JPH01184253A - Cold-rolled steel sheet excellent in workability and its production - Google Patents

Cold-rolled steel sheet excellent in workability and its production

Info

Publication number
JPH01184253A
JPH01184253A JP574388A JP574388A JPH01184253A JP H01184253 A JPH01184253 A JP H01184253A JP 574388 A JP574388 A JP 574388A JP 574388 A JP574388 A JP 574388A JP H01184253 A JPH01184253 A JP H01184253A
Authority
JP
Japan
Prior art keywords
cold
steel sheet
rolled
temperature
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP574388A
Other languages
Japanese (ja)
Inventor
Naomitsu Mizui
直光 水井
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP574388A priority Critical patent/JPH01184253A/en
Publication of JPH01184253A publication Critical patent/JPH01184253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To improve workability of a steel sheet by subjecting the steel in which respective contents of C, Mn, Al, N, V and Nb are specified to hot rolling, cold rolling, and heat treatment under respectively prescribed conditions. CONSTITUTION:A steel which has a composition consisting of, by weight, <=0.003% C, 0.09-0.8% Mn, 0.06-0.12% Sol.Al, 0.005-0.011% N, >=0.003% Nb and/or V, and the balance Fe and satisfying 12(Nb/93+V/51)<=C+0.002% is refined. A continuously cast slab of the above steel is hot-rolled, which is wound up at <=560 deg.C. Subsequently, the above steel plate is cold-rolled and the resulting steel sheet is subjected to continuous annealing under the conditions of 1-20 deg.C/sec average temp.-rise rate between 400 and 700 deg.C and also 700-900 deg.C maximum heating temp. By this method, the steel sheet having expanded grain structure and excellent in workability can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続鋳造と連続焼鈍を用いる最も効率的なプ
ロセスによって得られる加工性の極めて優れた冷延鋼板
およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a cold-rolled steel sheet with extremely excellent workability obtained by the most efficient process using continuous casting and continuous annealing, and a method for manufacturing the same.

(従来の技術とその問題点) 自動車外板などに使用されて良好な加工性を要求される
冷延鋼板は、古くは造塊−分塊一熱間圧延一冷間圧延一
箱焼鈍(ハツチ焼鈍)というプロセスで製造されていた
。近年、連続鋳造法の普及により、かっての造塊−分塊
の工程は大きく合理化され、又、冷間圧延後の焼鈍も連
続焼鈍という高能率の技術が採用されつつある。
(Conventional technology and its problems) Cold-rolled steel sheets, which are used for automobile exterior panels and require good workability, have traditionally been produced by ingot making, blooming, hot rolling, cold rolling, and box annealing. It was manufactured using a process called annealing. In recent years, with the spread of continuous casting, the former ingot making-blooming process has been greatly streamlined, and a highly efficient technique of continuous annealing is being adopted for annealing after cold rolling.

しかしながら、冷延鋼板の品質、特にその加工性という
点からみたとき、現在の連続焼鈍の技術では不十分なも
のがあり、未だに箱焼鈍という能率の悪い技術が全冷延
鋼板生産量の半分近くに適用されている。
However, when looking at the quality of cold-rolled steel sheets, especially their workability, the current continuous annealing technology is insufficient, and box annealing, an inefficient technology, still accounts for nearly half of all cold-rolled steel sheet production. applied to.

連続焼鈍された冷延鋼板の加工性が、箱焼鈍のそれに劣
る最大の理由は、前者ではへQN  (窒化アルミニウ
ム)の再結晶集合組織を制御する作用が利用できなくな
るからである。すなわち、箱焼鈍の場合は、加熱時の昇
温速度が10〜b極めて遅いから、熱間圧延の際に溶体
化したMNがこの昇温の過程で十分に析出し、析出した
MNは再結晶時に成る特定の方位を有する結晶だけを発
達させる。この特定方位の結晶粒が成長すると、深絞り
性の指標であるr値が向上する。
The main reason why the workability of a continuously annealed cold rolled steel sheet is inferior to that of a box annealed steel sheet is that in the former case, the effect of controlling the recrystallization texture of QN (aluminum nitride) cannot be utilized. In other words, in the case of box annealing, the rate of temperature increase during heating is extremely slow by 10~b, so MN that has been dissolved in solution during hot rolling is sufficiently precipitated during this temperature increase process, and the precipitated MN is recrystallized. Only crystals with specific orientations develop at certain times. When crystal grains with this specific orientation grow, the r value, which is an index of deep drawability, improves.

一方、連続焼鈍の場合には、加熱昇温速度が1〜b 織制御効果を利用できない。On the other hand, in the case of continuous annealing, the heating temperature increase rate is 1 to b Weave control effect cannot be used.

このような理由から、連続焼鈍材は、箱焼鈍材に比べて
r値が低くなってしまうため、高成形性の冷延鋼板製造
のために、非能率的であっても箱焼鈍を用いざるを得な
いのである。
For these reasons, continuously annealed materials have a lower r value than box annealed materials, so box annealing has no choice but to be used, even if it is inefficient, to produce cold rolled steel sheets with high formability. You don't get it.

連続焼鈍によって、箱焼鈍に匹敵する高成形性の冷延板
を製造しようという試みもなされている。
Attempts have also been made to produce cold-rolled sheets with high formability comparable to box annealing by continuous annealing.

