JPS6122010B2 - - Google Patents
Info
- Publication number
- JPS6122010B2 JPS6122010B2 JP58041488A JP4148883A JPS6122010B2 JP S6122010 B2 JPS6122010 B2 JP S6122010B2 JP 58041488 A JP58041488 A JP 58041488A JP 4148883 A JP4148883 A JP 4148883A JP S6122010 B2 JPS6122010 B2 JP S6122010B2
- Authority
- JP
- Japan
- Prior art keywords
- silver
- leaching
- zinc
- dust
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000002386 leaching Methods 0.000 claims description 21
- 239000000428 dust Substances 0.000 claims description 16
- 229910052709 silver Inorganic materials 0.000 claims description 16
- 239000004332 silver Substances 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- 239000000696 magnetic material Substances 0.000 claims description 12
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000000460 chlorine Substances 0.000 claims description 11
- 229910052801 chlorine Inorganic materials 0.000 claims description 11
- 239000003513 alkali Substances 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 238000003672 processing method Methods 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 22
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 16
- 229910052725 zinc Inorganic materials 0.000 description 16
- 239000011701 zinc Substances 0.000 description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 15
- 238000000034 method Methods 0.000 description 13
- 229910052742 iron Inorganic materials 0.000 description 11
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 7
- 239000011737 fluorine Substances 0.000 description 7
- 229910052731 fluorine Inorganic materials 0.000 description 7
- 238000007885 magnetic separation Methods 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002253 acid Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910021607 Silver chloride Inorganic materials 0.000 description 3
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 235000011121 sodium hydroxide Nutrition 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- FMRLDPWIRHBCCC-UHFFFAOYSA-L Zinc carbonate Chemical compound [Zn+2].[O-]C([O-])=O FMRLDPWIRHBCCC-UHFFFAOYSA-L 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000012320 chlorinating reagent Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000011667 zinc carbonate Substances 0.000 description 1
- 235000004416 zinc carbonate Nutrition 0.000 description 1
- 229910000010 zinc carbonate Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C1/00—Magnetic separation
- B03C1/005—Pretreatment specially adapted for magnetic separation
- B03C1/015—Pretreatment specially adapted for magnetic separation by chemical treatment imparting magnetic properties to the material to be separated, e.g. roasting, reduction, oxidation
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
【発明の詳細な説明】
本発明は、ダストの処理法に関する。特に鉄鋼
ダストのごとく、鉄分と他の有価金属を同時に含
有しているダストの処理法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating dust. In particular, it relates to a method for treating dust that simultaneously contains iron and other valuable metals, such as steel dust.
鉄分を多く含有するダストの処理法には、乾式
法による処理が従来多くなされていた。 Conventionally, dust containing a large amount of iron has often been treated using a dry method.
しかしながら、電力単価の上昇およびコークス
等の還元剤等のコスト上昇により、湿式法による
処理が望まれるようになつてきている。 However, due to the rise in the unit price of electricity and the cost of reducing agents such as coke, treatment by a wet method is becoming desirable.
また、特に、ダスト中の亜鉛の品位が20%以下
のダストとなると、上記乾式法の処理では工業上
望ましい処理が行なうことができない場合が多く
なつている。 In addition, especially when the dust has a zinc quality of 20% or less, the above-mentioned dry method is often unable to provide an industrially desirable treatment.
さらに、目的回収金属である亜鉛、鉛、銀等を
効率良く回収するためには、目的回収金属の濃度
を十分に上昇させる湿式処理方法が望まれてい
た。 Furthermore, in order to efficiently recover the target recovery metals such as zinc, lead, silver, etc., a wet processing method that can sufficiently increase the concentration of the target recovery metals has been desired.
本発明はかかる要望に答えるものであつて、ダ
ストを硫酸溶液で浸出し、ついで前記浸出残渣の
非磁性物にアルカリ剤を加え、鉛を回収し、前記
アルカリ剤添加後の浸出残渣に塩素及び又は塩化
物を添加し、微量の銀を回収することを特徴とす
るダストの処理方法である。 The present invention meets such needs by leaching dust with a sulfuric acid solution, then adding an alkali agent to the non-magnetic material of the leaching residue, recovering lead, and adding chlorine and chlorine to the leaching residue after adding the alkali agent. Alternatively, it is a dust processing method characterized by adding chloride and recovering a trace amount of silver.
以下本発明について詳細に述べる。 The present invention will be described in detail below.
本発明の処理対象であるダストの成分は、例え
ば以下のような組成のものである。すなわち、亜
鉛15〜40%、鉄10〜30%、鉛1〜6%、塩素4〜
15%、フツ素0.1〜0.5%、銀0.005〜0.030%その
他の物質からなるものである。 The components of the dust to be treated in the present invention have, for example, the following compositions. i.e. 15-40% zinc, 10-30% iron, 1-6% lead, 4-4% chlorine.
