JP2000024658A - Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof - Google Patents

Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof

Info

Publication number
JP2000024658A
JP2000024658A JP10208619A JP20861998A JP2000024658A JP 2000024658 A JP2000024658 A JP 2000024658A JP 10208619 A JP10208619 A JP 10208619A JP 20861998 A JP20861998 A JP 20861998A JP 2000024658 A JP2000024658 A JP 2000024658A
Authority
JP
Japan
Prior art keywords
phosphorus
water
hydrotalcites
dephosphorizing agent
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208619A
Other languages
Japanese (ja)
Inventor
Shigeo Miyata
茂男 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAISUI KAGAKU KENKYUSHO KK
Sea Water Chemical Institute Inc
Original Assignee
KAISUI KAGAKU KENKYUSHO KK
Sea Water Chemical Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAISUI KAGAKU KENKYUSHO KK, Sea Water Chemical Institute Inc filed Critical KAISUI KAGAKU KENKYUSHO KK
Priority to JP10208619A priority Critical patent/JP2000024658A/en
Publication of JP2000024658A publication Critical patent/JP2000024658A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Removal Of Specific Substances (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain about >90% dephosphorizing rate even for raw water having such a low concn. of phosphorus dissolved as about 1 ppm phosphorus concn., and to provide an nontoxic dephosphorizing agent and dephosphorizing method by which the dephosphorizing agent is easily regenerated and phosphorus is easily recovered. SOLUTION: This dephosphorizing agent of phosphorus dissolved in water contains hydrotalcite expressed by the formula of M2+1-xM3+x(OH)2An-x/nmH2O as an effective component. Also the regenerating method of the dephosphorizing agent and the recovering method of phosphorus are provided. In the formula, M2+ is at least one kind of bivalent metal, M3+ is at least one kind of tervalent metal, An- is SO42- or Cl-, and (x) and (m) satisfy 0<x<0.5 and 0<=m<2.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、富栄養化の原因で
ある水に溶存しているリン酸イオンの除去剤、および除
去したリン酸イオンの回収、ならびに該リン除去剤の再
生方法に関する。
The present invention relates to an agent for removing phosphate ions dissolved in water which causes eutrophication, to recover the removed phosphate ions, and to a method for regenerating the phosphorus remover.

【0002】[0002]

【従来の技術】水中のリンと窒素濃度が増えると、富栄
養化減少を生ずる。すなわち、藻類が増殖して毒素を出
すほか、水路を詰まらせ、景観を損ない、生物種を減ら
し、水を酸欠にする。特殊な窒素固定菌や落雷により河
川の窒素分の多くが補給されるため、人為的に窒素を取
り除いても、それは1時的なものであり、実質的に窒素
を除去することは難しい。従って、富栄養化を支配して
いるのは水に溶存しているリンであり、リン濃度が影響
する。このリンの大部分がリン酸(H3PO4)の電離形
で存在する。水に溶存しているリンを除去するべく、今
まで次に示すような種々の脱リン剤が提案されてきた。
それら脱リン剤は、金属鉄繊維、金属アルミニウム、活
性炭、水酸化アルミニウム、水酸化鉄、活性汚泥、ムラ
サキ貝、粘土等である。しかし、従来の脱リン剤はリン
の除去率が約50%以下であり、富栄養化を阻止するに
は不十分であった。また、従来の脱リン剤は原水通水後
2日目位からスライムが生成し、脱リン活性が低下す
る。
BACKGROUND OF THE INVENTION Increasing concentrations of phosphorus and nitrogen in water result in reduced eutrophication. In other words, algae proliferate and emit toxins, clog waterways, spoil landscapes, reduce species, and dehydrate water. Since the nitrogen content of rivers is replenished by special nitrogen-fixing bacteria and lightning, even if nitrogen is artificially removed, it is only temporary and it is difficult to remove nitrogen substantially. Therefore, it is phosphorus dissolved in water that controls eutrophication, and the phosphorus concentration affects the eutrophication. Most of this phosphorus exists in the ionized form of phosphoric acid (H 3 PO 4 ). In order to remove phosphorus dissolved in water, various phosphorus removing agents as described below have been proposed.
Such dephosphorizing agents are metallic iron fibers, metallic aluminum, activated carbon, aluminum hydroxide, iron hydroxide, activated sludge, mussels, clay and the like. However, the conventional phosphorus removing agent has a phosphorus removal rate of about 50% or less, which is insufficient to prevent eutrophication. Further, in the conventional dephosphorizing agent, slime is generated from about 2 days after the passage of raw water, and the dephosphorizing activity is reduced.

【0003】[0003]

【発明が解決しようとする課題】従来の脱リン剤の欠点
である脱リン率が約50%と低いのを改良して、約90
%以上の脱リン率をリン換算約1ppm(PO4−P)
程度の低濃度のリン溶存原水に対しても達成すること、
さらに脱リン剤の再生が容易でしかもリンの回収ができ
ること、したがって脱リン剤を廃棄する必要がなく、た
とえ廃棄する場合でもそれ自体安全、無毒性で、環境破
壊の問題を生じないという、脱リン剤および脱リン方法
の提供が強く望まれている。さらにスライムに影響のな
い脱リン剤が望まれている。本発明は以上のような諸要
求を満足する新規な脱リン剤およびリンの回収、脱リン
剤の再生を含めた脱リン方法の提供を目的とする。
The dephosphorization rate, which is a drawback of the conventional dephosphorizing agent, is as low as about 50%.
% Dephosphorization rate is about 1 ppm in terms of phosphorus (PO 4 -P)
To achieve even low concentrations of phosphorus-dissolved raw water,
Furthermore, it is easy to regenerate the phosphorus-removing agent and can recover phosphorus. Therefore, there is no need to dispose of the phosphorus-removing agent, and even if it is disposed, it is safe, non-toxic and does not cause environmental destruction. There is a strong desire to provide a phosphorus agent and a method for dephosphorization. Further, a dephosphorizing agent which does not affect slime is desired. An object of the present invention is to provide a novel dephosphorizing agent which satisfies the above-mentioned various requirements and a method for removing phosphorus including recovery of phosphorus and regeneration of the dephosphorizing agent.