たとえば、特公昭51−6610号公報の発明がそのひ
とつで、これは0.13〜0.33%という多量のso
l。
For example, the invention disclosed in Japanese Patent Publication No. 51-6610 is one such invention, which contains a large amount of SO of 0.13 to 0.33%.
l.

八Qを含有させることにより連続焼鈍プロセスにおいて
でも八QNの析出を期待するのである。しかし、かかる
多量のAQの添加は材料コストの増加になるだけでなく
、製品鋼板の硬度が上がるという難点があって実用的で
はない。
By including 8Q, it is expected that 8QN will precipitate even in the continuous annealing process. However, adding such a large amount of AQ not only increases material cost but also increases the hardness of the product steel sheet, which is not practical.

更に、特公昭53−20446号公報の発明は、連続焼
鈍の昇温過程の450〜650℃の温度域で一定時間の
保定(均熱保持)を行う、というものである。
Furthermore, the invention disclosed in Japanese Patent Publication No. 53-20446 is to maintain the temperature in the temperature range of 450 to 650°C for a certain period of time (soaking) during the temperature raising process of continuous annealing.

確かにこの方法によれば.AlNの析出のチャンスが与
えられ、r値の向上に役立つ。しかし、通常、鋼板が炉
に入ってから出るまでの全時間が3〜8分程度の連続焼
鈍プロセスにおいて、昇温過程で数分間の保定を行うと
いうのは、焼鈍の能率の大きな低下となり、かつライン
の長大化により設備費の増加を招く。
Certainly according to this method. This provides a chance for AlN to precipitate, which helps improve the r value. However, in a continuous annealing process where the total time from when the steel plate enters the furnace to when it comes out is normally about 3 to 8 minutes, holding the temperature for several minutes during the temperature raising process will greatly reduce the efficiency of annealing. In addition, the line becomes longer, leading to an increase in equipment costs.

本発明は、連続焼鈍という高能率の処理を受けながら、
箱焼鈍材に匹敵するすぐれた加工性を持つ冷延鋼板とこ
れを製造する画期的な方法を提供するものである。
The present invention, while undergoing a highly efficient process of continuous annealing,
The present invention provides a cold-rolled steel sheet with excellent workability comparable to box-annealed steel and an innovative method for producing the same.

(問題点を解決するための手段) ここに、1つの面からは、本発明の要旨は、重量%で、 C: 0.0030%以下、  FIn s 0.09
〜0.80%、sol.Al : 0.06〜0.12
%、N : 0.0050〜0.0110%、さらにN
b、■のいずれか1種または両方を合計残部Feおよび
不可避不純物 から成り、連続焼鈍され展伸粒組織を有する加工性の優
れた冷延鋼板である。
(Means for Solving the Problems) Here, from one aspect, the gist of the present invention is that in weight %, C: 0.0030% or less, Fin s 0.09
~0.80%, sol. Al: 0.06-0.12
%, N: 0.0050-0.0110%, further N
It is a cold-rolled steel sheet with excellent workability, consisting of one or both of (b) and (2) with a total balance of Fe and unavoidable impurities, and which is continuously annealed and has an elongated grain structure.

また、別の面からは、本発明の要旨は、重量%で、 C: 0.0030%以下、  Mn : 0.09〜
0.80%、sol、M : 0.06〜0.12%、
N : 0.0050〜0.0110%、さらにNb、
 Vのいずれか1種または両方を合計でNb   V 残部Feおよび不可避不純物 から成る鋼の連続鋳造スラブを熱間圧延して560°C
以下の温度で巻取り、常法によって冷間圧延した後に4
00〜700°C間の平均昇温速度1〜b秒、最高加熱
温度700〜900°Cの条件で連続焼鈍することを特
徴とする加工性の優れた冷延鋼板の製造方法である。
In addition, from another aspect, the gist of the present invention is, in weight %, C: 0.0030% or less, Mn: 0.09 to
0.80%, sol, M: 0.06-0.12%,
N: 0.0050 to 0.0110%, further Nb,
A continuous cast slab of steel containing either one or both of V in total, V, the balance Fe and unavoidable impurities is hot rolled at 560°C.
After being coiled at the following temperature and cold-rolled by a conventional method, 4
This is a method for producing cold rolled steel sheets with excellent workability, characterized by continuous annealing under conditions of an average heating rate of 1 to b seconds between 00 and 700°C and a maximum heating temperature of 700 to 900°C.

本発明における上記展伸粒m織とは、JIS GO55
2により定義される展伸度eが2以上のものをいう。
The above-mentioned stretched grain m weave in the present invention is defined by JIS GO55
The degree of elongation e defined by 2 is 2 or more.

(作用) 本発明は素材となる鋼板の組成と、熱間圧延後の巻取り
条件および連続焼鈍時の昇温−加熱条件の有機的結合に
よって、後に詳述するような著しい効果を生むのである
が、まず、本発明の基礎となった研究の結果を説明する
(Function) The present invention produces remarkable effects as will be described in detail later through an organic combination of the composition of the steel sheet used as the raw material, the winding conditions after hot rolling, and the temperature rise-heating conditions during continuous annealing. However, first, the results of the research that formed the basis of the present invention will be explained.