15%, fluorine 0.1-0.5%, silver 0.005-0.030% and other substances.
特に多くの亜鉛が酸に不溶解性のジインクフエ
ライトの形態等になつていないダストであつて、
鉛品位が低いダストである場合、効率良い処理が
行われる。 In particular, most of the zinc is not in the form of acid-insoluble diink ferrite, etc.
In the case of dust with a low lead grade, efficient processing is performed.
ダストは、先ず硫酸溶液で浸出される。該浸出
においては、亜鉛、塩素、フツ素等を浸出する。
特に鉄の浸出を防止するため、浸出は二段浸出を
することが好ましい。 The dust is first leached with a sulfuric acid solution. In the leaching, zinc, chlorine, fluorine, etc. are leached out.
In particular, in order to prevent leaching of iron, it is preferable to carry out two-stage leaching.
すなわち、第一段浸出においてはPH=2〜PH=
4により亜鉛を50〜70%前後浸出し、第二段では
前記残さを硫酸濃度100〜300g/で浸出し、少
量であつても存在し得るジインクフエライトの形
態をなす亜鉛をも侵出する。 That is, in the first stage leaching, PH=2 to PH=
In step 4, about 50 to 70% of the zinc is leached out, and in the second stage, the residue is leached out at a sulfuric acid concentration of 100 to 300 g/z, and zinc in the form of diink ferrite, which may exist even in small amounts, is also leached out. .
第二段の浸出液は、ジインクフエライト中の鉄
が後工程の処理液中に混入することを防止るた
め、第一段の浸出工程の酸調整剤として用いる。 The second stage leaching liquid is used as an acid regulator in the first stage leaching process in order to prevent the iron in the diink ferrite from being mixed into the treatment liquid in the subsequent process.
上記処理により、亜鉛を極めて効率よく浸出可
能である。例えば80〜96%の浸出が可能である。
また塩素は95%以上、フツ素は90%以上浸出でき
る。浸出液中の亜鉛は電解処理により電気亜鉛と
するか、炭酸ソーダを添加し炭酸亜鉛として効率
よく回収する。 The above treatment allows zinc to be leached out extremely efficiently. For example, a leaching of 80-96% is possible.
Additionally, more than 95% of chlorine and 90% of fluorine can be leached out. Zinc in the leachate can be converted into electrolytic zinc through electrolytic treatment, or can be efficiently recovered as zinc carbonate by adding soda carbonate.
また浸出液中の塩素あるいはフツ素等は、カセ
イソーダ等のアルカリ剤により、塩化ナトリウ
ム、フツ化ソーダ等として処理される。 In addition, chlorine or fluorine in the leachate is treated as sodium chloride, sodium fluoride, etc. using an alkaline agent such as caustic soda.
一方浸出残さは、湿式磁選処理により鉄分を効
率よく除き、鉛、銀を非磁性物中に回収する。 On the other hand, the iron content of the leaching residue is efficiently removed through wet magnetic separation treatment, and lead and silver are recovered in non-magnetic materials.
この場合磁力は500〜2000ガウスにて磁選分離
を行う。該磁選分離により銀および鉛は非磁性物
中にほとんど回収される。同時に処理すべき非磁
性物の鉱量は60%に減少する。この結果、後処理
工程に使用されるアルカリ剤あるいは塩化物使用
量を減少させる。 In this case, magnetic separation is performed with a magnetic force of 500 to 2000 Gauss. Most of the silver and lead are recovered in the non-magnetic material by the magnetic separation. At the same time, the amount of non-magnetic minerals to be processed will be reduced to 60%. As a result, the amount of alkali agents or chlorides used in post-treatment steps is reduced.
また磁性物中には、鉄分が濃縮される亜鉛の浸
出が十分なされた場合は、鉄原料等として用いら
れる。 In addition, if enough zinc is leached into the magnetic material to concentrate the iron content, it can be used as a raw material for iron.
非磁性物はアルカリ剤を使用して、含有する鉛
を有効に浸出し回収する。アルカリ剤の量は残存
する亜鉛量等および鉛の含有量により異なるが、
通常30〜70g/濃度になるよう添加した浸出液
により行われる。前記磁選処理により、取扱い鉱
量が減少したためアルカリ剤の処理量は減少させ
ることが可能であるが、さらに減少させる手段と
しては、残さを予め水洗した硫酸分を排除してお
くことである。 For non-magnetic materials, an alkaline agent is used to effectively leach and recover the lead contained therein. The amount of alkaline agent varies depending on the amount of remaining zinc and lead content, but
This is usually carried out using a leachate added to a concentration of 30 to 70 g/concentration. Because the amount of ore handled has been reduced by the magnetic separation process, it is possible to reduce the amount of alkaline agent treated, but a way to further reduce the amount is to remove the sulfuric acid content by washing the residue with water in advance.
