JPS63230848A - Cold-rolled steel sheet excellent in workability and its production - Google Patents

Cold-rolled steel sheet excellent in workability and its production

Info

Publication number
JPS63230848A
JPS63230848A JP6747787A JP6747787A JPS63230848A JP S63230848 A JPS63230848 A JP S63230848A JP 6747787 A JP6747787 A JP 6747787A JP 6747787 A JP6747787 A JP 6747787A JP S63230848 A JPS63230848 A JP S63230848A
Authority
JP
Japan
Prior art keywords
cold
rolled steel
annealing
temperature
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6747787A
Other languages
Japanese (ja)
Inventor
Atsuki Okamoto
篤樹 岡本
Naomitsu Mizui
直光 水井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6747787A priority Critical patent/JPS63230848A/en
Publication of JPS63230848A publication Critical patent/JPS63230848A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To inexpensively manufacture a cold-rolled steel sheet excellent in workability, by hot-rolling a continuously cast slab of dead-soft carbon steel, winding the slab, cold-rolling the slab to the final sheet thickness, and then applying continuous annealing to the sheet under specific conditions. CONSTITUTION:A molten steel having a composition containing, by weight, <0.0030% C, 0.09-0.80% Mn, 0.06-0.12% sol. Al, and 0.0050-0.0110% N is formed into a slab by continuous casting and the slab is hot-rolled at 1,200 deg.C into a plate of 3.2mm thickness, which is wound up in a coil at <=560 deg.C. This hot-rolled steel plate is cold-rolled at 75% draft so as to be formed into a cold- rolled steel sheet of about 0.8mm final sheet thickness. At the time of applying continuous annealing to this steel sheet, continuous annealing is carried out under the conditions of 1-20 deg.C/sec average temp.-rise rate at a temp. between 400-700 deg.C and also of 700-900 deg.C maximum heating temp. By this method, the cold-rolled steel sheet having superior workability equal to that prepared by box annealing be manufactured under the efficient production system of continuous casting and continuous annealing.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造と連続焼鈍を用いる最も効率的なプ
ロセスによって得られる加工性の極めて優れた冷延鋼板
およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a cold-rolled steel sheet with extremely excellent workability obtained by the most efficient process using continuous casting and continuous annealing, and a method for manufacturing the same.

(従来の技術とその問題点) 自動車外板などに使用されて良好な加工性を要求される
冷延鋼板は、古くは造塊−分塊一熱間圧延一冷間圧延一
箱焼鈍(バッチ焼鈍)というプロセスで製造されていた
。近年、連続鋳造法の普及により、かっての造塊−分塊
の工程は大きく合理化され、又、冷間圧延後の焼鈍も連
続焼鈍という高能率の技術が採用されつつある。
(Conventional technology and its problems) Cold-rolled steel sheets, which are used for automobile exterior panels and require good workability, used to be produced by ingot-making, blooming, hot rolling, cold rolling, and box annealing (batch). It was manufactured using a process called annealing. In recent years, with the spread of continuous casting, the former ingot making-blooming process has been greatly streamlined, and a highly efficient technique of continuous annealing is being adopted for annealing after cold rolling.

しかしながら、冷延鋼板の品質、特にその加工性という
点からみたとき、現在の連続焼鈍の技術では不十分なも
のがあり、未だに箱焼鈍という能率の悪い技術が全冷延
鋼板生産量の半分近くに適用されている。
However, when looking at the quality of cold-rolled steel sheets, especially their workability, the current continuous annealing technology is insufficient, and box annealing, an inefficient technology, still accounts for nearly half of all cold-rolled steel sheet production. applied to.

連続焼鈍された冷延鋼板の加工性が、箱焼鈍のそれに劣
る最大の理由は、前者ではAQN  (窒化アルミニウ
ム)の再結晶集合組織を制御する作用が利用できなくな
るからである。すなわち、箱焼鈍の場合は、加熱時の昇
温速度が10〜b掻めて遅いから、熱間圧延の際に溶体
化したAQNがこの昇温の過程で十分に析出し、析出し
たMNは再結晶時に成る特定の方位を有する結晶だけを
発達させる。この特定方位の結晶粒が成長すると、深絞
り性の指標であるr値が向上する。
The main reason why the workability of continuously annealed cold rolled steel sheets is inferior to that of box annealing is that in the former, the effect of controlling the recrystallization texture of AQN (aluminum nitride) cannot be utilized. In other words, in the case of box annealing, the rate of temperature increase during heating is much slower by 10~b, so the AQN solutionized during hot rolling is sufficiently precipitated during this temperature increase process, and the precipitated MN is Only crystals with a specific orientation are developed during recrystallization. When crystal grains with this specific orientation grow, the r value, which is an index of deep drawability, improves.

一方、連続焼鈍の場合には、加熱昇温速度が1〜b 織制御効果を利用できない。On the other hand, in the case of continuous annealing, the heating temperature increase rate is 1 to b Weave control effect cannot be used.