【0004】[0004]

【課題を解決するための手段】本発明は、下記式(1) M2+ 1-x3+ x(OH)2n- x/n・mH2O (1) (式中、M2+は、Mg2+,Zn2+,Cu2+等の2価金属
の少なくとも1種、好ましくはMg2+を、M3+は、Al
3+,Fe3+等の3価金属の少なくとも1種,好ましくは
Al3+を、An-はSO4 2-またはCl-、望ましくはSO
4 2-を示し、xおよびmはそれぞれ次の範囲を満足する
数を表す、0<x<0.5、好ましくは0.2≦x≦
0.4、0≦m<2、x/nはこの値より約20〜30
%まで多くなってもよい)で表されるハイドロタルサイ
ト類を有効成分とすることを特徴とする水に溶存してい
るリンの除去剤を提供する。本発明は上記式(1)の化
合物が、下記式(2) Mg1-xAlx(OH)2(SO4x/2・mH2O (2) (式中、xおよびmはそれぞれ次の範囲を満足する数を
表す、0.1<x<0.5、好ましくは0.2<x<
0.4、0≦m<2、好ましくは0<m<2)で表され
るハイドロタルサイト類であるリンの除去剤を提供す
る。本発明はさらに、上記ハイドロタルサイト類が、短
径が少なくとも1mm以上の球形または円柱状に造粒さ
れている脱リン剤を提供する。本発明はさらに、(A)
前記ハイドロタルサイト類の充填層に原水を通水させ、
n-をリン酸イオンでイオン交換する脱リン工程、
(B)脱リン能力が飽和に達した該ハイドロタルサイト
類の充填層にアルカリ金属炭酸塩または炭酸アンモニウ
ムの水溶液を通水して、捕捉したリン酸イオンをCO3
2-でイオン交換して回収する工程、(C)少なくともp
H1以上の硫酸または塩酸の水溶液を接触させ、An-
炭酸イオンになったハイドロタルサイト類を硫酸イオン
または塩酸イオンとイオン交換して、式(1)のハイド
ロタルサイト類に再生する工程からなることを特徴とす
る原水中リンの除去、および脱リン剤の再生方法を提供
する。
According to the present invention, there is provided a compound represented by the following formula (1): M 2 + 1 -x M 3+ x (OH) 2 An - x / n · mH 2 O (1) 2+ is at least one of divalent metals such as Mg 2+ , Zn 2+ , Cu 2+ , preferably Mg 2+ , and M 3+ is Al
3+, at least one trivalent metal Fe 3+, etc., preferably Al 3+, A n-is SO 4 2-or Cl -, preferably SO
4 represents 2- , wherein x and m each represent a number satisfying the following range: 0 <x <0.5, preferably 0.2 ≦ x ≦
0.4, 0 ≦ m <2, x / n is about 20 to 30
% Of which may be increased to about 0.1%) as an active ingredient. In the present invention, the compound of the above formula (1) is represented by the following formula (2): Mg 1-x Al x (OH) 2 (SO 4 ) x / 2 · mH 2 O (2) 0.1 <x <0.5, preferably 0.2 <x <, representing a number satisfying the following range:
0.4, 0 ≦ m <2, preferably 0 <m <2) Provided is a phosphorus-removing agent represented by hydrotalcites. The present invention further provides a dephosphorizing agent wherein the hydrotalcites are granulated in a spherical or columnar shape having a minor axis of at least 1 mm or more. The present invention further provides (A)
Raw water is passed through the packed bed of the hydrotalcites,
A dephosphorization step of ion-exchanging An- with phosphate ions,
(B) An aqueous solution of an alkali metal carbonate or ammonium carbonate is passed through a packed bed of the hydrotalcites whose dephosphorization capacity has reached saturation, and the captured phosphate ions are CO 3
Step of recovering by ion exchange in 2- , (C) at least p
H1 contacting the above aqueous solution of sulfuric acid or hydrochloric acid, A n-is a hydrotalcite became carbonate ion exchanged ions and sulfate ions or hydrochloric ion, step of regenerating the hydrotalcite of formula (1) And a method for regenerating a phosphorus removing agent.

【0005】[0005]

【発明の実施の形態】式(1)のハイドロタルサイト類
の中でも、下記式(2)または式(3) Mg1-xAlx(OH)2(SO4x/2・mH2O (2) Mg1-xAlx(OH)2(Cl)x・mH2O (3) (式中、xおよびmはそれぞれ次の範囲を満足する数を
表す、0.1<x<0.5、好ましくは0.2≦x≦
0.4、特に好ましくは0.25≦x≦0.35、0≦
m<2、好ましくは0<m<2)で表される組成のハイ
ドロタルサイト類を用いることが好ましく、最も好まし
いのは式(2)の化合物を用いることである。式
(2)、式(3)を含む式(1)のハイドロタルサイト
類は、無毒性であり、安価であり、脱リン容量が高い
(MgとAlが軽元素であるが)等の特徴を有する。M
gの原料としては、安価な海水等が利用でき、しかもM
gもAlも安全、無毒である。SO4 2-もCl-もリン酸
イオンにイオン交換されて水に溶出しても、水を汚染し
ない。NO3 -や有機酸イオンは新たな水の汚染を引き起
こすこととなる。しかも、再生時の再生の容易さ、再生
率およびコストを考えるとSO4 2-はCl-よりも有利で
ある。
BEST MODE FOR CARRYING OUT THE INVENTION Among the hydrotalcites of the formula (1), the following formula (2) or (3): Mg 1-x Al x (OH) 2 (SO 4 ) x / 2 · mH 2 O (2) Mg 1-x Al x (OH) 2 (Cl) x · mH 2 O (3) (where x and m each represent a number satisfying the following range, 0.1 <x <0 .5, preferably 0.2 ≦ x ≦
0.4, particularly preferably 0.25 ≦ x ≦ 0.35, 0 ≦
It is preferable to use hydrotalcites having a composition represented by m <2, preferably 0 <m <2), and most preferably to use a compound of the formula (2). The hydrotalcites of the formula (1) including the formulas (2) and (3) are non-toxic, inexpensive, and have high dephosphorization capacity (although Mg and Al are light elements). Having. M
As a raw material for g, inexpensive seawater or the like can be used.
Both g and Al are safe and non-toxic. Even if SO 4 2- and Cl are ion-exchanged into phosphate ions and eluted in water, they do not contaminate the water. NO 3 - and organic acid ions cause new water pollution. In addition, SO 4 2- is more advantageous than Cl when considering the ease of regeneration, the regeneration rate, and the cost during regeneration.

