JPS6034501B2 - How to recover iron chloride - Google Patents

How to recover iron chloride

Info

Publication number
JPS6034501B2
JPS6034501B2 JP15801178A JP15801178A JPS6034501B2 JP S6034501 B2 JPS6034501 B2 JP S6034501B2 JP 15801178 A JP15801178 A JP 15801178A JP 15801178 A JP15801178 A JP 15801178A JP S6034501 B2 JPS6034501 B2 JP S6034501B2
Authority
JP
Japan
Prior art keywords
iron
reaction
chloride
copper
iron plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15801178A
Other languages
Japanese (ja)
Other versions
JPS5585427A (en
Inventor
俊久 中津
蕃美 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Kogyo Co Ltd filed Critical Daikin Kogyo Co Ltd
Priority to JP15801178A priority Critical patent/JPS6034501B2/en
Publication of JPS5585427A publication Critical patent/JPS5585427A/en
Publication of JPS6034501B2 publication Critical patent/JPS6034501B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/46Regeneration of etching compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 本発明は塩化鉄の回収方法に関する。[Detailed description of the invention] The present invention relates to a method for recovering iron chloride.

さらに詳しくは、銅のエッチングに用いられた廃塩化鉄
水溶液よりり鋼を分離して塩化第2鉄を塩化第1鉄とし
て回収するようにした塩化鉄の回収方法に関する。
.銅のエッチングに用いられた廃
塩化鉄水溶液中には、水のほか一般に10〜20%(重
量%、以下同機)の塩化第1鉄(FeC12)、7〜1
5%の塩化第2鉄(FeCl3)、7〜13%の塩化第
2銅(CuC12)および若干量の遊離塩酸などが含ま
れており、公害問題や省資源の見地から、かかる産業廃
液より鉄成分および錬成分を除去または回収する効率的
な方法の開発が強く望まれているが、いまだ有用な方法
は見出されていないのが現状である。
More specifically, the present invention relates to a method for recovering iron chloride in which steel is separated from a waste iron chloride aqueous solution used for copper etching and ferric chloride is recovered as ferrous chloride.
.. In addition to water, the waste iron chloride aqueous solution used for copper etching generally contains 10 to 20% (by weight, hereinafter referred to as the same) of ferrous chloride (FeC12) and 7 to 1% of ferrous chloride (FeC12).
It contains 5% ferric chloride (FeCl3), 7-13% cupric chloride (CuC12), and a small amount of free hydrochloric acid, and from the viewpoint of pollution problems and resource conservation, it is preferable to remove iron from such industrial waste liquids. Although there is a strong desire to develop an efficient method for removing or recovering components and components, no effective method has yet been found.

本発明者らは、かかる現状に鑑み、銅のエッチングに用
いられた廃塩化鉄水溶液より塩化鉄を効率的に回収する
べく鋭意検討した結果、前記組成からなる廃塩化鉄水溶
液に鉄を加えることにより、主としてつぎの反応にした
がい、【11 CuC12十Fe→ FeC12十C
u↓の びeC12十Fe→がeCI鋼が還元されて析
出分離され、また塩化第2鉄が塩化第1鉄として回収さ
れ、結局鉄成分は塩化第1鉄としておよび銅成分は金属
鋼として、同時に効果的に回収されうろことを見出した
In view of the current situation, the present inventors have conducted intensive studies to efficiently recover iron chloride from a waste iron chloride aqueous solution used for copper etching, and have found that it is possible to add iron to a waste iron chloride aqueous solution having the above composition. According to the following reaction, [11 CuC120Fe→ FeC120C
u↓ and eC120Fe→ are reduced and precipitated and separated from eCI steel, and ferric chloride is recovered as ferrous chloride. Eventually, the iron component is converted into ferrous chloride and the copper component is converted into metal steel. At the same time, we found scales that could be effectively recovered.

しかしながら、鉄による前記酸化還元反応を該反応が通
常工業的に満足されうる速度で進行する70〜850○
の温度で行なうと、前記tlーの反応により析出してく
る銅が鉄の表面を鍍金したように被覆し、その結果鉄の
表面が反応に有効に生かされなくなり、継続して反応す
ることが不可能になるという障害が発生した(鉄板を用
いた‘まあし、は、ハンマーなどにより付着した銅を鉄
表面から取り除く必要があり操作が煩雑となる)。
However, when the redox reaction with iron is carried out at a rate that is usually industrially satisfactory,
If the reaction is carried out at a temperature of A problem arose in that it became impossible to do so (using iron plates required removing copper adhesion from the iron surface with a hammer, making the operation complicated).