このような理由から、i!続焼鈍材は、箱焼鈍材に比べ
てr値が低くなってしまうため、高成形性の冷延鋼板製
造のために、非能率的であっても箱焼鈍を用いざるを得
ないのである。
For these reasons, i! Since successively annealed materials have a lower r value than box annealed materials, box annealing has no choice but to be used, even if it is inefficient, in order to produce cold rolled steel sheets with high formability.

連続焼鈍によって、箱焼鈍に匹敵する高成形性の冷延板
を製造しようという試みもなされている。
Attempts have also been made to produce cold-rolled sheets with high formability comparable to box annealing by continuous annealing.

たとえば、特公昭51−6610号公報の発明がそのひ
とつで、これは0.13〜0.33%という多量のso
l。
For example, the invention disclosed in Japanese Patent Publication No. 51-6610 is one such invention, which contains a large amount of SO of 0.13 to 0.33%.
l.

八Qを含有させることにより連続焼鈍プロセスにおいて
でも八QNの析出を期待するのである。しかし、かかる
多量のAQの添加は材料コストの増加になるだけでなく
、製品鋼板の硬度が上がるという難点があって実用的で
はない。
By including 8Q, it is expected that 8QN will precipitate even in the continuous annealing process. However, adding such a large amount of AQ not only increases material cost but also increases the hardness of the product steel sheet, which is not practical.

更に、特公昭53−20446号公報の発明は、連続焼
鈍の昇温過程の450〜650℃の温度域で一定時間の
保定(均熱保持)を行う、というものである。
Furthermore, the invention disclosed in Japanese Patent Publication No. 53-20446 is to maintain the temperature in the temperature range of 450 to 650°C for a certain period of time (soaking) during the temperature raising process of continuous annealing.

確かにこの方法によれば、MNの析出のチャンスが与え
られ、r値の向上に役立つ、しかし通常、鋼板が炉に入
ってから出るまでの全時間が3〜8分程度の連続焼鈍プ
ロセスにおいて、昇温過程で数分間の保定を行うという
のは、焼鈍の能率の大きな低下となり、かつラインの長
大化により設備費の増加を招く。
It is true that this method provides a chance for MN to precipitate, which helps improve the r-value, but usually in a continuous annealing process where the total time from the time the steel plate enters the furnace to the time it exits is around 3 to 8 minutes. , Holding for several minutes during the temperature raising process greatly reduces annealing efficiency and increases equipment costs due to the length of the line.

本発明は、連続焼鈍という高能率の処理を受けながら、
箱焼鈍材に匹敵するすぐれた加工性を持つ冷延鋼板とこ
れを製造する画期的な方法を提供するものである。
The present invention, while undergoing a highly efficient process of continuous annealing,
The present invention provides a cold-rolled steel sheet with excellent workability comparable to box-annealed steel and an innovative method for producing the same.

(問題点を解決するための手段) 本発明の要旨は、下記の冷延鋼板およびその製造方法に
ある。
(Means for Solving the Problems) The gist of the present invention is the following cold-rolled steel sheet and method for manufacturing the same.

(1)  重量%で、C: 0.0030%以下、Mn
 : 0.09〜0.80%、sol、AQ : 0.
06〜0.12%、N : 0.0050〜O。
(1) In weight%, C: 0.0030% or less, Mn
: 0.09-0.80%, sol, AQ: 0.
06-0.12%, N: 0.0050-0.

0110%、残部Peおよび不可避不純物から成り、連
続焼鈍され展伸粒組織を有する加工性の優れた冷延鋼平
反。
0110%, the balance being Pe and unavoidable impurities, and is continuously annealed and has an elongated grain structure with excellent workability.

(2)垂】%で、C: 0.0030%以下、Mn :
 0.09〜0.80%、 sol、Af2  : 0
.06〜0.12%、 N  : 0.0050〜0.
0110%、残部Feおよび不可避不純物から成る鋼連
続鋳造スラブを熱間圧延して560℃以下の温度で巻取
り、常法によって冷間圧延した後に400〜700℃間
の平均昇温速度1〜b 度700〜900℃の条件で連続焼鈍することを特徴と
する加工性の優れた冷延鋼板の製造方法。
(2) %, C: 0.0030% or less, Mn:
0.09-0.80%, sol, Af2: 0
.. 06-0.12%, N: 0.0050-0.
A continuous cast steel slab consisting of 0110%, balance Fe and unavoidable impurities is hot-rolled and coiled at a temperature of 560°C or less, and after cold rolling by a conventional method, the average temperature increase rate between 400 and 700°C is 1 to b. A method for producing a cold-rolled steel sheet with excellent workability, characterized by continuous annealing at a temperature of 700 to 900°C.

上記本発明における展伸粒組織とは、JIS GO55
2により定義される展伸度eが2以上のものをいう。
The expanded grain structure in the present invention is defined by JIS GO55.
The degree of elongation e defined by 2 is 2 or more.