【0006】An-はイオン交換性であり、その量は、M
3+イオン量に依存しているため、xが大きい程イオン交
換容量が高くなり好ましい。本発明の最大の特徴は、従
来の脱リン剤がリン酸と金属との反応であるのに対し、
イオン交換で、しかもAn-がSO4 2-またはCl-、特に
好ましくはSO4 2-であることである。第2の特徴は、
Na2CO3等による洗浄(イオン交換)とそれに続くH
2SO4またはHClによる洗浄(イオン交換)からなる
再生方法にある。リン酸イオンよりも選択性が高く、か
つ次の再生を可能にするNa2CO3、K2CO3等のCO
3 2-イオンを用いて洗浄することにより、効率良くリン
酸イオンを極めて再利用し易い形で回収できる。更に続
くH2SO4またはHClのpH1以上、好ましくはpH
1〜4、更に好ましくはpH2〜3の水溶液と接触させ
ることにより、An-がSO4 2-またはCl-の式(1)の
化合物に容易に、かつ経済的に再生することができる。
特にH2SO4水溶液による再生は、HClよりも再生率
に優れ、かつ必要当量数の関係から、HClの半分のモ
ル数で済むため経済的である。しかも本発明者は、An-
であるSO4 2-は、2価陰イオンの中で唯一1価陰イオ
ンに劣らず、リン酸イオンで容易にイオン交換されるこ
とを初めて発見した。H2SO4またはHClとの反応に
より、An-であるCO3 2-はH2CO3となり、An-はS
4 2-またはCl-にイオン交換される。この反応の発見
も本発明の特徴の一つである。H2CO3は引き続きCO
2とH2Oに変化する。さらに本発明の脱リン剤は、スラ
イムに脱リン活性が影響されないことを発見した。その
理由は、必ずしも明らかでないが、本発明脱リン剤の脱
リン反応が、イオン交換であり、従来の脱リン剤とは、
反応メカニズムが異なるためと思われる。
A n- is ion-exchangeable and its amount is M
Since it depends on the amount of 3+ ions, the larger x is, the higher the ion exchange capacity is, which is preferable. The greatest feature of the present invention is that the conventional dephosphorizing agent is a reaction between phosphoric acid and a metal,
In ion exchange, addition A n- is SO 4 2- or Cl -, and particularly preferably it SO 4 2-. The second feature is
Washing (ion exchange) with Na 2 CO 3 etc. followed by H
The regeneration method comprises washing (ion exchange) with 2 SO 4 or HCl. CO such as Na 2 CO 3 and K 2 CO 3 which has higher selectivity than phosphate ion and enables the next regeneration
By washing with 3 2- ions efficiently phosphate ions can be recovered in a very reused easily form. Furthermore, the pH of H 2 SO 4 or HCl is 1 or more, preferably pH
1-4, more preferably by contacting with an aqueous solution of pH 2-3, A n-is SO 4 2-or Cl - can be easily and economically to play the compound of formula (1).
In particular, regeneration with an aqueous solution of H 2 SO 4 is economical because it has a higher regeneration rate than HCl and requires only half the number of moles of HCl because of the required number of equivalents. Moreover, the present inventor has found that A n-
SO 4 2-is, 2 Ataikage no less only 1 dianion in ion was first discovered easily be ion-exchanged with phosphate ions. By reaction with H 2 SO 4 or HCl, CO 3 2- is H 2 CO 3 becomes a A n-, A n- is S
It is ion-exchanged to O 4 2- or Cl . The discovery of this reaction is also one of the features of the present invention. H 2 CO 3 continues to be CO
2 and H 2 O. Furthermore, it has been found that the dephosphorizing agent of the present invention does not affect the dephosphorizing activity of slime. Although the reason is not necessarily clear, the dephosphorization reaction of the dephosphorizing agent of the present invention is ion exchange, and the conventional dephosphorizing agent is
This is probably because the reaction mechanism is different.