第1図(al、(b)、(C1は冷間圧延−焼鈍後の冷
延鋼板の顕微鏡組1ti (X100 )である。同図
(C)は粒度の小さい等細粒で展伸度は1.2、同fa
+は比較的粗粒の展伸粒で展伸度は3.5、同(b)は
比較的細粒の展伸粒で展伸度は2,1である。第1図(
al、(blの展伸粒になるのは焼鈍の過程でMNが析
出し、これが再結晶時に特定方向の結晶粒成長を促すか
らであり、このような組織のとき、r値が大きく改善さ
れ、加工性が向上する。しかし連続焼鈍という急速加熱
プロセスでは、通常第1図fclの等軸組粒組織になっ
てしまい、そのr値は1.3前後にすぎない。連続焼鈍
を採用しながら同(al、(b)の展伸粒組織を得るに
は、素材鋼の組織から、熱間圧延、冷間圧延、焼鈍の全
工程について総合的な工夫をしなければならない。
Figure 1 (al, (b), (C1) is a microscope set 1ti (X100) of a cold rolled steel plate after cold rolling and annealing. Figure 1 (C) shows uniformly fine grains with small grain size and the degree of elongation is 1.2, same fa
+ indicates relatively coarse expanded grains with a degree of expansion of 3.5, and (b) represents relatively fine expanded grains with a degree of expansion of 2.1. Figure 1 (
The reason why the elongated grains of al and (bl) are formed is that MN precipitates during the annealing process, and this promotes crystal grain growth in a specific direction during recrystallization. With such a structure, the r value is greatly improved. , the workability is improved.However, in the rapid heating process of continuous annealing, the equiaxed grain structure shown in Fig. 1 (fcl) is usually obtained, and its r value is only around 1.3. In order to obtain the elongated grain structure of (al, (b)), it is necessary to comprehensively consider all the steps of hot rolling, cold rolling, and annealing from the structure of the steel material.

本発明者らは、第1表に示すへ1〜八5の低炭素AQギ
ルド鋼を用いて基礎的な実験を行った。試験材の作成条
件は下記のとおりであった。
The present inventors conducted basic experiments using the low carbon AQ guild steels listed in Table 1. The conditions for creating the test materials were as follows.

スラブ(50鶴厚)加熱温度 ・・ 1200°C熱間
圧延仕上温度・・・・・・・ 920℃熱延鋼板の厚み
・・・・・・・・ 3酊巻取温度・・・・・・400 
’Cおよび600℃冷間圧延の圧下率・・・・・・・・
75%焼鈍条件・・・ 赤外線加熱炉により400℃から700℃までの平均昇
温速度(°C/秒)を、0.4.2.10.40.10
0と変化させて750°Cまで昇温し、この温度で40
秒保持、以後10℃/秒で常温まで冷却。
Slab (50 mm thick) heating temperature... 1200°C Hot rolling finishing temperature... 920°C Thickness of hot rolled steel plate... 3. Rolling temperature...・400
'C and rolling reduction ratio of 600℃ cold rolling...
75% annealing conditions: The average temperature increase rate (°C/sec) from 400°C to 700°C using an infrared heating furnace is 0.4.2.10.40.10
0 and raised the temperature to 750°C, and at this temperature
Hold for seconds, then cool to room temperature at 10°C/second.

上記によって得た冷延鋼板のミクロ組織の観察結果を第
2表に示す。
Table 2 shows the observation results of the microstructure of the cold rolled steel sheet obtained above.

第1表 第2表 (注)○: 展伸粒組織、×:等軸粒組織第1表中、○
印は第1図(a)、(blの如き展伸粒組織、×印は同
(C1の如き等細粒組織を示している。
Table 1 Table 2 (Note) ○: Stretched grain structure, ×: Equiaxed grain structure In Table 1, ○
The marks in FIG. 1(a) indicate an elongated grain structure such as (bl), and the x marks indicate a uniformly fine grain structure such as (C1).

この結果をみれば、r値の高い展伸粒A11織を得るに
は、基本的には、■鋼A3、A4のように、極低炭素で
sol、MとNの含有量を高くすること、■熱間圧延後
の巻取温度を低くすること、■昇温速度を小さくするこ
と、が必要であると言える。
Looking at these results, in order to obtain a drawn-grain A11 weave with a high r value, basically, you need to use ultra-low carbon and high sol, M, and N contents like steel A3 and A4. It can be said that it is necessary to (1) lower the coiling temperature after hot rolling, and (2) lower the temperature increase rate.

更に、展伸粒組織の形成とは別に、高r(iを得るため
には、熱延板を細粒化する必要がある。これは、再結晶
焼鈍時に、熱延板の結晶粒界近傍から、深絞り性に好ま
しい方位の再結晶粒が発生するからである。
Furthermore, apart from the formation of an elongated grain structure, in order to obtain a high r (i), it is necessary to refine the grains of the hot-rolled sheet. This is because recrystallized grains with an orientation favorable for deep drawability are generated.

ところで、金属の再結晶過程は、■再結晶核生成、■核
の成長および■その後の粒成長からなる。
Incidentally, the recrystallization process of metals consists of (1) recrystallization nucleation, (2) growth of nuclei, and (2) subsequent grain growth.