(作用) 本発明は素材となる鋼板の組成と、熱間圧延後の巻取り
条件および連続焼鈍時の昇温−加熱条件の有機的結合に
よって、後に詳述するような著しい効果を生むのである
が、まず、本発明の基礎となった研究の結果を説明する
(Function) The present invention produces remarkable effects as will be described in detail later through an organic combination of the composition of the steel sheet used as the raw material, the winding conditions after hot rolling, and the temperature rise-heating conditions during continuous annealing. However, first, the results of the research that formed the basis of the present invention will be explained.

第1図は冷間圧延−焼鈍後の冷延鋼板の顕微鏡&[I織
(X100)である、同図(C)は粒度の小さい等細粒
で展伸度は1.2、(a)は比較的粗粒の展伸粒で展伸
度は3.5、(b)は比較的細粒の展伸粒で展伸度は2
,1である。(a、b)の展伸粒になるのは焼鈍の過程
でAQNが析出し、これが再結晶時に特定大同の結晶粒
成長を促すからであり、このようなMi織の時、r値が
大きく改善され、加工性が向上する。しかし連続焼鈍と
いう急速加熱プロセスでは、通常(c)の等軸細粒にな
ってしまい、そのr値は1.3前後にすぎない。連続焼
鈍を法用しながら(a、b)の展伸粒組織を得るには、
素材鋼の組織から、熱延、冷延、焼鈍の全工程について
総合的な工夫をしなければならない。
Figure 1 is a microscope &[I-weave (X100)] of a cold rolled steel plate after cold rolling and annealing. (C) in the same figure is a uniformly fine grain with a small grain size, and the degree of elongation is 1.2; (a) (b) is a relatively coarse expanded grain with a degree of expansion of 3.5, and (b) is a relatively fine expanded grain with a degree of expansion of 2.
, 1. The reason for the elongated grains shown in (a, b) is that AQN precipitates during the annealing process, which promotes the growth of specific grains during recrystallization. Improved processability. However, in the rapid heating process of continuous annealing, equiaxed fine grains (c) are usually obtained, and the r value thereof is only around 1.3. To obtain the expanded grain structure of (a, b) while using continuous annealing,
It is necessary to comprehensively consider all processes of hot rolling, cold rolling, and annealing, starting from the structure of the steel material.

本発明者は、第1表に示すA1〜A5の低炭素AQキル
ド鋼を用いて基礎的な実験を行った。試験材の作成条件
は下記のとおりである。
The present inventor conducted basic experiments using low carbon AQ killed steels A1 to A5 shown in Table 1. The conditions for creating the test material are as follows.

スラブ(501厚)加熱温度 ・・1200℃熱間圧延
仕上温度・・・・・・・ 920℃熱延鋼板の厚み・・
・・・・・・・3u巻取温度・・・・・・400℃およ
び600℃冷間圧延の圧下率・・・・・・・・75%焼
鈍条件・・・ 赤外線加熱炉により400℃から700℃までの昇温速
度(’C/秒)を、0.4.2.10.40、lOOと
変化させて750℃まで昇温し、この温度で40秒保持
、以後10℃/秒で常温まで冷却。
Slab (501 thickness) heating temperature...1200℃ hot rolling finishing temperature...920℃ hot rolled steel plate thickness...
......3u coiling temperature...400℃ and 600℃ cold rolling reduction ratio...75% annealing conditions... From 400℃ using an infrared heating furnace The heating rate ('C/sec) up to 700°C was changed to 0.4.2.10.40, lOO, and the temperature was raised to 750°C, held at this temperature for 40 seconds, and then at 10°C/second. Cool to room temperature.

上記によって得た冷延鋼板のミクロ組織の11察結果を
第2表に示す。
Table 2 shows the results of 11 microstructures of the cold-rolled steel sheets obtained above.

第1表 第2表 第1表中、○印は第1図(a、b)の如き展伸粒組織、
X印は同(C)の如き等細粒組織を示している。
Table 1 Table 2 Table 1 In Table 1, ○ marks indicate expanded grain structures as shown in Figure 1 (a, b).
The X mark indicates a uniformly fine grained structure as shown in (C).

この結果をみれば、r値の高い展伸粒組織を得るには、
基本的には、■鋼へ3、^4のように、低炭素でsol
、AQとNの含有量を高くすること、■熱延巻取温度を
低くすること、■昇温速度を小さくすること、が必要で
あると言える。本発明は、上記の基礎研究を更に推し進
めて、製品鋼板の組成および製造工程の諸条件を前述の
とおり定めたものである。
Looking at this result, in order to obtain an expanded grain structure with a high r value,
Basically, it is low carbon and sol like 3 and 4 to steel.
It can be said that it is necessary to increase the contents of AQ and N, (1) lower the hot rolling coiling temperature, and (2) lower the temperature increase rate. The present invention further advances the basic research described above, and defines the composition of the product steel sheet and the various conditions of the manufacturing process as described above.

以下、個々の条件についてそれぞれ説明する。Each condition will be explained below.