このような障害をなくすために、本発明者らは反応条件
についてさらに種々検討した結果、反応速度上好ましく
ないとされている比較的低温度域でこの反応を行なうこ
とにより、まったく予測しえなかった結果として析出し
てくる銅はほとんど鉄の表面を被覆することがなく、た
とえ少量の銅が鉄の表面に付着することがあっても吸着
状のものであり、反応の継続にあたってはまった〈支障
のないこと、さらに反応を温度40〜5000およびp
H2〜4の条件下で行なえば、反応温度の低下にもかか
わらず反応速度がそれほど遅くなることもなく、反応が
スムーズに進行せられうるという事を見出し、本発明を
完成するにいたつた。
In order to eliminate such obstacles, the present inventors further investigated various reaction conditions, and found that by carrying out this reaction at a relatively low temperature range, which is considered unfavorable in terms of reaction rate, a completely unpredictable result was achieved. As a result, the copper that precipitates hardly covers the surface of the iron, and even if a small amount of copper does adhere to the surface of the iron, it is in the form of adsorption, and it is difficult to continue the reaction. Ensure that there are no problems and that the reaction is carried out at a temperature of 40-5000 and p.
The present inventors have discovered that if the reaction is carried out under the conditions of H2-4, the reaction rate does not slow down so much despite the reduction in reaction temperature, and the reaction can proceed smoothly, leading to the completion of the present invention.

すなわち、本発明は銅のエッチングに用いられた廃塩化
鉄水溶液に鉄を加えて反応温度40〜6yoおよびPH
2〜4の条件下で反応せしめ、生成せる銅と塩化第1鉄
から銅を分離して塩化第1鉄をうろことをその要旨とす
る塩化鉄の回収方法に関する。
That is, in the present invention, iron is added to a waste iron chloride aqueous solution used for copper etching, and the reaction temperature is 40 to 6yo and the pH is
The present invention relates to a method for recovering iron chloride, the gist of which is to carry out a reaction under conditions 2 to 4, separate copper from the produced copper and ferrous chloride, and scale the ferrous chloride.

本発明の方法によれば、銅のエッチングに用いられた廃
塩化鉄水溶液より、鉄成分が塩化第1鉄として回収され
、節のエッチング用の塩化第2鉄製造用原料として再利
用することができ、また同様にエッチングされた銅も効
率よく高純度で回収されうる。
According to the method of the present invention, iron components are recovered as ferrous chloride from the waste iron chloride aqueous solution used for copper etching, and can be reused as a raw material for producing ferric chloride for knot etching. Similarly, etched copper can be efficiently recovered with high purity.

本発明の方法においては、反応温度が40〜65℃、好
ましくは40〜50ooおよびPHが2〜4の条件下で
銅のエッチングに用いられる廃塩化鉄水溶液に鉄を加え
て反応処理することにより本発明の目的が達成されるの
であるが、反応温度としては通常室温以上が採用される
In the method of the present invention, iron is added to a waste iron chloride aqueous solution used for copper etching under conditions of a reaction temperature of 40 to 65°C, preferably 40 to 50 oo, and a pH of 2 to 4. Although the object of the present invention is achieved, the reaction temperature is usually room temperature or higher.

反応温度が6500より高いときは、前記のごとく析出
してくる銅の鉄の表面を鍍金したように被覆され、反応
に有効に生かされなくなるので好ましくない。4000
よりりも低いときは反応時間が長くなりすぎるため好ま
しくない。
When the reaction temperature is higher than 6,500 ℃, the surface of the deposited copper is coated as if it were plated, which is not preferable because it is not effectively utilized for the reaction. 4000
When it is lower than , the reaction time becomes too long, which is not preferable.