展伸粒組織になることは、上記■■の過程が制御されて
いることを意味しているが、上記■は上記のように熱延
板細粒化により制御する必要がある。
The development of an elongated grain structure means that the process of (2) above is controlled, but (2) needs to be controlled by grain refinement of the hot-rolled sheet as described above.

第1表に示したような鋼では熱延板で細粒組織を得るこ
とは困難である。そこでNbやVのように結晶粒を細粒
化する効果のある元素を添加する必要がある。
With the steels shown in Table 1, it is difficult to obtain a fine grain structure in hot rolled sheets. Therefore, it is necessary to add elements such as Nb and V that have the effect of making the crystal grains finer.

本発明は、上記の基礎研究を更に推し進めて、製品鋼板
の組成および製造工程の諸条件を前述のごとく定めたも
のである。以下、個々の条件についてそれぞれ説明する
The present invention further advances the basic research described above, and defines the composition of the product steel sheet and the various conditions of the manufacturing process as described above. Each condition will be explained below.

まず、鋼板の成分(C+ Mr++ sol、八Q、N
 )の含有量の限定理由について述べる。
First, the components of the steel plate (C+ Mr++ sol, 8Q, N
) content is limited.

C:Cは冷延鋼板の加工性に大きな影響を及ぼすから、
その含有量を適正範囲に抑えることが重要である。本発
明は、C量を低減すると連続焼鈍後に展伸粒となり、r
値が向上するという前述の知見が基礎になっている。即
ち、加工性向上のためにはCの含有量は少ない方がよい
。Cが0.0030%を超えるとAQNの形成が遅くな
り展伸粒が得られないだけでなく、常温時効性が大きく
なってプレス成形時にストレッチャーストレインを生じ
易い。従って、C含有量の上限を0.0030%に抑え
る。
C: Since C has a great influence on the workability of cold rolled steel sheets,
It is important to keep the content within an appropriate range. In the present invention, when the amount of C is reduced, the grains become elongated after continuous annealing, and r
The above-mentioned knowledge that the value improves is the basis. That is, in order to improve workability, it is better to have a smaller C content. If C exceeds 0.0030%, not only the formation of AQN is delayed and expanded grains cannot be obtained, but also the room temperature aging property increases and stretcher strain is likely to occur during press molding. Therefore, the upper limit of the C content is suppressed to 0.0030%.

但し、焼付硬化性(塗料の焼付けの時に鋼板の強度が上
がる現象)が必要とされる場合には、 0゜0030%
以下の範囲でCを高めに選ぶ。
However, if bake hardenability (a phenomenon in which the strength of the steel plate increases when the paint is baked) is required, 0°0030%
Choose a higher C in the range below.

Mn: MnにはMNの形成を促進する作用があるので
多い方がよい一面と、強度を上げてr値を低下させるこ
とから低い方がよい一面とがある。従って、その含有量
は銅板の用途に応じて選ばれるべきであるが鋼板に優れ
た加工性をもたせることを主眼とする本発明では0.0
9〜0.80%の範囲で適量含有させる。0.80%を
越えると前記の好ましくない影響が強くなり、又Mnの
添加量が多いということは材料のコストアンプにもなる
。Mn0.09%未満では熱間脆性が原因の熱延板の耳
割れなどが発生する危険がある。
Mn: Mn has the effect of promoting the formation of MN, so it is better to have a higher amount, and on the other hand, it is better to have a lower amount because it increases strength and lowers the r value. Therefore, the content should be selected depending on the use of the copper plate, but in the present invention, which is aimed at providing excellent workability to the steel plate, the content is 0.0.
It is contained in an appropriate amount in the range of 9 to 0.80%. If it exceeds 0.80%, the above-mentioned undesirable effects become stronger, and a large amount of Mn added also increases the cost of the material. If Mn is less than 0.09%, there is a risk of edge cracking of the hot rolled sheet due to hot brittleness.

sol、八Q: AQ添加量を通常のAQキルド鋼より
多くすることは、本発明の大きな特徴のひとつである。
sol, 8Q: One of the major features of the present invention is that the amount of AQ added is larger than that of ordinary AQ killed steel.

AQ量が多くなるとAQNの形成が速まり再結晶の核形
成時期とタイミングが合うと深絞り性の向上に好ましい
再結晶集合組織が形成される。このためにはsol、A
(!: 0.06〜0.12%が必要である。0.06
%未満ではMNの形成が遅く集合組織の制御ができない
。一方、0.12%を越えるとAQNの形成が速すぎて
熱延段階でMNが形成されてしまい再結晶集合組織の制
御には寄与できないためr値が低くなってしまう。
When the amount of AQ increases, the formation of AQN accelerates, and when the timing matches the nucleation period of recrystallization, a recrystallized texture favorable for improving deep drawability is formed. For this, sol, A
(!: 0.06-0.12% is required.0.06
If it is less than %, the formation of MN is slow and the texture cannot be controlled. On the other hand, if it exceeds 0.12%, the formation of AQN is too fast and MN is formed during the hot rolling stage, which cannot contribute to the control of the recrystallized texture, resulting in a low r value.