【0007】式(1)の化合物の合成は、従来公知の方
法で実施できる。例えば、水酸化マグネシウムと硫酸ア
ルミニウムとの混合水溶液と、または塩化マグネシウム
と塩化アルミニウムとの混合水溶液と、水酸化ナトリウ
ム等のアルカリとをpH約8以上、好ましくはpH9以
上で撹拌下に反応させることにより得ることができる。
The compound of the formula (1) can be synthesized by a conventionally known method. For example, reacting a mixed aqueous solution of magnesium hydroxide and aluminum sulfate or a mixed aqueous solution of magnesium chloride and aluminum chloride with an alkali such as sodium hydroxide at a pH of about 8 or more, preferably at a pH of 9 or more under stirring. Can be obtained by

【0008】本発明の脱リン剤は、粉末で使用すること
もできる。しかし、固液分離工程を省略できる、省力化
できる等の利点を考慮すると、短径が1mm以上、好ま
しくは3〜7mmの球形状もしくは円柱形状に造粒して
用いることが好ましい。造粒は公知の造粒方法で実施す
ることができる。例えば公知のバインダー(粘土、CM
C、珪藻土、ベーマイト、活性アルミナ等)を添加また
は無添加で、式(1)のハイドロタルサイト類粉末を混
練機等を利用して、混練下にに水を適量徐徐に加え、十
分混練後、押出機を用いて、目的の直径のストランドに
押出し、さらにマルメライザーで整粒後、乾燥する方法
により造粒できる。バインダーは、好ましくは添加しな
い方がよい。添加する場合、式(1)のハイドロタルサ
イトるいの重量100重量部に対しバインダーは約5〜
30重量部である。
[0008] The dephosphorizing agent of the present invention can also be used in powder form. However, in consideration of advantages such as elimination of the solid-liquid separation step and labor saving, it is preferable to use granules having a short diameter of 1 mm or more, preferably 3 to 7 mm, in a spherical or cylindrical shape. Granulation can be performed by a known granulation method. For example, known binders (clay, CM
C, diatomaceous earth, boehmite, activated alumina, etc.) with or without the addition of a hydrotalcite powder of the formula (1) using a kneader or the like, while gradually adding an appropriate amount of water under kneading and kneading sufficiently. The mixture can be extruded into a strand having a desired diameter by using an extruder, and then granulated by a method of sizing with a marmellaizer and drying. Preferably, no binder is added. When added, the binder is used in an amount of about 5 to 100 parts by weight of the hydrotalcite sieve of the formula (1).
30 parts by weight.

【0009】脱リン剤と原水との接触方法は、式(1)
のハイドロタルサイト類、好ましくはその造粒物をカラ
ムや不織布に充填し、これに上向流、下向流または水平
流で通水する。水との接触時間は、約1分〜約数10時
間である。好ましくは約5分〜60分である。
The method of contacting the dephosphorizing agent with raw water is represented by the following formula (1)
Is packed in a column or a nonwoven fabric, and water is passed through the column in an upward flow, downward flow or horizontal flow. The contact time with water is from about 1 minute to about several tens of hours. Preferably, it is about 5 to 60 minutes.

【0010】ハイドロタルサイト類の脱リン能力が飽和
に達した後は、リンの脱離、回収を行う。これは、Na
2CO3、K2CO3または(NH42CO3の水溶液、好
ましくはNa2CO3水溶液を、少なくともリン酸イオン
の当量以上、好ましくは1.5倍〜2倍当量分通液させ
て行う。リンはリン酸のNa塩、K塩またはNH4塩と
して回収される。回収したリンは再利用もできる。この
後、引き続きH2SO4またはHCl等の約0.5モル/
リットル以下、好ましくは約0.2モル/リットル以下
の水溶液を、系のpHを約1以上、好ましくはpH約2
〜4、さらに好ましくはpH約2〜4の間に保って、ハ
イドロタルサイト中のCO3 2-に対して約1倍〜2倍当
量、好ましくは約1.5倍〜2.5倍当量の量をハイド
ロタルサイトに接触させる。この際、H2SO4またはH
Cl等は、本発明の脱リン剤を充填したカラムの下部ま
たは上部から通液する方法以外にも、脱リン剤を水に懸
濁または浸したところに、好ましくは撹拌下に加える方
法で行うこともできる。
After the dephosphorizing ability of the hydrotalcites reaches saturation, phosphorus is desorbed and recovered. This is Na
An aqueous solution of 2 CO 3 , K 2 CO 3 or (NH 4 ) 2 CO 3 , preferably an aqueous solution of Na 2 CO 3 is passed through at least the equivalent of phosphate ions, preferably 1.5 to 2 equivalents. Do it. Phosphorus is recovered as Na, K or NH 4 salts of phosphoric acid. The recovered phosphorus can be reused. Then, about 0.5 mol / H 2 SO 4 or HCl
An aqueous solution of up to about 1 mol, preferably up to about 0.2 mol / l, is brought to a pH of about 1 or more, preferably about 2 mol / l.
, More preferably about 1 to 2 equivalents, preferably about 1.5 to 2.5 equivalents to CO 3 2- in hydrotalcite, while maintaining the pH at about 2 to 4. To the hydrotalcite. At this time, H 2 SO 4 or H 2 SO 4
Cl or the like is carried out by a method in which the dephosphorizing agent is suspended or soaked in water, and preferably added with stirring, in addition to the method in which the dephosphorizing agent is passed through the lower or upper part of the column filled with the dephosphorizing agent of the present invention. You can also.

【0011】本発明の脱リン剤は、原水中のリン濃度が
約1〜60ppm(PO4−P)と低い程、従来脱リン
剤に比して大きな性能の差を生じる。すなわち本発明の
脱リン剤が優位となる。例えば、リン濃度1ppm(P
4−P)の原水を、本発明脱リン剤で処理すると、
0.1ppm以下に低減することができる。この0.1
ppmレベルにリンが除去されると、富栄養化は実質的
に阻止される。このような低濃度の実現、すなわち富栄
養化のほぼ完全な阻止は、本発明の脱リン剤によって初
めて実現されたものである。本発明の脱リン剤は、数1
00mmの成形体として、河川、池等に静置して使用す
ることもできる。
The dephosphorizing agent of the present invention produces a large difference in performance as compared with the conventional dephosphorizing agent as the phosphorus concentration in raw water is as low as about 1 to 60 ppm (PO 4 -P). That is, the dephosphorizing agent of the present invention is superior. For example, a phosphorus concentration of 1 ppm (P
When the raw water of O 4 -P) is treated with the dephosphorizing agent of the present invention,
It can be reduced to 0.1 ppm or less. This 0.1
When phosphorus is removed to the ppm level, eutrophication is substantially prevented. The realization of such a low concentration, that is to say almost complete inhibition of eutrophication, has been realized for the first time by the dephosphorizing agent of the present invention. The dephosphorizing agent of the present invention is represented by Formula 1.
It can also be used as a 00 mm molded body by standing on a river or pond.