まず、鋼板の成分(C,Mn、 sol、AQ+N )
の含有量の限定理由について述べる。
First, the components of the steel plate (C, Mn, sol, AQ+N)
The reason for limiting the content of is described below.

C:Cは冷延鋼板の加工性に大きな影響を及ぼすから、
その含有量を適正範囲に抑えることが重要である。本発
明は、CMを低減すると連続焼鈍後に展伸粒となり、r
値が向上するという前述の知見が基礎になっている。即
ち、加工性向上のためにはCの含有量は少ない方がよい
。Cが0.0030%を超えるとAflNの形成が遅く
なり展伸粒が得られないだけでなく、常温時効性が大き
くなってプレス成形時にストレッチャーストレインを生
じ易い。従って、C含有量の上限を0.0030%に抑
える。
C: Since C has a great influence on the workability of cold rolled steel sheets,
It is important to keep the content within an appropriate range. In the present invention, when CM is reduced, the grains become elongated after continuous annealing, and r
The above-mentioned knowledge that the value improves is the basis. That is, in order to improve workability, it is better to have a smaller C content. If C exceeds 0.0030%, not only the formation of AflN becomes slow and elongated grains cannot be obtained, but also the room temperature aging property increases and stretcher strain is likely to occur during press molding. Therefore, the upper limit of the C content is suppressed to 0.0030%.

但し、焼付硬化性(塗料の焼付けの時に鋼板の強度が上
がる現象)が必要とされる場合には、 0.0030%
以下の範囲でCを高めに選ぶ。
However, if bake hardenability (a phenomenon in which the strength of the steel plate increases when the paint is baked) is required, 0.0030%
Choose a higher C in the range below.

Mn: MnにはAQNの形成を促進する作用があるの
で多い方がよい一面と、強度を上げてr値を低下させる
ことから低い方がよい一面とがある。従って、その含有
量は鋼板の用途に応じて選ばれるべきであるが鋼板に優
れた加工性をもたせることを主眼とする本発明では0.
09〜0.80%の範囲で適量含存させる。0.80%
を越えると前記の好ましくない影響が強くなり、又Mn
の添加量が多いということは材料のコストアップにもな
る。 Mn0.09%未満では熱間脆性が原因の熱延板
の耳割れなどが発生する危険がある。
Mn: Mn has the effect of promoting the formation of AQN, so it is better to have a higher amount, and on the other hand, it is better to have a lower amount because it increases the strength and lowers the r value. Therefore, the content should be selected depending on the use of the steel plate, but in the present invention, which is aimed at providing the steel plate with excellent workability, it is less than 0.
It is contained in an appropriate amount in the range of 0.09 to 0.80%. 0.80%
If the Mn
A large amount of addition also increases the cost of the material. If Mn is less than 0.09%, there is a risk of edge cracking of the hot rolled sheet due to hot brittleness.

sol、M:へQ添加量を通常のAQキルド鋼より多く
することは、本発明の大きな特徴のひとつである。
One of the major features of the present invention is that the amount of Q added to sol, M: is larger than that of ordinary AQ killed steel.

Mlが多くなるとAl2Nの形成が速まり再結晶の核形
成時期とタイミングが合うと深絞り性の向上に好ましい
再結晶集合&[l織が形成される。このためにはsol
.Al: 0.06〜0.12%が必要である。0.0
6%未満ではAQNの形成が遅(集合組織の制御ができ
ない。一方、0.12%を越えるとAQNの形成が速す
ぎて熱延段階でAQNが形成されてしまい再結晶集合組
織の制御には寄与できないためr値が低くなってしまう
As Ml increases, the formation of Al2N accelerates, and if the timing matches the nucleation period of recrystallization, recrystallization aggregates and [l weave], which are favorable for improving deep drawability, are formed. For this, sol
.. Al: 0.06-0.12% is required. 0.0
If it is less than 6%, the formation of AQN is slow (the texture cannot be controlled. On the other hand, if it exceeds 0.12%, the formation of AQN is too fast and AQN is formed during the hot rolling stage, making it difficult to control the recrystallized texture. cannot contribute, resulting in a low r value.

N:AQO量と関連して、Nを積極的に利用することも
本発明の重要なポイントである。Nは0.0050%以
上含有されていないと八QNの量が不足し、集合Mn織
の制御力が弱くなる。ただし、Nの含有量が0.011
0%を越えるとAQNが多くなりすぎ伸びが低下する。
It is also an important point of the present invention to actively utilize N in relation to the N:AQO amount. If the N content is not 0.0050% or more, the amount of 8QN will be insufficient, and the control force of the aggregated Mn weave will be weakened. However, the N content is 0.011
When it exceeds 0%, AQN becomes too large and elongation decreases.

これらの成分の外、残部は鉄及び不可避の不純物である
。不純物の代表的なものはPとSであるが、これらは通
常の冷延鋼板の許容量であるP:0.03%以下、S:
0.02%以下とすればよい。
Besides these components, the remainder is iron and unavoidable impurities. Typical impurities are P and S, and these are the permissible amounts of ordinary cold-rolled steel sheets, P: 0.03% or less, S:
It may be 0.02% or less.