N:AQの量と関連して、Nを積極的に利用することも
本発明の重要なポイントである。Nは0.0050%以
上含有されていないとMNの量が不足し、集合組織の制
御力が弱くなる。ただし、Nの含有量が0.0110%
を越えるとAQNが多くなりすぎ伸びが低下する。
It is also an important point of the present invention to actively utilize N in relation to the amount of N:AQ. If the N content is not 0.0050% or more, the amount of MN will be insufficient and the ability to control texture will be weakened. However, the N content is 0.0110%
If it exceeds this, the AQN will be too large and the elongation will decrease.

Nb、V: これらの合金成分は炭化物を形成するがス
ラブ加熱中に再固溶し、熱間圧延中も固溶したままで、
オーステナイトの再結晶を抑制してオーステナイト粒を
細粒化し、その結果変態後のフェライト粒径を小さくす
る効果がある。NbとVの合計が0.003%未満では
そのような細粒化の効果がない。また、Nl)、 Vと
もに炭化物を形成した後に窒化物を形成する傾向がある
ため12(Nb/93 + V3Si)がC十0.00
2%を超えて含有されると集合組織を制御するのに十分
なA(INの量が確保できず、集合組織が制御できずγ
値が低くなる。第2図に本発明において添加されるNb
、 Vの請求範囲をグラフ上に示す。
Nb, V: These alloy components form carbides, but they re-dissolve in solid solution during slab heating, and remain in solid solution during hot rolling.
This has the effect of suppressing austenite recrystallization and making austenite grains finer, thereby reducing the ferrite grain size after transformation. If the total amount of Nb and V is less than 0.003%, there is no such effect of grain refinement. In addition, since both Nl) and V tend to form nitrides after forming carbides, 12 (Nb/93 + V3Si) is less than C10.00.
If the content exceeds 2%, the amount of A (IN) that is sufficient to control the texture cannot be secured, and the texture cannot be controlled and γ
value becomes lower. Figure 2 shows Nb added in the present invention.
, V's claims are shown on the graph.

これらの成分の外、残部は鉄及び不可避の不純物である
。不純物の代表的なものはPとSであるが、これらは通
常の冷延鋼板の許容量であるP:0.03%以下、S:
0.02%以下とすればよい。
Besides these components, the remainder is iron and unavoidable impurities. Typical impurities are P and S, and these are the permissible amounts of ordinary cold-rolled steel sheets, P: 0.03% or less, S:
It may be 0.02% or less.

次に、熱間圧延の条件について述べる。Next, hot rolling conditions will be described.

熱間圧延のための加熱温度、圧延プロセスは一般の熱間
圧延の条件で差支えない。素材のスラブとしては、連続
鋳造スラブを用いるが連続鋳造ラインから直接熱間圧延
を行うダイレクトローリングや、高温の連鋳スラブを加
熱炉に装入するホットチャージの技術も採用することが
できる。
The heating temperature and rolling process for hot rolling may be under general hot rolling conditions. Continuously cast slabs are used as raw material slabs, but direct rolling, in which hot rolling is performed directly from a continuous casting line, and hot charging, in which high-temperature continuous cast slabs are charged into a heating furnace, can also be adopted.

加熱温度、圧延条件は一般の低炭素鋼の熱間圧延条件の
範囲内で良い。ただし、八QNを固溶させるため加熱温
度は多少高めの方がよい。従って、エネルギー効率から
みても前記のダイレクトローリングやホットチャージが
望ましい。一方、仕上温度は、炭素量が少ないので85
0°C以上が望ましい。
The heating temperature and rolling conditions may be within the range of hot rolling conditions for general low carbon steel. However, in order to form a solid solution of 8QN, it is better to heat the mixture at a slightly higher temperature. Therefore, from the viewpoint of energy efficiency, the above-mentioned direct rolling and hot charging are preferable. On the other hand, the finishing temperature is 85% due to the small amount of carbon.
A temperature of 0°C or higher is desirable.

熱間圧延の仕上圧延において、後段でできるだけ高い圧
下率で高速圧延し、圧延直後に急冷すると本発明の効果
が一層顕著になる。しかし、板厚や設備上の制約により
最適条件は変わってくるので、この条件も絶対的なもの
ではない。
In the finish rolling of hot rolling, the effect of the present invention becomes even more remarkable when high-speed rolling is performed at the highest possible reduction rate in the latter stage and quenching is performed immediately after rolling. However, these conditions are not absolute, as the optimal conditions vary depending on plate thickness and equipment constraints.

熱間圧延後の巻取温度は、その上限を560°Cとする
のが重要である。これより高温で巻取ると巻取り後の徐
冷中にMNが析出してしまい、前述の焼鈍時のMN析出
とその効果が期待できない。巻取りの下限温度は、理論
的には制限する必要はないが、余りに低温になるとコイ
ルの冷却水が蒸発せず、赤錆発生を招くので実操業上、
下限は100°C程度となろう。
It is important that the upper limit of the coiling temperature after hot rolling is 560°C. If the material is wound at a higher temperature than this, MN will precipitate during slow cooling after winding, and the above-mentioned MN precipitation and its effects during annealing cannot be expected. There is no need to limit the lower limit of winding temperature in theory, but if it becomes too low, the cooling water in the coil will not evaporate, leading to red rust, so in actual operation,
The lower limit would be around 100°C.