さらにアルカリ剤で処理後の浸出残さ中の銀を
効率よく回収するため、塩素及び又は塩化物を添
加し、塩化銀として有効に回収する。 Furthermore, in order to efficiently recover silver in the leaching residue after treatment with an alkaline agent, chlorine and/or chloride is added to effectively recover silver chloride.
銀の98%以上が回収できる。 More than 98% of silver can be recovered.
塩化剤としては、例えば塩化カルシウムを1〜
10%添加する。前記添加後の残さを900〜1000℃
の温度で中性または酸化雰囲気で塩化ばい焼し、
塩化銀が回収される。 As a chlorinating agent, for example, calcium chloride
Add 10%. The residue after the above addition is heated to 900-1000℃
Chloride roasting in a neutral or oxidizing atmosphere at a temperature of
Silver chloride is recovered.
以上のように本発明を実施することにより以下
の効果を得る。 By implementing the present invention as described above, the following effects can be obtained.
(1) 亜鉛、銀、鉛等の有価金属を含有するダスト
を効率よく湿式処理により処理できる。(1) Dust containing valuable metals such as zinc, silver, and lead can be efficiently processed by wet processing.
(2) 特に亜鉛が20%前後と低く、鉛含有率の低い
ダストの処理においてエネルギー使用量の極め
て低い好ましい方法である。(2) It is a preferred method with extremely low energy consumption, especially when processing dust with a low zinc content of around 20% and a low lead content.
(3) さらに、鉛をアルカリ剤により浸出回収する
方法においては、予め湿式磁選処理する本発明
が処理鉱量を減少できるため有効な方法であ
る。(3) Furthermore, in the method of leaching and recovering lead using an alkaline agent, the present invention, which involves wet magnetic separation treatment in advance, is an effective method because it can reduce the amount of processed ore.
(4) 湿式磁選処理により、鉛、銀を非磁性物中に
有効に濃縮できる。(4) Lead and silver can be effectively concentrated in non-magnetic materials by wet magnetic separation treatment.
(5) また取扱い上好ましくない塩素またはフツ素
を第一段階の工程である酸浸出工程で予め除去
可能であり、好ましい方法である。(5) In addition, chlorine or fluorine, which are undesirable in terms of handling, can be removed in advance in the acid leaching step, which is the first step, and this is a preferred method.
実施例
鉄鋼ダスト(亜鉛20.0%、鉄26.5%、鉛2.5%、
銀0.011%、塩素8.2%、フツ素0.30%)100Kgを硫
酸酸性溶液1m3を用い、液のPHを2に保持しつ
つ、酸浸出を1時間行つた。この結果、亜鉛80
%、塩素99%、フツ素95%の浸出がなされた。Example Steel dust (zinc 20.0%, iron 26.5%, lead 2.5%,
(0.011% silver, 8.2% chlorine, 0.30% fluorine) was acid leached for 1 hour using 1 m 3 of a sulfuric acid acid solution while maintaining the pH of the solution at 2. As a result, zinc 80
%, 99% chlorine, and 95% fluorine were leached.
ついで、侵出液を過し、浸出残さを50Kg得
た。浸出残さ中には、鉛、銀が100%回収されて
いた。 Then, the leachate was filtered to obtain 50 kg of leach residue. 100% of lead and silver were recovered in the leaching residue.
前記浸出残さを水洗後、湿式磁選により処理し
た。磁選は1100ガウスにより行い、磁性物18Kg、
非磁性物32Kgを得た。 After washing the leaching residue with water, it was treated by wet magnetic separation. Magnetic selection was performed using 1100 Gauss, and 18 kg of magnetic material was used.
32 kg of non-magnetic material was obtained.
磁性物には、鉄が60%と高濃度に回収し得た。
鉄製錬の原料となり得るものであつた。 Iron was recovered at a high concentration of 60% in the magnetic material.
It could be used as a raw material for iron smelting.
一方非磁性物中には、鉛、銀が90%以上含まれ
ていた。該非磁性物を苛性ソーダ濃度50g/の
溶液により常温で1時間浸出した。鉛の75%以上
が浸出され、銀は浸出残さ中にほぼ100%残存し
た。 On the other hand, the non-magnetic materials contained more than 90% lead and silver. The non-magnetic material was leached with a solution of caustic soda at a concentration of 50 g/l for 1 hour at room temperature. More than 75% of the lead was leached, and almost 100% of the silver remained in the leaching residue.