【0012】以下実施例により本発明を具体的に説明す
る。 実施例1 2kgの市販ハイドロタルサイト類(Mg0.67Al0.33
(OH)2(CO30.165・0.5H2O、BET比表面
積89m2/g)粉末を、0.05モル/リットルのH2
SO4水溶液80リットルに撹拌下に加え、1時間撹拌
を継続した。その後、濾過、水洗、乾燥(約120℃、
150時間)した。この乾燥物を化学分析した結果、化
学組成は次の通りであった。 Mg0.67Al0.33(OH)2(SO40.148(CO3
0.018・0.36H2O この乾燥物2kgをアトマイザーで粉砕後、混練機に入
れ、1.95kgの水を徐徐に加えながら、約20分間
混練した。混練物を取り出し、前押し型押出機を用い
て、直径3mmのストランドを作成した。このストラン
ドをマルメライザーに入れ、約30秒、約50gのSO
4型の本発明未造粒乾粉を振りかけて処理した後、乾燥
した。その結果短径約3mm、長径約5mmの円柱形造
粒物が得られた。この造粒物の約500ccを、内径4
7mm、全長120cmのカラムに充填した。このカラ
ムに、リンをPO4換算で0.6〜1ppm溶存してい
る原水(下水の2次処理水)を、定量ポンプを用いて、
42ミリリットル/分(SV=5、接触時間12分)の
流速で20日間連続してカラム下部から通水した。カラ
ム上部から出て来た処理水のリン濃度を吸光光度計で測
定した。処理水中のリン濃度は、毎日1回の測定結果、
PO4換算で、0.05〜0.1ppmであった。従っ
て、リンの除去率は90〜95%に達していた。2日目
からスライムが造粒物表面に生成したが、脱リン率には
影響しなかった。
Hereinafter, the present invention will be described in detail with reference to examples. Example 1 2 kg of commercially available hydrotalcites (Mg 0.67 Al 0.33
(OH) 2 (CO 3) 0.165 · 0.5H 2 O, a BET specific surface area of 89m 2 / g) powder, 0.05 mol / l H 2
The solution was added to 80 liters of an aqueous SO 4 solution with stirring, and stirring was continued for 1 hour. Then, filtration, washing with water, and drying (about 120 ° C,
150 hours). As a result of chemical analysis of the dried product, the chemical composition was as follows. Mg 0.67 Al 0.33 (OH) 2 (SO 4 ) 0.148 (CO 3 )
0.018・ 0.36H 2 O After 2 kg of the dried product was pulverized by an atomizer, the mixture was put into a kneader and kneaded for about 20 minutes while gradually adding 1.95 kg of water. The kneaded material was taken out, and a strand having a diameter of 3 mm was formed using a pre-press type extruder. This strand is put into a marmellaizer, and it is about 30 seconds, about 50 g of SO.
Type 4 non-granulated dry powder of the present invention was sprinkled and dried. As a result, a cylindrical granule having a minor axis of about 3 mm and a major axis of about 5 mm was obtained. About 500 cc of this granulated product is
The column was packed into a column having a length of 7 mm and a length of 120 cm. Raw water in which 0.6-1 ppm of phosphorus is dissolved in terms of PO 4 is dissolved in this column by using a metering pump,
Water was passed from the bottom of the column continuously for 20 days at a flow rate of 42 ml / min (SV = 5, contact time 12 minutes). The phosphorus concentration of the treated water coming out of the upper part of the column was measured with an absorptiometer. The phosphorus concentration in the treated water is measured once a day,
In PO 4 conversion, was 0.05~0.1ppm. Therefore, the removal rate of phosphorus reached 90 to 95%. From the second day, slime was formed on the surface of the granules, but did not affect the dephosphorization rate.

【0013】実施例2 硫酸マグネシウムと硫酸アルミニウムの混合水溶液(M
2+=1.5モル/リットル、Al3+=0.5モル/リ
ットル)と、4モル/リットルの水酸化ナトリウムを容
量2リットルの反応槽に、定量ポンプを用いて、それぞ
れ約100ミリリットル/分供給し、撹拌下、pHを約
9.5に保って、約40℃で反応させた。反応物を濾
過、水洗後乾燥した。この物の化学組成は次のとおりで
あった。 Mg0.75Al0.25(OH)2(SO40.13・0.46H
2O この粉末2kgを実施例1と同様に操作して、混練後、
前押し型押出機により、直径5mmのストランドを作成
した。このストランドをマルメライザーで乾粉なしで、
約20秒処理し、乾燥した。その結果、短径5mm、長
径7mmの円柱状造粒物を得た。この造粒物100cc
を、内径20cm、全長40cmのカラムに充填し、リ
ンをPO4換算で10ppm溶存させた水道水を、流速
20ミリリットル/分(SV=2.4、接触時間25
分)でカラムの下部から定量ポンプで通水した。30日
間連続通水した結果、処理水のリン濃度は毎日1回の濃
度測定の結果、0.1〜0.2ppmであり、除去率は
90%を越えていた。
Example 2 A mixed aqueous solution of magnesium sulfate and aluminum sulfate (M
g 2+ = 1.5 mol / l, Al 3+ = 0.5 mol / l) and 4 mol / l of sodium hydroxide were placed in a reaction vessel having a capacity of 2 liters for about 100 The reaction was carried out at a temperature of about 40 ° C. while maintaining the pH at about 9.5 with stirring and feeding at a rate of milliliter / min. The reaction product was filtered, washed with water and dried. The chemical composition of this product was as follows. Mg 0.75 Al 0.25 (OH) 2 (SO 4 ) 0.13・ 0.46H
2 O 2 kg of this powder was operated in the same manner as in Example 1, and after kneading,
A strand having a diameter of 5 mm was prepared by a pre-pressing extruder. This strand is not dried with a marmellaizer,
Treated for about 20 seconds and dried. As a result, a columnar granule having a minor axis of 5 mm and a major axis of 7 mm was obtained. 100g of this granulated material
Was packed in a column having an inner diameter of 20 cm and a total length of 40 cm, and tap water in which phosphorus was dissolved at 10 ppm in terms of PO 4 was supplied at a flow rate of 20 ml / min (SV = 2.4, contact time 25
Min), water was passed from the lower part of the column with a metering pump. As a result of passing water continuously for 30 days, the phosphorus concentration of the treated water was 0.1 to 0.2 ppm as a result of concentration measurement once a day, and the removal rate exceeded 90%.