前記水溶液のpHが2よりり小さいときは反応速度が一
般に遅くなり、工業上好ましくない傾向にある。なお前
記組成からなる廃塩化鉄水溶液はpHが4より大きくな
ることはないが、かりに反応の進行によりPHが4より
大きくなると塩化第1鉄が水酸化第2鉄となり、反応上
支障をきたすので、そのぱあし、は塩酸を添加して反応
系のpHを前記範囲に保持すべきである。
When the pH of the aqueous solution is less than 2, the reaction rate generally becomes slow, which tends to be unfavorable from an industrial standpoint. Note that the pH of the waste iron chloride aqueous solution having the above composition will not rise above 4, but if the pH rises above 4 due to the progress of the reaction, ferrous chloride will turn into ferric hydroxide, which will interfere with the reaction. , the pH of the reaction system should be maintained within the above range by adding hydrochloric acid.

本発明に用いる鉄としてはその形態に何ら制限されるも
のではなく、粉末状、棒状、板状などのいずれの形態の
ものも必要に応じ適宜使用されうるが、反応をより速く
かつスムーズに進行させるために表面積の大きい形態の
もの、たとえば粉末状のものが好都合である。
The form of the iron used in the present invention is not limited in any way, and any form such as powder, rod, or plate may be used as appropriate, but the iron may progress more quickly and smoothly. For this purpose, it is advantageous to use a form with a large surface area, such as a powder.

また鉄の使用量としては銅のエッチングに用いられた廃
塩化鉄水溶液中の塩化第2銅および塩化第2鉄と反応す
るに必要な量またはその量以上が用いられる。鉄の使用
量が前記範囲より少ないときは塩化第2銅が完全に銅に
酸化されて除去されえず、また塩化第2鉄が塩化第1鉄
に還元されえず、好ましくない。なお反応で消費されえ
ずに残った余分の鉄は再度繰返して廃塩化鉄水溶液の反
応処理に使用される。しかして前記組成物からなる廃塩
化鉄水溶液より、本発明の方法によってえられた塩化第
1鉄および金属鋼は常法によって分離され、かつ容易に
回収することができるが、回収された塩化第1鉄は通常
30〜40%の水溶液濃度でえられ、一方金属銅はきわ
めて高純度のものとして分離回収されうる。以下に実施
例および比較例をあげて本発明を具体的に説明するが、
本発明はかかる実施例のみに限定されるものではない。
Further, the amount of iron used is the amount required to react with cupric chloride and ferric chloride in the waste iron chloride aqueous solution used for copper etching, or more than that amount. When the amount of iron used is less than the above range, cupric chloride is not completely oxidized to copper and cannot be removed, and ferric chloride cannot be reduced to ferrous chloride, which is not preferable. Incidentally, the excess iron remaining without being consumed in the reaction is repeatedly used for the reaction treatment of the waste iron chloride aqueous solution. Therefore, the ferrous chloride and metallic steel obtained by the method of the present invention can be separated and easily recovered from the waste iron chloride aqueous solution consisting of the above composition, but the recovered ferrous chloride 1-iron is usually obtained in an aqueous solution concentration of 30-40%, while metallic copper can be separated and recovered in extremely high purity. The present invention will be specifically explained below with reference to Examples and Comparative Examples.
The present invention is not limited to such embodiments.

実施例 1 銅のェチチングに用いられた廉塩化鉄水溶液(以下、鋼
エッチング廃液という)としてつぎの組成液を用いた。
Example 1 The following liquid composition was used as an inexpensive iron chloride aqueous solution (hereinafter referred to as steel etching waste liquid) used for copper etching.

1そ丸底フラスコに銅エッチング廃液lk9および鉄板
(材質:炭素鋼、3.0肌×1.1弧×0.3弧、全表
面積180c堆)155夕を仕込み、燈拝しながら50
ooで24時間反応した。この反応に用いた鉄板の表面
は、析出された銅が僅かに付着しかつ吸着したような状
態であった。
1 Pour copper etching waste liquid LK9 and iron plate (material: carbon steel, 3.0 skin x 1.1 arc x 0.3 arc, total surface area 180 cm) into a round bottom flask, and add 50 ml of copper etching waste while worshiping the lights.
oo for 24 hours. The surface of the iron plate used in this reaction was in such a state that the deposited copper slightly adhered and was adsorbed.

ついで、この鉄板(反応に1回用いた鉄板)を継続して
再度使用したほかは、前記と同様にして新たな銅エッチ
ング廃液を処理した。
Next, new copper etching waste liquid was treated in the same manner as described above, except that this iron plate (the iron plate used once for the reaction) was continuously used again.