次に、熱間圧延の条件について述べる。Next, hot rolling conditions will be described.

熱間圧延のための加熱温度、圧延プロセスは一般の熱間
圧延の条件で差支えない、素材のスラブとしては、連続
鋳造スラブを用いるが連続鋳造ラインから直接熱間圧延
を行うダイレクトローリングや、高温の連鋳スラブを加
熱炉に装入するホットチャージの技術も採用することが
できる。
The heating temperature for hot rolling and the rolling process can be under the conditions of general hot rolling.Continuously cast slabs are used as the raw material slab, but direct rolling, where hot rolling is performed directly from a continuous casting line, or high temperature Hot charge technology, in which continuous cast slabs are charged into a heating furnace, can also be adopted.

加熱温度、圧延条件は一般の低炭素鋼の熱間圧延条件の
範囲内で良い、ただし、AINを固溶させるため加熱温
度は多少高めの方がよい。従って、エネルギー効率から
みても前記のダイレクトローリングやホットチャージが
望ましい、一方、仕上温度は、炭素量が少ないので85
0℃以上が望ましい。
The heating temperature and rolling conditions may be within the range of hot rolling conditions for general low carbon steel, however, it is better to use a slightly higher heating temperature in order to dissolve AIN. Therefore, from the point of view of energy efficiency, the above-mentioned direct rolling and hot charging are preferable.On the other hand, the finishing temperature is 85% because the carbon content is small.
A temperature of 0°C or higher is desirable.

熱延の仕上圧延において、後段でできるだけ高い圧下率
で高速圧延し、圧延直後に急冷すると本発明の効果が一
層顕著になる。しかし、板厚や設備上の制約により最適
条件は変わってくるので、この条件も絶対的なものでは
ない。
In the finish rolling of hot rolling, the effect of the present invention becomes even more remarkable when high-speed rolling is performed at the highest possible reduction rate in the latter stage, and quenching is performed immediately after rolling. However, these conditions are not absolute, as the optimal conditions vary depending on plate thickness and equipment constraints.

熱延後の巻取温度は、その上限を560℃とするのが重
要である。これより高温で巻取ると巻取り後の徐冷中に
AQNが析出してしまい、前述の焼鈍時のAQN析出と
その効果が期待できない0巻取りの下限温度は、理論的
には制限する必要はないが、余りに低温になるとコイル
の冷却水が蒸発せず、赤錆発生を招くので実操業上、下
限は100℃程度となろう。
It is important that the upper limit of the coiling temperature after hot rolling is 560°C. If coiling is carried out at a higher temperature than this, AQN will precipitate during slow cooling after coiling, and the above-mentioned AQN precipitation during annealing and its effect cannot be expected, so there is no need to theoretically limit the lower limit temperature for zero coiling. However, if the temperature is too low, the cooling water in the coil will not evaporate, causing red rust, so in actual operation, the lower limit would be about 100°C.

このようにして得られた熱延綱板は、酸洗等の説スケー
ル処理の後、冷間圧延に付される。冷間圧延そのものは
、通常の条件でよい。圧下率は60〜80%の範囲が望
ましい。
The hot-rolled steel sheet thus obtained is subjected to a scale treatment such as pickling, and then subjected to cold rolling. The cold rolling itself may be performed under normal conditions. The rolling reduction ratio is preferably in the range of 60 to 80%.

焼鈍は、連続焼鈍で行う、その条件は以下に述べるよう
に、適切に制御しなければならない。まず、最高加熱温
度までの昇温速度が重要である。
Annealing is performed by continuous annealing, and the conditions must be appropriately controlled as described below. First, the rate of temperature increase to the maximum heating temperature is important.

昇温過程で再結晶が終る前にAQNを十分に析出させる
のが本発明のポイントであるが、400 ’Cより低い
温度ではAt2Nの析出は実質的に起こらない。
The key point of the present invention is to sufficiently precipitate AQN before recrystallization ends during the heating process, but substantially no At2N precipitation occurs at temperatures lower than 400'C.

一方、700℃より高い温度では、再結晶が完了してし
まう、従って、400〜700 ℃間で昇温速度を制御
してMNの析出を促す必要がある。即ち400〜700
℃間の平均昇温速度を1〜2[1:/秒とする。
On the other hand, at a temperature higher than 700°C, recrystallization is completed. Therefore, it is necessary to control the heating rate between 400 and 700°C to promote the precipitation of MN. i.e. 400-700
The average temperature increase rate between 1 and 2[deg.]C is 1:/sec.