このようにして得られた熱延鋼板は、酸洗等の脱スケー
ル処理の後、冷間圧延に付される。冷間圧延そのものは
、通常の条件でよい。圧下率は60〜80%の範囲が望
ましい。
The hot-rolled steel sheet thus obtained is subjected to descaling treatment such as pickling and then cold rolling. The cold rolling itself may be performed under normal conditions. The rolling reduction ratio is preferably in the range of 60 to 80%.

焼鈍は、連続焼鈍で行う。その条件は以下に述べるよう
に、適切に制御しなければならない。まず、最高加熱温
度までの昇温速度が重要である。
Annealing is performed by continuous annealing. The conditions must be appropriately controlled as described below. First, the rate of temperature increase to the maximum heating temperature is important.

昇温過程で再結晶が終る前に八QNを十分に析出させる
のが本発明のポイントであるが、400℃より低い温度
ではMNの析出は実質的に起こらない。
The key point of the present invention is to sufficiently precipitate 8QN before recrystallization ends during the heating process, but substantially no MN precipitation occurs at temperatures lower than 400°C.

一方、700℃より高い温度では、再結晶が完了してし
まう。従って、400〜700℃間で昇温速度を制御し
てAQNの析出を促す必要がある。即ち400〜700
℃間の平均昇温速度を1〜20°C/秒とする。
On the other hand, if the temperature is higher than 700°C, recrystallization will be completed. Therefore, it is necessary to control the temperature increase rate between 400 and 700°C to promote precipitation of AQN. i.e. 400-700
The average temperature increase rate between 1 and 20°C/sec.

20℃/秒を越えると、余りにも昇温速度が速く、AQ
Nの析出が十分起こらないうちに再結晶が終ってしまい
、望ましい展伸粒組織が得られない。−方、1℃/秒未
満のような遅い昇温速度では、高能率を目的とする連続
焼鈍の利点が失われる。
If it exceeds 20℃/sec, the temperature increase rate is too fast and the AQ
Recrystallization ends before sufficient N precipitation occurs, making it impossible to obtain a desired elongated grain structure. On the other hand, at a slow heating rate such as less than 1° C./sec, the advantage of continuous annealing aimed at high efficiency is lost.

上記のような昇温速度は、板厚0.4〜2.0mm程度
のものではラジアントチューブ方式の加熱炉で達成でき
る。直火式の加熱炉でも、ライン速度やバーナーの位置
を調整すれば達成可能であるが、生産性の点からみれば
好ましくない。昇温速度の制御は、400から700℃
までの300℃を上げるのに15秒から5分かかるよう
に加熱することによって容易に実施できる。
The above temperature increase rate can be achieved in a radiant tube type heating furnace for plates having a thickness of about 0.4 to 2.0 mm. Although this can be achieved with a direct-fired heating furnace by adjusting the line speed and burner position, it is not preferable from a productivity standpoint. Control of heating rate from 400 to 700℃
This can be easily carried out by heating in such a way that it takes 15 seconds to 5 minutes to raise the temperature to 300°C.

焼鈍の最高加熱温度は700〜900℃とする。700
℃より低いと再結晶が不完全で、製品鋼板の伸びが低下
する。一方、加熱温度が900℃を越えるとオーステナ
イト相が出て、r値が低くなる。最高加熱温度で均熱保
持をするのは必ずしも必要でない。鋼板がこの温度域に
達しさえすれば良く、ここでの保持時間の影響は余り太
き(ない。
The maximum heating temperature for annealing is 700 to 900°C. 700
If the temperature is lower than ℃, recrystallization will be incomplete and the elongation of the product steel sheet will decrease. On the other hand, when the heating temperature exceeds 900°C, an austenite phase appears and the r value becomes low. It is not necessarily necessary to uniformly maintain the temperature at the maximum heating temperature. It is only necessary for the steel plate to reach this temperature range, and the holding time has no significant effect here.

最高加熱温度からの冷却も、その方法を問わない。空冷
、徐冷、過時効処理のいずれでもよく、冷却手段として
ガスジェット冷却、ロール冷却、液体冷却等いずれも採
用可能である。焼鈍後に調質圧延を行うのも任意である
The method for cooling from the maximum heating temperature does not matter. Any of air cooling, slow cooling, and overaging treatment may be used, and any of gas jet cooling, roll cooling, liquid cooling, etc. can be employed as the cooling means. It is also optional to perform skin pass rolling after annealing.

なお、本発明方法の連続焼鈍には、それ専用の設備によ
るものだけでなく、溶融亜鉛メンキラインの焼鈍設備や
、ブリキ、Tin free 5teelの製造設備な
どで深絞り用メツキ鋼板を製造する場合に実施される連
続的な焼鈍も含まれる。このような、広義の連続焼鈍に
おいても、前述の条件を満たす限り、本発明の効果は遺
憾なく発揮される。
Continuous annealing according to the method of the present invention can be carried out not only with dedicated equipment, but also with hot-dip zinc coating line annealing equipment, tinplate, tin free 5teel manufacturing equipment, etc. when manufacturing plated steel sheets for deep drawing. It also includes continuous annealing. Even in such continuous annealing in a broad sense, the effects of the present invention are fully exhibited as long as the above-mentioned conditions are satisfied.

以下、実施例によって本発明の効果を具体的に説明する
Hereinafter, the effects of the present invention will be specifically explained using Examples.