えられた処理液中の塩化第2銅および塩化第2鉄成分は
前回と同じ結果まで処理され、またこの再使用された鉄
板は反応に何らの支障もきたさすものではなかつた。さ
らに、この反応に2回継続して用いた鉄板をさらに継続
して再々度使用したほかは、前記と同様にして新たな銅
エッチング廃液を処理した。
The cupric chloride and ferric chloride components in the resulting treatment solution were treated to the same result as the previous treatment, and the reused iron plate did not pose any hindrance to the reaction. Furthermore, new copper etching waste liquid was treated in the same manner as above, except that the iron plate that had been used twice in this reaction was used again and again.

えられた処理液中の塩化第2錦および塩化第2鉄成分は
前回と同じ結果まで処理され、またこの2回継続して用
いた鉄板は最初に用いた‘まあし、と同様に反応に支障
をきたすものではなかった。3回継続してこの反応に用
いた鉄板の表面は、析出された銅が少し吸着したような
状態であり、さらに4回継続して反応に用いても何らの
支障もなかった。
The ferric chloride and ferric chloride components in the resulting treatment solution were treated to the same result as the previous time, and the iron plate used two times in succession reacted in the same way as the iron plate used the first time. It was not a hindrance. The surface of the iron plate used for this reaction three times in succession was in a state in which a small amount of the deposited copper was adsorbed, and there was no problem even when it was used for the reaction four more times in a row.

これらの処理された処理液中の各成分の分析結果を第1
表に示す。第1表第1表から明らかなごとく、本発明の
方法においては、用いた鉄板はその表面が析出してくる
銅により被覆されず、何らの支障もきたすことなく継続
して使用しえられ、しかも銅エッチング廃液中の塩化第
2銅成分が好成績で容易に除去され、廃水処理上きわめ
て有利である。
The analysis results of each component in the treated solution were analyzed in the first
Shown in the table. Table 1 As is clear from Table 1, in the method of the present invention, the surface of the iron plate used is not coated with deposited copper and can be used continuously without any problems. Moreover, the cupric chloride component in the copper etching waste liquid can be easily removed with good results, which is extremely advantageous in terms of waste water treatment.

比較例 1 1そ丸腰フラスコに銅エッチング廃液(実施例1で用い
たものと同じ)lk9および鉄板(実施例1で用いた材
質、寸法および表面積のものと同じもの、再使用しない
新たな鉄板)155夕を仕込み、樫梓しなから80qo
で24時間反応した。
Comparative Example 1 In a round waist flask, copper etching waste liquid (same as that used in Example 1) LK9 and iron plate (same material, dimensions and surface area as used in Example 1, new iron plate that will not be reused) Prepared 155 evenings, 80 qo from Kashiazusa Shina
The reaction was carried out for 24 hours.

この反応に用いた鉄板の表面は、析出された銅で鍍金を
されたような状態で被覆されていた。ついで、この鉄板
(反応に1回用いた鉄板)を継続して再度使用したほか
は、前記同様にして新たな銅エッチング廃液を処理した
。えられた処理液中の塩化第2銅および塩化第2鉄成分
は前回と同じ程度にまでは処理されえず、また再使用さ
れた鉄板の表面は銅で被覆されているので反応に有効に
生かされえなかった。」さらに、この反応に2回継続し
て用いた鉄板をさらに継続して再々度使用したほかは、
前記と同様にして新たな銅エッチング廃液を処理した。
The surface of the iron plate used in this reaction was coated with deposited copper in a plating-like state. Next, new copper etching waste liquid was treated in the same manner as described above, except that this iron plate (the iron plate used once for the reaction) was continuously used again. The cupric chloride and ferric chloride components in the resulting treatment solution could not be treated to the same extent as the previous treatment, and the surface of the reused iron plate was coated with copper, so it was not effective for the reaction. I couldn't survive. ”Furthermore, except that the same iron plate used twice in this reaction was used again and again,
Fresh copper etching waste liquid was treated in the same manner as above.