20℃/秒を越えると、余りにも昇温速度が速く、AQ
Nの析出が十分起こらないうちに再結晶が終ってしまい
、望ましい展伸粒組織が得られない、一方、1℃/秒未
満のような遅い昇温速度では、高能率を目的とする連続
焼鈍の利点が失われる。
If it exceeds 20℃/sec, the temperature increase rate is too fast and the AQ
Recrystallization ends before sufficient N precipitation occurs, making it impossible to obtain the desired elongated grain structure.On the other hand, at a slow heating rate of less than 1°C/sec, continuous annealing for the purpose of high efficiency is not possible. benefits are lost.

上記のような昇温速度は、板厚0.4〜2.0+am程
度のものではラジアントチューブ方式の加熱炉で達成で
きる。直火式の加熱炉でも、ライン速度やバーナーの位
置を調整すれば達成可能であるが、生産性の点からみれ
ば好ましくない、昇温速度の;−制御は、400から7
00℃までの300℃を上げるのに15秒から5分かか
るように加熱することによって容易に実施できる。
The above temperature increase rate can be achieved in a radiant tube type heating furnace for plates having a thickness of about 0.4 to 2.0+am. This can be achieved even in a direct-fired heating furnace by adjusting the line speed and burner position, but it is not desirable from a productivity point of view.
This can be easily carried out by heating so that it takes 15 seconds to 5 minutes to raise the temperature by 300°C to 00°C.

焼鈍の最高加熱温度は700〜900℃とする。700
℃より低いと再結晶が不完全で、製品鋼板の伸びが低下
する。一方、加熱温度が900℃を越えるとオーステナ
イト相が出て、r値が低くなる。最高加熱温度で均熱保
持をするのは必ずしも必要でない。鋼板がこの温度域に
達しさえすれば良く、ここでの保持時間の影響は余り大
きくない。
The maximum heating temperature for annealing is 700 to 900°C. 700
If the temperature is lower than ℃, recrystallization will be incomplete and the elongation of the product steel sheet will decrease. On the other hand, when the heating temperature exceeds 900°C, an austenite phase appears and the r value becomes low. It is not necessarily necessary to uniformly maintain the temperature at the maximum heating temperature. It is only necessary for the steel plate to reach this temperature range, and the holding time here does not have a great effect.

最高加熱温度からの冷却も、その方法を問わない、空冷
、徐冷、過時効処理のいずれでもよく、冷却手段として
ガスシェフ)冷却、ロール冷却、液体冷却等いずれも採
用可能である。焼鈍後に調質圧延を行うのも任意である
Cooling from the maximum heating temperature is not limited to any method, and may be air cooling, slow cooling, or over-aging treatment, and gas chef) cooling, roll cooling, liquid cooling, etc. can be used as the cooling means. It is also optional to perform skin pass rolling after annealing.

なお、本発明方法の連続焼鈍には、それ専用の設備によ
るものだけでなく、溶融亜鉛メツキラインの焼鈍設備や
、ブリキ、Tin free 5teelの製造設備な
どで深絞り用メッキ鋼板を製造する場合に実施される連
続的な焼鈍も含まれる。このような、広義の連続焼鈍に
おいても、前述の条件を満たす限り、本発明の効果は遺
憾なく発揮される。
Continuous annealing according to the method of the present invention can be carried out not only with dedicated equipment, but also with hot-dip galvanizing line annealing equipment, tinplate, tin free 5teel production equipment, etc. when producing plated steel sheets for deep drawing. It also includes continuous annealing. Even in such continuous annealing in a broad sense, the effects of the present invention are fully exhibited as long as the above-mentioned conditions are satisfied.

以下、実施例によって本発明の効果を具体的に説明する
Hereinafter, the effects of the present invention will be specifically explained using Examples.

(実施例) 第3表に使用した素材鋼(Bl〜B7)の組成、熱延巻
取温度とともに機械的性質などをまとめて示す、なお、
8H4liとは、焼付塗装に相当する条件で加熱した時
の引張強さの上昇ft (kgf/wm”)である。
(Example) Table 3 summarizes the composition, hot rolling coiling temperature, and mechanical properties of the steel materials (Bl to B7) used.
8H4li is the increase in tensile strength ft (kgf/wm") when heated under conditions equivalent to baking coating.

ミクロ!!Iは前掲第2表の場合と同じ測定による。micro! ! I is based on the same measurement as in Table 2 above.

第2表に記載していない諸条件は下記の通りである。Conditions not listed in Table 2 are as follows.

溶製;転炉溶解の後、RH脱酸、連続鋳造スラブ厚さ:
 210mm 熱延条件 : 1200℃加熱、900℃仕上、巻取温
度まで水スプレーによる冷却 熱延板厚さ: 3.2mm 冷延条件 :圧下率75%、製品板厚0.81連続焼鈍
条件:ラジアントチューブ加熱、ガスジェット冷却方式
で過時効帯を有する設備を使用、加熱帯に中間温度計を
2個設置し、それぞれの温度が400〜450℃、70
0〜750℃になるように加熱し、両温度肝の設定位置
間をストリフプが30秒で通過するように制御した。
Melting: After converter melting, RH deoxidation, continuous casting slab thickness:
210mm Hot rolling conditions: 1200℃ heating, 900℃ finishing, cooling with water spray to coiling temperature Hot rolled sheet thickness: 3.2mm Cold rolling conditions: Reduction ratio 75%, product sheet thickness 0.81 Continuous annealing conditions: Radiant Using tube heating and gas jet cooling equipment with an overaging zone, two intermediate thermometers are installed in the heating zone, and each temperature is 400 to 450℃, 70℃.
The temperature was heated to 0 to 750°C, and the strip was controlled so that it passed between the two temperature settings in 30 seconds.