【0014】比較例1 直径0.1mmのステンレス繊維を500cc、実施例
1と同じカラムに充填し、実施例2と同様に操作して通
水した。その結果、6日間は処理水のリン濃度はPO4
2-換算で4〜6ppmであったが、7日目には、原水と
ほぼ同じリン濃度となった。
Comparative Example 1 500 cc of stainless steel fiber having a diameter of 0.1 mm was packed in the same column as in Example 1, and water was passed in the same manner as in Example 2. As a result, the phosphorus concentration of the treated water was PO 4 for 6 days.
It was 4 to 6 ppm in terms of 2- , but on the seventh day, the phosphorus concentration was almost the same as that of the raw water.

【0015】実施例3 実施例1でさらに通水を続け、125日目に飽和に達し
たので、原水の通水をストップし、0.2モル/リット
ルのNa2CO3水溶液を定量ポンプで、流速2ミリリッ
トル/分で合計2リットルを、カラム下部から通液し
た。カラム上部から排出した水の全リン量を測定した。
その結果PO4換算で0.39モルあった。次に0.0
4モル/リットルのH2SO4水溶液10リットルを、流
速20ミリリットル/分で、カラム下部から定量ポンプ
で供給した。この後、カラムの中から本発明の脱リン剤
約10gを取り出し、水洗、乾燥後、化学分析を行っ
た。その結果、このものの化学組成は次の通りであっ
た。 Mg0.67Al0.33(OH)2(SO40.16(CO3
0.05・0.32H2O 再生した本発明脱リン剤に、再度実施例1と同様にPO
4換算で1ppmのリンを溶存する原水を20日間連続
通水した。その結果、処理水は、PO4換算で0.01
〜0.1ppmの範囲に除去されていた。
Example 3 The flow of water was further continued in Example 1, and since saturation reached on the 125th day, the flow of raw water was stopped, and a 0.2 mol / L aqueous solution of Na 2 CO 3 was pumped with a metering pump. A total of 2 liters were passed from the bottom of the column at a flow rate of 2 ml / min. The total phosphorus amount of the water discharged from the upper part of the column was measured.
As a result, it was 0.39 mol in terms of PO 4 . Then 0.0
10 liters of a 4 mol / l H 2 SO 4 aqueous solution was supplied from the lower part of the column by a metering pump at a flow rate of 20 ml / min. Thereafter, about 10 g of the dephosphorizing agent of the present invention was taken out of the column, washed with water, dried, and then subjected to chemical analysis. As a result, the chemical composition was as follows. Mg 0.67 Al 0.33 (OH) 2 (SO 4 ) 0.16 (CO 3 )
To 0.05 · 0.32H 2 O reproduced invention dephosphorization agent, in the same manner as in Example 1 again PO
Raw water in which 1 ppm of phosphorus in 4 conversion was dissolved was passed continuously for 20 days. As a result, the treated water was 0.01% in terms of PO 4.
It was removed in the range of ppm0.1 ppm.

【0016】実施例4 2kgの実施例1で用いたのと同じ市販のハイドロタル
サイト類の粉末を10リットルの水に撹拌分散させた。
この系に、撹拌下に、0.5モル/リットルのHCl水
溶液4リットルを系のpHを約3以上に保って加えた。
その後、濾過、水洗、乾燥、粉砕した。乾燥粉末を化学
分析した結果、化学組成は次の通りであった。 Mg0.67Al0.33(OH)2Cl0.30(CO30.02
0.43H2O この乾燥粉末を、実施例1と同様に操作して、短径3m
m、長径5mmの円柱形に造粒した。この造粒物100
ccを、実施例2と同じ条件で脱リン試験を行った。そ
の結果、15日目までは0.01〜0.1ppmの濃度
まで脱リンされており、16日目から徐々に濃度が上昇
し、20日目には1.0ppmになった。
Example 4 2 kg of the same commercially available hydrotalcite powder as used in Example 1 was stirred and dispersed in 10 liters of water.
To this system was added, with stirring, 4 liters of an aqueous 0.5 mol / l HCl solution while maintaining the pH of the system at about 3 or higher.
Then, it was filtered, washed with water, dried and pulverized. As a result of chemical analysis of the dried powder, the chemical composition was as follows. Mg 0.67 Al 0.33 (OH) 2 Cl 0.30 (CO 3 ) 0.02
0.43H 2 O This dry powder was treated in the same manner as in Example 1 to obtain a short diameter of 3 m.
m, and granulated into a column having a major axis of 5 mm. This granulated material 100
The cc was subjected to a phosphorus removal test under the same conditions as in Example 2. As a result, phosphorus was dephosphorized to a concentration of 0.01 to 0.1 ppm on the 15th day, and the concentration gradually increased from the 16th day to 1.0 ppm on the 20th day.