実施例1 実験用真空溶解炉において、第3表に示したように、鋼
中の炭素量、窒素量、およびAQ、Nb添加量を変えた
鋼を溶解した。これらを、熱間鍛造により25mm厚の
実験用スラブとした。次に電気炉で1200℃、1時間
加熱した後、1150℃から930℃の温度範囲で、実
験用熱間圧延機により3パス圧延し、4.0mm厚の熱
延板を得た。巻取りのシュミレーションとして、鋼板は
熱延後直ちに水スプレー冷却により、200〜600℃
の温度まで冷却し、次にその温度に保持した電気炉の中
に挿入し、更にその温度で1時間保持した後に20°C
/hrで炉冷した。次に酸洗後、0.8闘厚まで冷間圧
延した、冷延板は、赤外線加熱炉にて、10°C八で8
50°Cまで加熱し、その温度で40s保持後、750
℃まで3℃八で徐冷し、その後は10℃八で室温まで冷
却した。
Example 1 In an experimental vacuum melting furnace, as shown in Table 3, steels with different amounts of carbon, nitrogen, and amounts of AQ and Nb added were melted. These were made into experimental slabs with a thickness of 25 mm by hot forging. Next, it was heated in an electric furnace at 1200°C for 1 hour, and then rolled in a temperature range of 1150°C to 930°C for 3 passes using an experimental hot rolling mill to obtain a hot rolled sheet with a thickness of 4.0 mm. As a simulation of winding, the steel sheet was heated to 200 to 600°C by water spray cooling immediately after hot rolling.
20°C after being cooled to a temperature of
The furnace was cooled at /hr. After pickling, the cold-rolled sheet was cold-rolled to a thickness of 0.8 and heated to 80°C at 10°C in an infrared heating furnace.
After heating to 50°C and holding at that temperature for 40s, 750°C
The mixture was gradually cooled to 3°C, and then cooled to room temperature at 10°C.

焼鈍後、伸び率1.2%で調質圧延をした後、JIS5
号試片による引張試験の測定を行った。
After annealing and temper rolling with an elongation rate of 1.2%, JIS5
Tensile test measurements were carried out using No. 1 specimens.

特性を第3表に示す。これらのデータを第3図、第4図
にグラフにまとめて示す。
The characteristics are shown in Table 3. These data are summarized and shown in graphs in FIGS. 3 and 4.

第3図かられかるように、熱間圧延後の巻取り温度およ
び焼鈍の加熱速度が本発明の範囲を外れるとr値が低く
なり、深絞り加工に好ましくないことがわかる。
As can be seen from FIG. 3, when the coiling temperature after hot rolling and the heating rate during annealing are out of the range of the present invention, the r value becomes low, which is not preferable for deep drawing.

第4図かられかるように、鋼中のC濃度が本発明の範囲
を超えて多い場合は、r値が低くなり、かつ硬質化して
深絞り加工に不適当なことがわかる。また、鋼中窒素量
あるいはAQ、量が本発明の範囲より低いと、r値が低
下することがわかる。更に、r値にとって最適なNbお
よび■の添加量が存在することが分かる。
As can be seen from FIG. 4, when the C concentration in the steel exceeds the range of the present invention, the r value becomes low and the steel becomes hard, making it unsuitable for deep drawing. Furthermore, it can be seen that when the amount of nitrogen in the steel or the amount of AQ is lower than the range of the present invention, the r value decreases. Furthermore, it can be seen that there is an optimum addition amount of Nb and ■ for the r value.

実施例2 第4表に示した組成を有する鋼を転炉において溶製し、
一部に真空脱ガス処理を施し、連続鋳造によりスラブを
製造した。これらを1200℃に加熱し熱間圧延し45
0℃で巻取り、酸洗後圧工率75%で冷間圧延し、板厚
0.8mmの冷延板を製造し、さらに760℃にまで加
熱してから連続焼鈍(760℃で40sの保定と400
℃で3.5分の過時効処理からなる)して、伸び率1.
0%の調質圧延を行い、冷延鋼板を製造した。
Example 2 Steel having the composition shown in Table 4 was melted in a converter,
A part of the slab was subjected to vacuum degassing treatment and a slab was manufactured by continuous casting. These were heated to 1200℃ and hot rolled to 45
It was coiled at 0°C, pickled, and then cold-rolled at a rolling rate of 75% to produce a cold-rolled sheet with a thickness of 0.8 mm, which was further heated to 760°C and then continuously annealed (40 s at 760°C). Baoding and 400
℃ for 3.5 minutes), and the elongation rate was 1.
A cold-rolled steel sheet was manufactured by performing 0% temper rolling.