その他:連続焼鈍ライン内で伸び率0.4%の調質圧延
を行った。
Others: Temper rolling with an elongation rate of 0.4% was performed in a continuous annealing line.

又、2%の予歪を与え170℃×20分の加熱による焼
付硬化(B H)性試験を実施。引張試験はJIS 5
号による。
In addition, a bake hardening (BH) property test was conducted by applying 2% pre-strain and heating at 170°C for 20 minutes. Tensile test is JIS 5
Depends on the issue.

第3表中、賦香2〜7が本発明の実施例である。In Table 3, fragrances 2 to 7 are examples of the present invention.

組織はいずれも展伸粒で、r値は1.5以上である。All of the structures are expanded grains, and the r value is 1.5 or more.

これに対して賦香lは熱延巻取温度が高すぎるため、等
細粒組織となり、r値は1.37にすぎない。
On the other hand, since the hot-rolling and winding temperature of the flavored steel I is too high, it has a uniformly fine grained structure and has an r value of only 1.37.

賦香8は素材のMn含有量が高いため、組織は展伸粒で
あるがr値が低い、又、賦香9はNの含有量が低いため
展伸粒組織が得られずr値が低い。
Flavoring 8 has a high Mn content in the material, so the structure is an expanded grain, but the r value is low.Furthermore, Flavoring 9 has a low N content, so an elongated grain structure cannot be obtained and the r value is low. low.

鋼種B7が一般的な連続焼鈍材の組成をもつものである
。熱延以下の処理条件は本発明のそれを満足してるが、
Cが高(、sol、八QとNが低いために展伸粒組成と
ならずr値も1.29にすぎない。
Steel type B7 has the composition of a general continuous annealing material. Although the processing conditions below hot rolling satisfy those of the present invention,
Because C is high (, sol, 8 Q and N are low), the composition does not have an expanded grain composition and the r value is only 1.29.

この試験結果からみても、素材鋼の組成、熱延条件及び
焼鈍条件の全てが本発明に定める条件を満たしてはじめ
て、優れた加工性をもつ冷延鋼板が得られるということ
が明らかである。
From this test result, it is clear that a cold-rolled steel sheet with excellent workability can be obtained only when the composition of the steel material, hot rolling conditions, and annealing conditions all satisfy the conditions specified in the present invention.

なお、焼付硬化性(BH!t)は展伸粒組織の有無にか
かわらず、はゾ素材のC含有量によって決りCが高い程
BH31は大きくなる。。一般にBH4]は0〜5、O
kgf/mm”の範囲に調整されるが、本発明の鋼板の
組成範囲内でもC1の調整によって上記の範囲で任意の
BH性を持たせることが可能である。
Incidentally, the bake hardenability (BH!t) is determined by the C content of the hazo material, regardless of the presence or absence of an expanded grain structure, and the higher the C, the greater the BH31. . Generally BH4] is 0 to 5, O
kgf/mm", but even within the composition range of the steel sheet of the present invention, it is possible to provide any BH property within the above range by adjusting C1.