【0016】[0016]

【発明の効果】本発明によれば、約1ppm程度の低濃
度のリン溶存原水に対しても約90%以上の脱リン率を
達成でき、脱リン剤の再生使用が容易であり、脱リン剤
それ自体が無毒性であり、かつリンの回収ができる脱リ
ン剤、および該脱リン剤の再生方法が提供される。
According to the present invention, a dephosphorization rate of about 90% or more can be achieved even with a low concentration of about 1 ppm of phosphorus-dissolved raw water, and the dephosphorizing agent can be easily recycled and used. Provided are a dephosphorizing agent which is nontoxic itself and can recover phosphorus, and a method for regenerating the dephosphorizing agent.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 下記式(1) M2+ 1-x3+ x(OH)2n- x/n・mH2O (1) (式中、M2+は、Mg2+,Zn2+,Cu2+等の2価金属
の少なくとも1種を、M3+は、Al3+,Fe3+等の3価
金属の少なくとも1種を、An-はSO4 2-またはCl-
示し、xおよびmはそれぞれ次の範囲を満足する数を表
す、0<x<0.5、0≦m<2)で表されるハイドロ
タルサイト類を有効成分とすることを特徴とする水に溶
存しているリンの除去剤。
1. The following formula (1): M 2+ 1−x M 3+ x (OH) 2 An x / n · mH 2 O (1) (where M 2+ is Mg 2+ , Zn 2+, at least one divalent metal Cu 2+, etc., M 3+ is, Al 3+, at least one trivalent metal Fe 3+, etc., a n-is SO 4 2-or It represents Cl , and x and m each represent a number that satisfies the following range, and is characterized by using hydrotalcites represented by 0 <x <0.5, 0 ≦ m <2) as an active ingredient. Remover of phosphorus dissolved in water.
【請求項2】 式(1)の化合物が、下記式(2) Mg1-xAlx(OH)2(SO4x/2・mH2O (2) (式中、xおよびmはそれぞれ次の範囲を満足する数を
表す、0.1<x<0.5、0≦m<2)で表されるハ
イドロタルサイト類であることを特徴とする請求項1記
載の水に溶存しているリンの除去剤。
2. The compound of the formula (1) is represented by the following formula (2): Mg 1-x Al x (OH) 2 (SO 4 ) x / 2 · mH 2 O (2) (where x and m are The hydrotalcites represented by 0.1 <x <0.5, 0 ≦ m <2) each representing a number satisfying the following ranges, and are dissolved in water according to claim 1. A phosphorus remover.
【請求項3】 ハイドロタルサイト類が、短径が少なく
とも1mm以上の球形または円柱状に造粒されているこ
とを特徴とする請求項1または2記載の水に溶存してい
るリンの除去剤。
3. The agent for removing phosphorus dissolved in water according to claim 1, wherein the hydrotalcites are granulated into a sphere or a column having a minor axis of at least 1 mm or more. .
【請求項4】 (A)請求項1記載のハイドロタルサイ
ト類の充填層に原水を通水させ、An-をリン酸イオンで
イオン交換する脱リン工程、(B)脱リン能力が飽和に
達した該ハイドロタルサイト類の充填層にアルカリ金属
炭酸塩または炭酸アンモニウムの水溶液を通水して、捕
捉したリン酸イオンをCO3 2-でイオン交換して回収す
る工程、(C)少なくともpH1以上の硫酸または塩酸
の水溶液を接触させ、炭酸イオンを硫酸イオンまたは塩
酸イオンとイオン交換して、式(1)のハイドロタルサ
イト類に再生する工程からなることを特徴とする原水中
リンの除去および脱リン剤の再生方法。
4. A (A) dephosphorization step in which raw water is passed through the packed bed of hydrotalcites according to claim 1 to ion-exchange An- with phosphate ions, and (B) a dephosphorization ability is saturated. Passing an aqueous solution of an alkali metal carbonate or ammonium carbonate through the packed bed of the hydrotalcites that has reached the above, and recovering the trapped phosphate ions by ion exchange with CO 3 2- , (C) at least contacting an aqueous solution of sulfuric acid or hydrochloric acid having a pH of 1 or more, and ion-exchanging carbonate ions with sulfate ions or hydrochloric acid ions to regenerate hydrotalcites of the formula (1). Removal and regeneration of dephosphorizer.
JP10208619A 1998-07-08 1998-07-08 Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof Pending JP2000024658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208619A JP2000024658A (en) 1998-07-08 1998-07-08 Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208619A JP2000024658A (en) 1998-07-08 1998-07-08 Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof

Publications (1)

Publication Number Publication Date
JP2000024658A true JP2000024658A (en) 2000-01-25

Family

ID=16559232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208619A Pending JP2000024658A (en) 1998-07-08 1998-07-08 Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof

Country Status (1)