このようにして得た鋼板の特性値を第4表に示す。C1
綱、C2綱は本発明鋼であり、r値が高くかつ伸びも良
い。しかし、本発明の範囲外の03鋼では、r値が1.
54と低く、本発明の目的を達成していない。
Table 4 shows the characteristic values of the steel plate thus obtained. C1
The steel C2 steel is the steel of the present invention and has a high r value and good elongation. However, 03 steel, which is outside the scope of the present invention, has an r value of 1.
54, which is low and does not achieve the purpose of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ta+、fbl、(C1は、いずれも冷間圧延−
焼鈍後の冷延鋼板の顕微鏡金属組織写真; 第2図は、本発明において添加されるNb、 Vの範囲
を示すグラフ;および 第3図および第4図は、実施例の結果をまとめて示すグ
ラフである。
Figure 1 ta+, fbl, (C1 are all cold rolled -
A microscopic metallographic photograph of a cold rolled steel sheet after annealing; Figure 2 is a graph showing the range of Nb and V added in the present invention; and Figures 3 and 4 collectively show the results of Examples. It is a graph.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で、 C:0.0030%以下、Mn:0.09〜0.80%
、sol.Al:0.06〜0.12%、N:0.00
50〜0.0110%、さらにNb、Vのいずれか1種
または両方を合計で0.003%以上かつ12((Nb
/93)+(V/51))≦C+0.002%、残部F
eおよび不可避不純物 から成り、連続焼鈍され展伸粒組織を有する加工性の優
れた冷延鋼板。
(1) In weight%, C: 0.0030% or less, Mn: 0.09 to 0.80%
, sol. Al: 0.06-0.12%, N: 0.00
50 to 0.0110%, and a total of 0.003% or more of any one or both of Nb and V and 12 ((Nb
/93)+(V/51))≦C+0.002%, remainder F
A cold-rolled steel sheet that is continuously annealed and has an elongated grain structure and has excellent workability.
(2)重量%で、 C:0.0030%以下、Mn:0.09〜0.80%
、sol.Al:0.06〜0.12%、N:0.00
50〜0.0110%、さらにNb、Vのいずれか1種
または両方を合計で0.003%以上かつ12((Nb
/93)+(V/51)≦C+0.002%、残部Fe
および不可避不純物 から成る鋼の連続鋳造スラブを熱間圧延して560℃以
下の温度で巻取り、常法によって冷間圧延した後に40
0〜700℃間の平均昇温速度1〜20℃/秒、最高加
熱温度700〜900℃の条件で連続焼鈍することを特
徴とする加工性の優れた冷延鋼板の製造方法。
(2) In weight%, C: 0.0030% or less, Mn: 0.09 to 0.80%
, sol. Al: 0.06-0.12%, N: 0.00
50 to 0.0110%, and a total of 0.003% or more of any one or both of Nb and V and 12 ((Nb
/93)+(V/51)≦C+0.002%, balance Fe
A continuously cast slab of steel containing unavoidable impurities is hot-rolled and coiled at a temperature of 560°C or less, and then cold-rolled by a conventional method and then heated to 40°C.
A method for manufacturing a cold-rolled steel sheet with excellent workability, characterized in that continuous annealing is carried out under conditions of an average heating rate of 1 to 20°C/sec between 0 and 700°C and a maximum heating temperature of 700 to 900°C.
JP574388A 1988-01-14 1988-01-14 Cold-rolled steel sheet excellent in workability and its production Pending JPH01184253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP574388A JPH01184253A (en) 1988-01-14 1988-01-14 Cold-rolled steel sheet excellent in workability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP574388A JPH01184253A (en) 1988-01-14 1988-01-14 Cold-rolled steel sheet excellent in workability and its production

Publications (1)

Publication Number Publication Date
JPH01184253A true JPH01184253A (en) 1989-07-21

Family

ID=11619585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP574388A Pending JPH01184253A (en) 1988-01-14 1988-01-14 Cold-rolled steel sheet excellent in workability and its production

Country Status (1)

Country Link
JP (1) JPH01184253A (en)

Similar Documents

Publication Publication Date Title
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
EP1022347A1 (en) Method for producing raw plate for surface treatment plate for can using continuous annealing
JPS6199631A (en) Manufacture of thin steel sheet for deep drawing
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JPH0222446A (en) Manufacture of high formability aluminum alloy hard plate
JPH01184253A (en) Cold-rolled steel sheet excellent in workability and its production
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability
JPS5913030A (en) Manufacture of cold rolled al killed steel plate with superior deep drawability
JP4930393B2 (en) Cold rolled steel sheet manufacturing method
JPS593528B2 (en) Manufacturing method of galvanized steel sheet for deep drawing with excellent formability
JPS5974237A (en) Production of galvanized steel sheet for deep drawing having excellent formability
JPS59133324A (en) Manufacture of high-tension cold-rolled steel plate with superior formability
JPS5852440A (en) Production of delayed aging high strength cold rolled steel plate having high deep drawability and excellent press workability by continuous annealing
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JP2003013176A (en) High-ductility cold-rolled steel sheet superior in press formability and strain aging hardening characterisitics, and manufacturing method therefor
JPH06336619A (en) Production of high gamma value cold rolled steel sheet small in plane anisotropy
JPS63230848A (en) Cold-rolled steel sheet excellent in workability and its production
JPS6323248B2 (en)
JPH0673498A (en) Cold rolled steel sheet excellent in baking hardenability in coating/baking at low temperature and its production
JPS5858232A (en) Production of alloyed zinc plated steel plate having thermal hardenability
JPH05339643A (en) Production of high strength cold rolled steel sheet excellent in deep drawability and galvanized steel sheet
JPS60106920A (en) Production of thin steel sheet for deep drawing
JPS6362822A (en) Production of cold rolled steel sheet for deep drawing