(効果) 本発明により、連続鋳造から連続焼鈍まで、冷延鋼板の
最も効率的な生産方式を踏襲しながら、従来得られなか
った高加工性の製品を生み出すことに成功した。この効
果は、使用する素材の組成と熱延巻取温度、焼鈍時の加
熱条件を相互に関連づけて最適範囲を定めることによっ
て達成されたものである。従来、箱焼鈍という非効率的
な方法で製造しなければならないとされていた高加工性
の冷延鋼板が、本発明により能率よく、安価に製造でき
ることになる。
(Effects) According to the present invention, while following the most efficient production method for cold-rolled steel sheets from continuous casting to continuous annealing, we succeeded in producing a product with high workability that could not be obtained conventionally. This effect was achieved by correlating the composition of the material used, the hot rolling coiling temperature, and the heating conditions during annealing to determine the optimum range. High workability cold-rolled steel sheets, which conventionally had to be manufactured by the inefficient method of box annealing, can be manufactured efficiently and inexpensively by the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、焼鈍後の冷延鋼板の組織を示す′U4微鏡耳
鏡写真(a) 、 (b)は展伸粒組織、(c)は等細
粒組織である0倍率はいずれも100倍である。
Figure 1 is a 'U4 micro-otoscope photograph showing the structure of a cold rolled steel sheet after annealing (a), (b) is an elongated grain structure, and (c) is a uniform grain structure. It is 100 times more.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、C:0.0030%以下、Mn:0.
09〜0.80%、sol.Al:0.06〜0.12
%、N:0.0050〜0.0110%、残部Feおよ
び不可避不純物から成り、連続焼鈍され展伸粒組織を有
する加工性の優れた冷延鋼板。
(1) In weight%, C: 0.0030% or less, Mn: 0.
09-0.80%, sol. Al: 0.06-0.12
%, N: 0.0050 to 0.0110%, the remainder being Fe and unavoidable impurities, and is continuously annealed and has an elongated grain structure with excellent workability.
(2)重量%で、C:0.0030%以下、Mn:0.
09〜0.80%、sol.Al:0.06〜0.12
%、N:0.0050〜0.0110%、残部Feおよ
び不可避不純物から成る鋼連続鋳造スラブを熱間圧延し
て560℃以下の温度で巻取り、常法によって冷間圧延
した後に400〜700℃間の平均昇温速度1〜20℃
/秒、最高加熱温度700〜900℃の条件で連続焼鈍
することを特徴とする加工性の優れた冷延鋼板の製造方
法。
(2) In weight%, C: 0.0030% or less, Mn: 0.
09-0.80%, sol. Al: 0.06-0.12
%, N: 0.0050-0.0110%, balance Fe and unavoidable impurities, a continuous cast steel slab is hot-rolled and coiled at a temperature of 560°C or less, and after cold rolling by a conventional method, it is 400-700%. Average heating rate between 1 and 20℃
A method for producing a cold-rolled steel sheet with excellent workability, characterized by continuous annealing at a maximum heating temperature of 700 to 900°C.
JP6747787A 1987-03-20 1987-03-20 Cold-rolled steel sheet excellent in workability and its production Pending JPS63230848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6747787A JPS63230848A (en) 1987-03-20 1987-03-20 Cold-rolled steel sheet excellent in workability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6747787A JPS63230848A (en) 1987-03-20 1987-03-20 Cold-rolled steel sheet excellent in workability and its production

Publications (1)

Publication Number Publication Date
JPS63230848A true JPS63230848A (en) 1988-09-27

Family

ID=13346085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6747787A Pending JPS63230848A (en) 1987-03-20 1987-03-20 Cold-rolled steel sheet excellent in workability and its production

Country Status (1)

Country Link
JP (1) JPS63230848A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320446A (en) * 1976-08-07 1978-02-24 Hiroyuki Yamato Snack noodle packaed in container
JPS57131326A (en) * 1981-02-04 1982-08-14 Kawasaki Steel Corp Production of cold rolled steel plate having superior deep drawability
JPS58130224A (en) * 1982-01-29 1983-08-03 Nippon Steel Corp Manufacture of aluminum killed cold rolled steel plate which is excellent in deep drawing property
JPS59129733A (en) * 1983-01-17 1984-07-26 Kawasaki Steel Corp Production of black plate for hard tinplate having no stretcher strain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320446A (en) * 1976-08-07 1978-02-24 Hiroyuki Yamato Snack noodle packaed in container
JPS57131326A (en) * 1981-02-04 1982-08-14 Kawasaki Steel Corp Production of cold rolled steel plate having superior deep drawability
JPS58130224A (en) * 1982-01-29 1983-08-03 Nippon Steel Corp Manufacture of aluminum killed cold rolled steel plate which is excellent in deep drawing property
JPS59129733A (en) * 1983-01-17 1984-07-26 Kawasaki Steel Corp Production of black plate for hard tinplate having no stretcher strain

Similar Documents

Publication Publication Date Title
JP7239685B2 (en) Hot-rolled steel sheet with high hole expansion ratio and method for producing the same
US5405463A (en) Continuous annealing process of producing cold rolled mild steel sheet excellent in deep drawability and aging resistibility
JP2003013177A (en) Hot-dip galvanized sheet steel with high ductility superior in press formability and strain aging hardening characteristics, and manufacturing method thereor
JPS646262B2 (en)
US5078809A (en) Method for producing cold-rolled steel sheet
JPH0676616B2 (en) Method for producing hot rolling strip having two-phase structure
JPH02194126A (en) Manufacture of steel sheet having baking hardenability
EP1022347A1 (en) Method for producing raw plate for surface treatment plate for can using continuous annealing
JPS6199631A (en) Manufacture of thin steel sheet for deep drawing
JP2682327B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in bake hardenability and deep drawability
JPS59133325A (en) Manufacture of low carbon steel sheet with superior drawability
JPS63230848A (en) Cold-rolled steel sheet excellent in workability and its production
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JP3925063B2 (en) Cold-rolled steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP2003013176A (en) High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPH01184253A (en) Cold-rolled steel sheet excellent in workability and its production
JP3951512B2 (en) Method for producing a high workability cold-rolled steel sheet that has excellent press formability and little variation in press formability
JPS6323248B2 (en)
JPS5858232A (en) Production of alloyed zinc plated steel plate having thermal hardenability