Country Link
JP (1) JP2000024658A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068242A1 (en) * 2000-03-14 2001-09-20 Kyowa Chemical Industry Co., Ltd. Adsorbent for aromatic hydroxy compound and utilization thereof
JP2002020121A (en) * 2000-04-12 2002-01-23 Mizusawa Ind Chem Ltd Method for producing double metal polybasic salt by ion exchange
JP2002371368A (en) * 2001-06-14 2002-12-26 Nihon Kagaku Sangyo Co Ltd Method for treating aged electroless nickel plating liquid
JP2006334456A (en) * 2005-05-31 2006-12-14 Univ Waseda Layered complex hydroxide having high anion exchangeability and superior stability hardly contaminated with carbonic acid, and its synthetic method
EP1803778A2 (en) 2005-12-29 2007-07-04 Toda Kogyo Corporation Hydrotalcite-based compound particles, resin stabilizer using the same, halogen-containing resin composition and anion scavenger using the same
WO2009066461A1 (en) * 2007-11-20 2009-05-28 Jdc Corporation Method for replacing interlayer ions of hydrotalcite-like substance, regenerating method, and apparatus for replacing interlayer ions
WO2009072488A3 (en) * 2007-12-05 2009-08-06 Nat Inst For Materials Science Process for producing anion exchange layered double hydroxide
WO2012102151A1 (en) * 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide containing carbonate ion
KR101556538B1 (en) * 2014-11-28 2015-10-02 한국해양과학기술원 Method for removing phosphorus from contaminated water using magnetically separated particles isolated from soil
JP2017202442A (en) * 2016-05-11 2017-11-16 日立Geニュークリア・エナジー株式会社 System and method for treating water
WO2023084917A1 (en) * 2021-11-10 2023-05-19 セトラスホールディングス株式会社 Method for producing ion-exchanged hydrotalcite

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001068242A1 (en) * 2000-03-14 2001-09-20 Kyowa Chemical Industry Co., Ltd. Adsorbent for aromatic hydroxy compound and utilization thereof
JP2002020121A (en) * 2000-04-12 2002-01-23 Mizusawa Ind Chem Ltd Method for producing double metal polybasic salt by ion exchange
JP4638996B2 (en) * 2000-04-12 2011-02-23 水澤化学工業株式会社 Process for producing composite metal polybasic salt by ion exchange
JP2002371368A (en) * 2001-06-14 2002-12-26 Nihon Kagaku Sangyo Co Ltd Method for treating aged electroless nickel plating liquid
JP4566463B2 (en) * 2001-06-14 2010-10-20 日本化学産業株式会社 Treatment method of electroless nickel plating aging solution
JP2006334456A (en) * 2005-05-31 2006-12-14 Univ Waseda Layered complex hydroxide having high anion exchangeability and superior stability hardly contaminated with carbonic acid, and its synthetic method
EP1803778A2 (en) 2005-12-29 2007-07-04 Toda Kogyo Corporation Hydrotalcite-based compound particles, resin stabilizer using the same, halogen-containing resin composition and anion scavenger using the same
JPWO2007074729A1 (en) * 2005-12-29 2009-06-04 戸田工業株式会社 Hydrotalcite compound particles, resin stabilizer using the particles, halogen-containing resin composition, and anion-trapping material using the particles
CN101861206A (en) * 2007-11-20 2010-10-13 日本国土开发株式会社 Method for replacing interlayer ions of hydrotalcite-like substance, regenerating method, and apparatus for replacing interlayer ions
WO2009066461A1 (en) * 2007-11-20 2009-05-28 Jdc Corporation Method for replacing interlayer ions of hydrotalcite-like substance, regenerating method, and apparatus for replacing interlayer ions
WO2009072488A3 (en) * 2007-12-05 2009-08-06 Nat Inst For Materials Science Process for producing anion exchange layered double hydroxide
JP5317293B2 (en) * 2007-12-05 2013-10-16 独立行政法人物質・材料研究機構 Method for producing anion-exchange layered double hydroxide
WO2012102151A1 (en) * 2011-01-27 2012-08-02 独立行政法人物質・材料研究機構 Method for producing anion-exchanging layered double hydroxide and method for substituting carbonate ion of layered double hydroxide containing carbonate ion
JP5867831B2 (en) * 2011-01-27 2016-02-24 国立研究開発法人物質・材料研究機構 Method for producing anion-exchange layered double hydroxide and method for replacing carbonate ion of layered double hydroxide containing carbonate ion
KR101556538B1 (en) * 2014-11-28 2015-10-02 한국해양과학기술원 Method for removing phosphorus from contaminated water using magnetically separated particles isolated from soil
JP2017202442A (en) * 2016-05-11 2017-11-16 日立Geニュークリア・エナジー株式会社 System and method for treating water
WO2023084917A1 (en) * 2021-11-10 2023-05-19 セトラスホールディングス株式会社 Method for producing ion-exchanged hydrotalcite

Similar Documents

Publication Publication Date Title
US4752397A (en) Process for removing heavy metal ions from solutions using adsorbents containing activated hydrotalcite
US6849187B2 (en) Arsenic removal media
EP0200834B1 (en) Removal of ammonia from wastewater
US5897784A (en) Treatment of swimming pool water
EP0140444B1 (en) A process for removing of heavy metals from water in particular from waste water
JP2000024658A (en) Dephosphorizing agent for water and method for removing phosphorus and regeneration thereof
JP4348426B2 (en) Highly selective dephosphorizing agent and method for producing the same
US5858242A (en) Heavy metal cation recovering agent including a silicate or aluminosilicate type compound and a carbonate type compound
JP2005193167A (en) Drainage purification method and purification method
JPH02233503A (en) Purification of hydrochloric acid
US20020195396A1 (en) Agent for removing heavy metals comprising a sulphur compound
JP4164681B2 (en) How to recover phosphorus
SU1412232A1 (en) Method of preparing drinkable water
JP3105347B2 (en) How to treat phosphate sludge
WO2002079087A1 (en) Recovery of ammonium nitrogen from wastewater
JPS6150011B2 (en)
JPS6036831B2 (en) Treatment method for water containing arsenic and silica
SU1219135A1 (en) Method of recovery of weekly basic anion-exchange resin
JP2000144472A (en) Refining treatment of salt water for electrolysis
JPS622875B2 (en)
CN115155545A (en) Porous material for reducing ammonia nitrogen in pond culture tail water and preparation method thereof
JPS6041007B2 (en) Method for recovering aluminum compounds from aluminum-based wastewater
JPS6210927B2 (en)
JPS596197B2 (en) Method for regenerating houfu compound wastewater treatment agent
JPS6014990A (en) Dephosphorization process