アルカリ浸出残さ中の銀を回収するため塩化カ
ルシウムを0.7Kg混合し、ロータリーキルンによ
り酸化雰囲気中で、温度1000℃においてばい焼し
た。 In order to recover silver in the alkali leaching residue, 0.7 kg of calcium chloride was mixed and roasted in an oxidizing atmosphere in a rotary kiln at a temperature of 1000°C.
この処理により、銀の92%が塩化銀として回収
できた。 Through this process, 92% of the silver was recovered as silver chloride.
Claims (1)
残渣の非磁性物にアリカリ剤を加え、鉛を回収
し、前記アリカリ剤添加後の浸出残渣に塩素及び
又は塩化物を添加し、微量の銀を回収することを
特徴とするダストの処理方法である。1. Leaching the dust with a sulfuric acid solution, then adding an alkali agent to the non-magnetic material of the leaching residue to recover lead, adding chlorine and/or chloride to the leaching residue after adding the alkali agent, and adding a trace amount of silver. This is a dust processing method characterized by collecting dust.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58041488A JPS59170225A (en) | 1983-03-15 | 1983-03-15 | Treatment of dust |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58041488A JPS59170225A (en) | 1983-03-15 | 1983-03-15 | Treatment of dust |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59170225A JPS59170225A (en) | 1984-09-26 |
JPS6122010B2 true JPS6122010B2 (en) | 1986-05-29 |
Family
ID=12609731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58041488A Granted JPS59170225A (en) | 1983-03-15 | 1983-03-15 | Treatment of dust |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59170225A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100567524C (en) * | 2005-05-10 | 2009-12-09 | 乔治·普瓦达 | Be used for handling the electric furnace and the dust of other stove and the technology of residue that contain zinc oxide and franklinite |
CN108384967A (en) * | 2018-01-23 | 2018-08-10 | 昆明理工大学 | A method of recycling silver from steel works sintering dirt mud |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4931527A (en) * | 1972-07-24 | 1974-03-22 | ||
JPS55104434A (en) * | 1979-02-06 | 1980-08-09 | Dowa Mining Co Ltd | Treating method for iron manufacturing dust containing zinc |
-
1983
- 1983-03-15 JP JP58041488A patent/JPS59170225A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4931527A (en) * | 1972-07-24 | 1974-03-22 | ||
JPS55104434A (en) * | 1979-02-06 | 1980-08-09 | Dowa Mining Co Ltd | Treating method for iron manufacturing dust containing zinc |
Also Published As
Publication number | Publication date |
---|---|
JPS59170225A (en) | 1984-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0071684B1 (en) | Process for recovering zinc from zinc ferrite material | |
JPS5964722A (en) | Recovery of metal from copper-containing sulfide by wet met-allurgical process | |
US5078786A (en) | Process for recovering metal values from jarosite solids | |
US3691038A (en) | Process for the recovery of zinc from zinc- and iron-containing materials | |
JPS5952218B2 (en) | Method for recovering gold from copper electrolytic slime | |
US3684490A (en) | Process for recovering zinc from jarosite residue | |
CN107099672A (en) | The recovery method of the fume from steel making containing zinc | |
CA1130572A (en) | Treating copper-bearing materials with a heterocyclic amine and a halogenated hydrocarbon to recover metal values therefrom | |
CA1057506A (en) | Method of producing metallic lead and silver from their sulfides | |
US4662938A (en) | Recovery of silver and gold | |
JPS6122010B2 (en) | ||
EP0061468B1 (en) | Recovery of silver from ores and concentrates | |
US20070041883A1 (en) | Process for hydrometallurgical treatment of electric arc furnace dust | |
US5851490A (en) | Method for utilizing PH control in the recovery of metal and chemical values from industrial waste streams | |
JPS5952696B2 (en) | Method for recovering copper and selenium from copper electrolysis anode slime | |
CN106906363A (en) | A kind of processing method containing arsenical copper slag | |
JP2006083457A (en) | Treatment method for zinc leach residue and the like | |
JPS59166635A (en) | Dust treatment | |
US1284910A (en) | Process for recovering metals from ores. | |
WO2023157826A1 (en) | Zinc recovery method | |
US20020001552A1 (en) | Treatment of roasted metal sulphide ores and ferrites by leaching with peroxysulphuric acid | |
KR102678814B1 (en) | Valuable metal recovery method using solvent extraction from zinc and copper waste | |
RU1770426C (en) | Method for processing of dust, formed in tungsten-containing cemented-carbide tool grinding | |
WO1988003912A1 (en) | Process for recovering metal values from ferrite wastes | |
JP2003013275A (en) | Method for treating dust of electric furnace |