B2 (en) Manufacturing method of alloyed galvanized steel sheet for deep drawing
JPH06306536A (en) Surface treated original sheet for di can excellent in pressure withstanding strength and necked-in property and its production
JPS6114216B2 (en)
JPH0152452B2 (en)
JPH07102344A (en) Continuously annealed cold rolled steel sheet well balanced between deep drawability and resistance to deep drawing brittleness
JP3466263B2 (en) Surface-treated original sheet for DI can with excellent pressure resistance and necked-in property, and manufacturing method
JPH07228921A (en) Production of starting sheet for surface treated steel sheet, excellent in workability
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JPH03150316A (en) Production of cold rolled steel sheet for deep drawing
JPS63121623A (en) Production of cold rolled steel sheet for deep drawing having excellent ridging resistance and chemical convertibility
JPH062069A (en) High strength cold rolled steel sheet and galvanized steel sheet excellent in deep drawability
JP2980486B2 (en) Manufacturing method of steel plate for non-aging low earring container
JP3262940B2 (en) Manufacturing method of steel sheet with excellent fatigue resistance
JPS6263619A (en) Manufacture of soft nonaging steel sheet
JP3544441B2 (en) High-strength hot-rolled steel sheet and plated steel sheet with excellent deep drawability and method for producing the same
JPH03150317A (en) Manufacture of hot dip galvanized cold rolled steel sheet for deep drawing having excellent brittlement resistance in secondary working
JPS6280224A (en) Manufacture of black plate for easy-opening lid