えられた処理液中の塩化第2銅および塩化第2鉄成分は
さらに処理されがたく、とくに前者はほとんど除去され
えず、反応に2回継続して用いた鉄板はもはや脱錦に有
効に使用されえないものであった。3回継続してこの反
応に用いた鉄板の表面は、析出された銅で鍍金されたよ
うな状態であり、完全に銅で被覆されていた。
The cupric chloride and ferric chloride components in the resulting treatment solution are difficult to further process, and the former in particular can hardly be removed, and the iron plate used twice in succession is no longer effective for deodorization. It was unusable. The surface of the iron plate used for this reaction three times in succession was in a state as if it had been plated with deposited copper, and was completely coated with copper.

これらの処理液中の各成分の分析結果を第2表に示す。
第2表 第2表から明らかなごとく、反応温度が高いときには銅
エッチング廃液中の塩化第2銅および塩化第2鉄成分が
それぞれ鋼および塩化第1鉄に効果的に変換されえず、
また鉄板は継続して反応に使用しえないものであった。
Table 2 shows the analysis results of each component in these treatment solutions.
Table 2 As is clear from Table 2, when the reaction temperature is high, the cupric chloride and ferric chloride components in the copper etching waste solution cannot be effectively converted to steel and ferrous chloride, respectively.
Moreover, the iron plate could not be used continuously for the reaction.

実施例 2〜3実施例2として、1そ丸底フラスコに銅
エッチング廃液(実施例1で用いたものと同じ)lkg
および鉄板(実施例1で用いた材質および寸法のものと
同じもの)77夕(全表面積90の)を仕込み、損拝し
ながら5000で24時間反応した。
Examples 2 to 3 As Example 2, 1 kg of copper etching waste solution (same as that used in Example 1) was placed in a round bottom flask.
A steel plate (made of the same material and size as those used in Example 1) of 77 mm (total surface area: 90 mm) was charged, and reacted at 5,000 mm for 24 hours while shaking.

かくしてえられた処理液中の各成分をそれぞれ分析して
定量した。また実施例3として、鉄板(実施例1で用い
た材質および寸法のものと同じもの)450夕(全表面
積516の)を用いたほかは実施例2と同様にして反応
しかつ処理液を定量した。
Each component in the treatment solution thus obtained was analyzed and quantified. In addition, as Example 3, the reaction was carried out in the same manner as in Example 2, except that a 450 mm iron plate (same material and size as used in Example 1) (total surface area 516) was used, and the treatment solution was quantified. did.

それらの分析結果を実施例1における最初に反応してえ
られた処理液中の各成分のそれとともに第3表に示す。
第3表第3表から明らかなごと〈、本発明の方法におい
ては鉄板の使用量を多くまたはその表面積の大きいもの
を使用することにより、きわめて良好な結果かえられる
ことを示している。
The analysis results are shown in Table 3 together with those of each component in the treatment liquid obtained by the first reaction in Example 1.
Table 3 It is clear from Table 3 that in the method of the present invention, very good results can be obtained by using a larger amount of iron plates or by using iron plates with a larger surface area.

また、いずれの実施例においても析出されて分離する銅
は高純度(不純物として鉄分を約1%程度を含む)のも
のであった。
Further, in all Examples, the copper that was precipitated and separated was of high purity (containing about 1% iron as an impurity).

比較例 2〜3 比較例2および3として、反応温度を5000から20
ooに変えたほかはそれぞれ実施例1および実施例2と
同様にして同じ鉄板を継続して使用し反応を行なった。
Comparative Examples 2 to 3 As Comparative Examples 2 and 3, the reaction temperature was changed from 5000 to 20
The reaction was carried out in the same manner as in Example 1 and Example 2, except that the same iron plate was used, except that the reaction was carried out using the same iron plate.

えられた処理液中の各成分を分析して定量した。その結
果を第4表に示す。用いた鉄板の表面は析出された銅で
被覆されていなかった。
Each component in the obtained treatment liquid was analyzed and quantified. The results are shown in Table 4. The surface of the iron plate used was not coated with deposited copper.

第4表 なお、比較例2において、CuC12濃度を実施例1と
同じ1oppmにするためには96時間を要した。
Table 4 Note that in Comparative Example 2, it took 96 hours to bring the CuC12 concentration to 1 oppm, the same as in Example 1.

以上述べたごとく本発明の方法においては、銅のエッチ
ングに用いられた廃塩化鉄水溶液から銅を分離しかつ塩
化第2鉄を塩化第1鉄として容易に回収しえられ、工業
的にきわめて有利である。
As described above, in the method of the present invention, copper can be separated from the waste iron chloride aqueous solution used for copper etching, and ferric chloride can be easily recovered as ferrous chloride, which is extremely advantageous industrially. It is.

Claims (1)

【特許請求の範囲】 1 銅のエツチングに用いられた塩化鉄水溶液に鉄を加
えて40〜65℃の温度で反応せしめ、生成せる銅と塩
化第1鉄から銅を分離して塩化第1鉄をうることを特徴
とする塩化鉄の回収方法。 2 40〜50℃の温度で反応せしめる特許請求の範囲
第1項記載の塩化鉄の回収方法。 3 pHが2〜4の範囲で反応せしめる特許請求の範囲
第1項または第2項記載の塩化鉄の回収方法。
[Claims] 1. Iron is added to the iron chloride aqueous solution used for copper etching and reacted at a temperature of 40 to 65°C, and the copper is separated from the produced copper and ferrous chloride to produce ferrous chloride. A method for recovering iron chloride, characterized by obtaining the following: 2. The method for recovering iron chloride according to claim 1, wherein the reaction is carried out at a temperature of 40 to 50°C. 3. The method for recovering iron chloride according to claim 1 or 2, wherein the reaction is carried out at a pH in the range of 2 to 4.
JP15801178A 1978-12-19 1978-12-19 How to recover iron chloride Expired JPS6034501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15801178A JPS6034501B2 (en) 1978-12-19 1978-12-19 How to recover iron chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15801178A JPS6034501B2 (en) 1978-12-19 1978-12-19 How to recover iron chloride

Publications (2)

Publication Number Publication Date
JPS5585427A JPS5585427A (en) 1980-06-27
JPS6034501B2 true JPS6034501B2 (en) 1985-08-09

Family

ID=15662305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15801178A Expired JPS6034501B2 (en) 1978-12-19 1978-12-19 How to recover iron chloride

Country Status (1)

Country Link
JP (1) JPS6034501B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121123A (en) * 1982-12-24 1984-07-13 Toppan Printing Co Ltd Reclamation of solution of ferric chloride
JPS61275134A (en) * 1985-05-28 1986-12-05 Tokyo Kankyo Sokutei Center:Kk Production of powdery iron chloride
JP2657795B2 (en) * 1987-12-23 1997-09-24 ダイソー株式会社 Regeneration method of ferric chloride solution
JP2697778B2 (en) * 1992-08-25 1998-01-14 日興ファインプロダクツ 株式会社 Treatment of cupric chloride waste liquid

Also Published As

Publication number Publication date
JPS5585427A (en) 1980-06-27

Similar Documents

Publication Publication Date Title
CN108483551A (en) The minimizing technology of arsenic in a kind of waste acid containing arsenic
JPH0569775B2 (en)
JPS6034501B2 (en) How to recover iron chloride
JPH05255713A (en) Preparation of copper powder
JPS5524904A (en) Removal of heavy metals in aqueous solution by electrolysis
JPS5997536A (en) Method for recovering ruthenium from metallic electrode
JP2000024658A (en) Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof
PL70544B1 (en) Process for preventing supersaturation of electrolytes with arsenic,antimony and bismuth[us3696012a]
CN106916953A (en) The method for reducing lead content in wet method zinc abstraction waste residue
JP4815082B2 (en) Treatment method of iron-containing sulfuric acid solution
Davis et al. Dissolution of MgFeSi alloy during inmold treatment
JPS55128595A (en) Removal of selenium eluted from decoppering liquid of anode slime of copper electrolysis
JPS5346162A (en) Process for treating waste liquid
JPS52128804A (en) Electrolytic recovery of metal
JPS6354641B2 (en)
JP2885692B2 (en) Separation method of nickel in iron chloride solution
CN110468282B (en) Alkaline leaching dearsenification method for arsenic-containing material
JPS6314883A (en) Treatment of spent cupric chloride solution
JPS5382696A (en) Removing method of heavy metal in aqeous ferrous chloride solution
JPS6122010B2 (en)
JP2569105B2 (en) Method for recovering iodine from waste liquid containing organic iodine compound
JPH0331772B2 (en)
JPS6018476B2 (en) Treatment method for wastewater containing heavy metal ions
JPH06171953A (en) Production of ferric chloride solution
JPS6047206B2 (en) Production method of cuprous oxide